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1 Probability and Statistics

(1) (combinatorics)
Let C(N;K) = 1 for K = 0 or K = N , and C(N;K) = C(N � 1;K) + C(N � 1;K � 1) for N � 1.
Prove that C(N;K) = N !

K!(N�K)! for N � 1 and 0 � K � N .

(2) (counting)
What is the probability of getting exactly 6 heads when 
ipping 10 fair coins?

What is the probability of getting a full house (XXXYY) when randomly drawing 5 cards out of
a deck of 52 cards?

(3) (conditional probability)
If your friend 
ipped a fair coin three times, and tell you that one of the tosses resulted in head, what
is the probability that all three tosses resulted in heads?

(4) (Bayes theorem)
A program selects a random integer X like this: a random bit is �rst generated uniformly. If the bit
is 0, X is drawn uniformly from f0; 1; : : : ; 7g; otherwise, X is drawn uniformly from f0;�1;�2;�3g.
If we get an X from the program with jXj = 1, what is the probability that X is negative?

(5) (union/intersection)
If P (A) = 0:3 and P (B) = 0:4,
what is the maximum possible value of P (A \B)?
what is the minimum possible value of P (A \B)?
what is the maximum possible value of P (A [B)?
what is the minimum possible value of P (A [B)?

(6) (mean/variance)

Let mean X =
1

N

NX
n=1

Xn and variance �2X =
1

N � 1

NX
n=1

(Xn �X)2. Prove that

�2X =
N

N � 1

 
1

N

NX
n=1

X2
n �X

2

!
:

(7) (Gaussian distribution)
If X1 and X2 are independent random variables, where p(X1) is Gaussian with mean 2 and variance 1,
p(X2) is Gaussian with mean �3 and variance 4. Let Z = X1 + X2. Prove p(Z) is Gaussian, and
determine its mean and variance.

2 Linear Algebra

(1) (rank)

What is the rank of

0
@ 1 2 1

1 0 3
1 1 2

1
A ?

(2) (inverse)

What is the inverse of

0
@ 0 2 4

2 4 2
3 3 1

1
A ?
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(3) (eigenvalues/eigenvectors)

What are the eigenvalues and eigenvectors of

0
@ 3 1 1

2 4 2
�1 �1 1

1
A ?

(4) (singular value decomposition)
For a real matrix M, let M = U�VT be its singular value decomposition. De�ne My = V�yUT , where
�y[i][j] = 1

�[i][j] when �[i][j] is nonzero, and 0 otherwise. Prove that MMyM = M.

(5) (PD/PSD)
A symmetric real matrix A is positive de�nite (PD) i� x

TAx > 0 for all x 6= 0, and positive semi-
de�nite (PSD) if \>" is changed to \�". Prove:

(a) For any real matrix Z, ZZT is PSD.

(b) A is PD i� all eigenvalues of A are strictly positive.

(6) (inner product)
Consider x 2 Rd and some u 2 Rd with kuk = 1.
What is the maximum value of uTx?
What is the minimum value of uTx?
What is the minimum value of juTxj?

(7) (distance)
Consider two parallel hyperplanes in Rd:

H1 : w
T
x = +3;

H2 : w
T
x = �2;

where w is the norm vector. What is the distance between H1 and H2?

3 Calculus

(1) (di�erential and partial di�erential)

Let f(x) = ln(1 + e�2x). What is
df(x)

dx
? Let g(x; y) = ex + e2y + e3xy

2

. What is
@g(x; y)

@y
?

(2) (chain rule)

Let f(x; y) = xy, x(u; v) = cos(u+ v), y(u; v) = sin(u� v). What is
@f

@v
?

(3) (integral)

What is

Z 10

5

2

x� 3
dx?

(4) (gradient and Hessian)
Let E(u; v) = (uev � 2ve�u)2. Calculate the gradient rE and the Hessian r2E at u = 1 and v = 1.

(5) (Taylor's expansion)
Let E(u; v) = (uev � 2ve�u)2. Write down the second-order Taylor's expansion of E around u = 1
and v = 1.

(6) (optimization)
For some given A > 0; B > 0, solve

min
�

Ae� +Be�2�:

(7) (vector calculus)
Let w be a vector in Rd and E(w) = 1

2w
TAw + b

T
w for some symmetric matrix A and vector b.

Prove that the gradient rE(w) = Aw + b and the Hessian r2E(w) = A.
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(8) (quadratic programming)
Following the previous question, if A is not only symmetric but also positive de�nite (PD), prove that
the solution of argmin

w
E(w) is �A�1

b.

(9) (optimization with linear constraint)
Consider

min
w1;w2;w3

1

2
(w2

1 + 2w2
2 + 3w2

3) subject to w1 + w2 + w3 = 11:

Refresh your memory on \Lagrange multipliers" and show that the optimal solution must happen on
w1 = �, 2w2 = �, 3w3 = �. Use the property to solve the problem.

(10) (optimization with linear constraints)
Let w be a vector in Rd and E(w) be a convex di�erentiable function of w. Prove that the optimal
solution to

min
w

E(w) subject to Aw + b = 0:

must happen at rE(w) + �
TA = 0 for some vector �. (Hint: If not, let u be the residual when

projecting rE(w) to the span of the rows of A. Show that for some very small �, w�� �u is a feasible

solution that improves E.)
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