
Machine Learning (NTU, Fall 2010) instructor: Hsuan-Tien Lin

Homework #2
TA in charge: Yu-Xun Ruan

RELEASE DATE: 09/27/2010

DUE DATE: 10/11/2010, 4:00 pm IN CLASS

TA SESSION: 10/07/2010, 6:00 pm IN R110

Unless granted by the instructor in advance, you must turn in a hard copy of your solutions (without the
source code) for all problems. For problems marked with (*), please follow the guidelines on the course
website and upload your source code to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

2.1 Simplified No-Free-Lunch Theorem

Let X = {x1,x2, . . . ,xN ,xN+1, . . . ,xN+M} and Y = {−1,+1} (binary classification). Here the set of

training examples is D =
{

(xn, yn)
}N

n=1
, where yn ∈ Y, and the set of test inputs is

{
xN+m

}M

m=1
. The

Off-Training-Set error (OTS) with respect to an underlying target f and a hypothesis g is

EOTS(g, f) =
1
M

M∑
m=1

Jg(xN+m) 6= f(xN+m)K .

(1) (5%) Say f(x) = 1 for all x and g(x) =
{

1, for x = xk and k is even and 1 ≤ k ≤M +N
−1, otherwise .

What is EOTS(g, f)?

(2) (5%) We say that a target function f can “generate” D in a noiseless setting if f(xn) = yn for
all (xn, yn) ∈ D. For all possible f : X → Y, how many of them can generate D in a noiseless
setting?

(3) (5%) For a fixed g, if all those f in (2) are equally likely in probability, what is the expected
off-training-set error Ef{EOTS(g, f)}?

(4) (5%) A determistic algorithm A is defined as a procedure that takes D as an input, and outputs
a hypothesis g. Argue that for any two deterministic algorithms A1 and A2,

Ef

{
EOTS

(
A1(D), f

)}
= Ef

{
EOTS

(
A2(D), f

)}
.

You have now proved that “in a noiseless setting (f generates D), for a fixed D, if all possible f are
equally likely, any two deterministic algorithms are the same in terms of Ef {EOTS}.”

1 of 3



Machine Learning (NTU, Fall 2010) instructor: Hsuan-Tien Lin

2.2 Marbles and Coins

(1) (5%) Do Exercise 1.9 of LFD.

(2) (5%) Do Exercise 1.10 of LFD.

(3) (5%) Do Exercise 1.11-1 of LFD.

(4) (5%) Do Exercise 1.11-2 of LFD.

(5) (5%) Do Exercise 1.11-3 of LFD.

2.3 Learning Games

(1) (5%) Do Exercise 1.12-1 of LFD.

(2) (5%) Do Exercise 1.12-2 of LFD.

(3) (5%) Do Exercise 1.12-3 of LFD.

(4) (5%) Do Exercise 1.12-4 of LFD.

2.4 Probably Approximately Correct

Read the derivation that links Equation (1.6) to Equation (2.1) on LFD Page 2-2. In particular, let

ε(M,N, δ) =

√
1

2N
ln

2M
δ
.

(1) (5%) Take δ = 0.03 and M = 1, how many examples do we need to make ε(M,N, δ) ≤ 0.05?

(2) (5%) Take δ = 0.03 and M = 100, how many examples do we need to make ε(M,N, δ) ≤ 0.05?

(3) (5%) Take δ = 0.03 and M = 10000, how many examples do we need to make ε(M,N, δ) ≤ 0.05?

The title of this problem, Probably Approximately Correct, states what we can interpret from (2.1)
if we have enough training examples. “Probably” means the statement is true with a high probability
(≥ 1 − δ). “Approximately” means that every Eout(g) is close to Ein(g) (within ε). “Correct” means
that we can guarantee Eout(g) to be small (by getting some decision function g with small Ein(g)).

2.5 Adaptive Perceptron Learning (*)

We know that the perceptron learning rule works like this: In each iteration, pick a random (x(t), y(t))
and compute ρ(t) = w(t) • x(t). If y(t) · ρ(t) ≤ 0, update w by

w(t+1) ←− w(t) + y(t) · x(t) ;

One may argue that the algorithm did not take the “closeness” between ρ(t) and y(t) into consideration.
Let’s look at another perceptron learning algorithm: In each iteration, pick a random (x(t), y(t)) and
compute ρ(t) = w(t) • x(t). If y(t) · ρ(t) ≤ 1, update w by

w(t+1) ←− w(t) + η ·
(
y(t) − ρ(t)

)
· x(t) ,

where η is some constant. That is, if ρ(t) agrees with y(t) a lot (their product is > 1), the algorithm
does nothing. On the other hand, if ρ(t) is further from y(t), the algorithm changes w(t) more. In this
problem, you are asked to implement this algorithm and check its performance.

2 of 3



Machine Learning (NTU, Fall 2010) instructor: Hsuan-Tien Lin

(1) (5%) Generate a training data set of size 100 as directed in Homework Problem 1.3. Generate
a test data set of size 10000 from the same process. Run the algorithm above with η = 100 on the
training data set until it converges (no more possible updates) or a maximum of 1000 updates has
been reached to get g. Plot the training data set, the target function f , and the final hypothesis g
on the same figure. Estimate the out-of-sample error with the test set.

(2) (5%) Use the data set in (1) and redo everything with η = 1.

(3) (5%) Use the data set in (1) and redo everything with η = 0.01.

(4) (5%) Compare the results that you get from (1) to (3).

The algorithm above is a variant of the so-called Adaline (Adaptive Linear Neuron) algorithm for per-
ceptron learning.

3 of 3


