Stack

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 31, 2020

H.-T. Lin (NTU CSIE) Stack

0/19



Intuition



Intuition

Stack

mimic: “pile of documents” on your desk J




Intuition

Stack: Last-In-First-Out (LIFO) J

(constant-time) operations:
° insertTop (data), often called push (data)
* removeTop (), often called pop ()
® getTop (), often called peek ()

—LIFO: #% &4, T

very restricted data structure, but important for computers
—will discuss some cases later

H.-T. Lin (NTU CSIE) Stack 3/19



Intuition

A Simple Application: Parentheses Balancing

¢ in C, the following characters show up in pairs: (), [, {}, ™"

good: {xXXX (XXXXXX)XXXXX"xxxx"x}
bad: {xxxX (xxxxxxX}xxxxX"xxxx"x}

the LISP programming language
(append (pow (* (+ 3 5) 2) 4) 3)

how can we check parentheses balancing? ]

H.-T. Lin (NTU CSIE) Stack 4/19



Intuition

Stack Solution to Parentheses Balancing

inner-most parentheses pair = top-most plate
(o EETEE Y SETFTAR

Parentheses Balancing Algorithm

for each cin the input do
if c is a left character
push c to the stack
else if c is a right character
pop d from the stack and check if match
end if
end for

many more sophisticated use in compiler design (will see some) J

H.-T. Lin (NTU CSIE) Stack 5/19



Intuition

System Stack

e recall: function call & £ # 6 FARKAH
* old (original) scrap paper: temporarily not used, ¥ XA/RET @

System Stack: — & #4354 , each paper (stack frame) contains
® return address: where to return to the previous scrap paper

e |ocal variables (including parameters): to be used for calculating
within this function

® previous frame pointer: to be used when escaping from this
function )

some related issues: security attack? J

H.-T. Lin (NTU CSIE) Stack 6/19



Implementation



Implementation

Stacks Implemented on Array

usually: (growable) consecutive array and push/pop at
end-of-array

H.-T. Lin (NTU CSIE) Stack 8/19



Implementation

Stacks Implemented on Linked List

usually: singly linked list and push/pop at head J

H.-T. Lin (NTU CSIE) Stack 9/19



Implementation

Stack in STL
1 stack< int, vector<int> > s_on_array;
2 stack< int, list<int> > s_on_array;

implemented as container adapter

H.-T. Lin (NTU CSIE) Stack

10/19



Application: Expression Evaluation



Application: Expression Evaluation

Stack for Expression Evaluation

alb—c+dxe—axc

e precedence: {x, /} first; {+, —} later

e steps
e f=a/b
e g=f-c
°* h=d=xe
°*j=g+h
° j=axc
o f=j—j

Postfix Notation

same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin (NTU CSIE) Stack 12/19



Application: Expression Evaluation

Postfix from Infix (Usual) Notation

e infix:
3 /4 — 5 4+ 6 x 7 — 8 % 9

parenthesize:
3 /4 -5 + 6 «x 7 — 8 x 9

e for every triple in parentheses, switch orders

* remove parentheses

difficult to parenthesize efficiently ]

H.-T. Lin (NTU CSIE) Stack 13/19



Application: Expression Evaluation

Evaluate Postfix Expressions

34/5 — 67 * +89 % —

* how to evaluate? left-to-right, “operate” when see operator
® 3,4,/=10.75

® 0.75,5,- = -4.25

° -425,6,7," = -4.25, 42 (note: -4.25 stored for latter use)
® 425 42, + = 37.75

e 37.75, 8,9, * = 37.75, 72 (note: 37.75 stored for latter use)
® 37.75,72,- = ...

stored where?
stack so closest operands will be considered first! J

H.-T. Lin (NTU CSIE) Stack 14/19



Application: Expression Evaluation

Stack Solution to Postfix Evaluation

Postfix Evaluation

for each token in the input do
if token is a number
push token to the stack
else if token is an operator
sequentially pop operands a;_1, - - - , ap from the stack
push token(ay, a1, a;—1) to the stack
end if
end for
return the top of stack

matches closely with the definition of postfix notation )

H.-T. Lin (NTU CSIE) Stack 15/19



Application: Expression Parsing



Application: Expression Parsing

One-Pace Alaanrithm far Infix to Poctfix
infix = postfix efficiently? ]

at /, not sure of what to do (need later operands) so store

a/lb—c+dxe—axc

at -, know that a/ b can be a b / because - is of lower precedence

a/lb—-c+dxe—axc

at +, know that ? - c can be ? c - because + is of same
precedence but {-, +} is left-associative

alb—c+dxe—axc

at *, not sure of what to do (need later operands) so store

alb—c+d+e—axc

stored where? stack so closest operators will be considered first! ]

H.-T. Lin (NTU CSIE) Stack 1719



Application: Expression Parsing

Stack Solution to Infix-Postfix Translation

for each token in the input do
if token is a number
output token
else if token is an operator
while top of stack is of higher (or same) precedence do
pop and output top of stack
end while
push token to the stack
end if
end for

* here: infix to postfix with operator stack
—closest operators will be considered first

e recall: postfix evaluation with operand stack
—closest operands will be considered first

* mixing the two algorithms (say, use two stacks): simple calculator

H.-T. Lin (NTU CSIE) Stack 18/19



Application: Expression Parsing
Some More Hints on Infix-Postfix Translation

for each foken in the input do
if foken is a number
output token
else if token is an operator
while top of stack is of higher (or same) precedence do
pop and output top of stack
end while
push token to the stack
end if
end for

e for left associativity and binary operators
® right associativity? same precedence needs to wait
® unary/trinary operator? same

e parentheses? higest priority

e at’(’, cannot pop anything from stack
—like seeing ™ while having '+’ on the stack
® at’)’, can pop until '(" —like parentheses matching

H.-T. Lin (NTU CSIE) Stack 19/19



	Intuition
	Implementation
	Application: Expression Evaluation
	Application: Expression Parsing

