Stack

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 31, 2020

H.-T. Lin (NTU CSIE) Stack

0/19

Application: Expression Evaluation

Application: Expression Evaluation
Stack for Expression Evaluation
4 ¢
a/b# c e * C &

* precedence: {x, /} first; {4, —} later

* steps

o f=ab < ab s

e g=f-c & ‘FC-"'

e h=dxe < de *

e j=g+h ?'

si=axe ST gbsc- dex tacK

C_/

(Postfix Notation
same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin (NTU CSIE) Stack 12/19

Application: Expression Evaluation

Postfix from Infix.(Usual) Notation
i Pr % Pr

3 /4 — 5 + 6 x 7 — 8 % 9

infix:

parenthesize:

(((@/4)5+(6*7)}@*9))

for every triplg:m pa@th ses, switch orders

((G425-) (619%) Ga9~)

remove parentheses

34/ 5 — Cx + 8% -

difficult to parenthesize efficiently]

H.-T. Lin (NTU CSIE) Stack 13/19

Application: Expression Evaluation

Evaluate Postfix Expressions
_—>
3 — §Z_>E 489 x — {

e

* how to evaluate? left-to-right, “operate” when see operator
° g, i-,L:> 0.7~
® 0.75,5,-=-4.25

Tred
© -4.25,6,7," = -4.25, 42 (note!
© -4.25,42,)= 37.75
e 37.75, 8,9, * = 37.75, 72 (note: 37.75\stored
®© 37.75,72,- = ...

or latter use)

P

for latter use

stored where?
6’@%0 closest operands will be considered first! J
~ /7

H.-T. Lin (NTU CSIE) Stack 14/19

Application: Expression Evaluation

Stack Solution to Postfix Evaluation

Postfix Evaluation

for each token in the input do
if token is a number
push token to the stack
else if token is an operator)

sequentially pop operands a;_1, - - - , ap from the stack

push\oKen 2o, @, a;—1] 1o the stack

end if

end for 5_ X EF/

return the top of stack

matches closely with the definition of postfix notation J

s R R |

H.-T. Lin (NTU CSIE) Stack 15/19

Application: Expression Parsing

Application: Expression P
@ Alnarithm for Infix ta Paatfix
infix = postfix efficiently?]

e at/, not sure of what to do (need later operands) so Etore |

+dxe—axc
P

- - - e

at -, know that a / b can be a b / because - is of lower precedence

&b - ct+dxe—axc
s
at +, know that ? - c can be ? c - because + is of same

precedence but {-, +} is left-associative

d xe—ax*c +
c -—
at *, not sure of what to do (need later operands) so store /
a/b—c+ —-axC ‘!u-t- I*PI{}

ab/(- de*
stored where? stack so closest operators will be considered first!]

H.-T. Lin (NTU CSIE) Stack 1719

Application: Expression Parsing

Stack Solution to Infix-Postfix Translation

for each token in the input do g —
it foken is a number) ‘—“2
output token

else if token is an operator '
((Whll top of stacks of higher (or same) precedence do | é—

pop an put top of stack
end while
push token to the stack &—
end if
end for

* here: infix to postfix with operator stack) &
—closest operators will be considered first

e recall: postfix evaluation with operand stack) &
—closest operands will be considered first

* mixing the two algorithms (say, use two stacks): simple calculator
3% § +5566 ~(12

H.-T. Lin (NTU CSIE) Stack 18/19

Application: Expression Parsing

Some More Hints on Infix-Postfix Translation
for each token in the input do 2 * (S X l‘))

if foken is a number
output token
else if token is an operator
while top of stack is of higher (or same) precedence do
pop and output top of stack
end while {
push token to the stack
end if 4
end for

— .
e for left associativity and|binary operators I
* right-associativity? same precedence needs to wait «

® unary/trinary operator? same
e parentheses? higest priority

e at’(’, cannot pop anything from stack
—like seeing ™ while having '+ on the stack
® at’)’, can pop until '(" —like parentheses matching

e 1
H.-T. Lin (NTU CSIE) Stack 19/19

