Correctness of getMinIndex

1 Question

The following GetMinIndex algorithm has been introduced in the class. Prove that the algorithm is correct. That is, the index to the minimum element will be returned.

```
GetMinIndex(integer array arr, integer len)
minpos }\leftarrow
for }i\leftarrow1\mathrm{ to len - 1 do
    if arr[i]< arr[minpos] then
        minpos }\leftarrow
    end if
end for
return minpos
```


2 Answer

Claim 0: Upon existing the loop at $i=k$ for any $k=1,2, \ldots$, len -1 , $\operatorname{arr}[\operatorname{minpos}] \leq \operatorname{arr}[j]$ for $j=0,1,2, \ldots, k$.

Proof: Let m_{k} denote the value of minpos when existing the loop at $i=k$.

1. The claim is true when $i=1$, because either

- $\operatorname{arr}[1]<\operatorname{arr}[0]$, which means that the if is true (i is 1 and minpos was assigned to 0 in the first line) and m_{1} is then assigned to 1 , making $\operatorname{arr}\left[m_{1}\right] \leq \operatorname{arr}[j]$ for $j=0,1$, or
- $\operatorname{arr}[1] \geq \operatorname{arr}[0]$, which keeps $m_{1}=0$ and thus $\operatorname{arr}\left[m_{1}\right] \leq \operatorname{arr}[j]$ for $j=0,1$.

2. Assume that when $i=t-1$, the claim is true. That is,

$$
\begin{equation*}
\operatorname{arr}\left[m_{t-1}\right] \leq \operatorname{arr}[j] \text { for } j=0,1,2, \ldots, t-1 \tag{1}
\end{equation*}
$$

Then, when $i=t$, there are two cases

- the if is true, which means $\operatorname{arr}[t]<\operatorname{arr}\left[m_{t-1}\right]$. Combining the inequality with (1),

$$
\begin{equation*}
\operatorname{arr}[t]<\operatorname{arr}[j] \text { for } j=0,1,2, \ldots, t-1 \tag{2}
\end{equation*}
$$

In this case, m_{t} gets updated to t. Combining the trivial $\operatorname{arr}[t] \leq \operatorname{arr}[t]$ with (2), we get

$$
\begin{equation*}
\operatorname{arr}\left[m_{t}\right] \leq \operatorname{arr}[j] \text { for } j=0,1,2, \ldots, t \tag{3}
\end{equation*}
$$

- the if is false, which means $\operatorname{arr}[t] \geq \operatorname{arr}\left[m_{t-1}\right]$. Note that m_{t} keeps the value of m_{t-1} here. We can then combine the inequality with (1), and get

$$
\begin{equation*}
\operatorname{arr}\left[m_{t}\right] \leq \operatorname{arr}[j] \text { for } j=0,1,2, \ldots, t \tag{4}
\end{equation*}
$$

So in both cases, the claim is true when $i=t$. By mathematical induction, the claim is true for any $i=1,2, \ldots, k$.

Claim 1: Upon existing the algorithm, arr $[$ minpos $] \leq \operatorname{arr}[j]$ for $j=0,1,2, \ldots, l e n-1$ for any positive len. That is, the algorithm is correct.

Proof: Claim 1 is trivially true for $l e n=1$, where minpos stays at 0 and is surely $\leq \operatorname{arr}[j]$ for $j=0$. For other len, apply Claim $\mathbf{0}$ with $k=l e n-1$ and we see that Claim $\mathbf{1}$ is also true.

