Analysis Tools for Data Structures and Algorithms

Hsuan-Tien Lin
Dept. of CSIE, NTU
March 24, 2020

Asymptotic Notation

Representing "Rough" by Asymptotic Notation

- goal: rough rather than exact steps
- why rough? constant not matter much
-when input size large
compare two complexity functions $f(n)$ and $g(n)$
growth of functions matters
-when n large, n^{3} eventually bigger than $1126 n$

rough \Leftrightarrow asymptotic behavior

Asymptotic Notations: Rough Upper Bound

big-O: rough upper bound

- $\underbrace{f(n)}$ grows(slowerthan(or similar to) $g(n): f(n)=(O) g(n))$
- n grows slower than $n^{2}: n=O\left(n^{2}\right)$
- $3 n$ grows similar to $n: 3 \bar{n}=O(n)$
- asymptotic intuition (rigorous math later):

big- O : arguably the most used "language" for complexity

More Intuitions on Big-O

$$
f(n)=O(g(n)) \Leftarrow \lim _{n \rightarrow \infty} \frac{\begin{array}{l}
126 \\
f(n) \\
g(n) \\
\sqrt{n}
\end{array} \leq c \quad(\text { not rigorously, yet }), ~}{}
$$

- " $=O_{(j)}$ " more like " \in ")

$$
n^{2}=O\left(n^{2}\right)
$$

- $n=O(n)$
- $n=O(0.3 n)$
- $n=O\left(n^{5}\right)$
- " $=O(\cdot)$ " also like $" \leq$ "
- $n=O\left(n^{2}\right)$
- $n^{2}=O\left(n^{2.5}\right)$
- $n=O\left(n^{2.5}\right)$
- $1126 n=O(n)$: coefficient not matter
$n+\sqrt{a n}+\infty$ es an $n=O(n)$: lower-order term not matter exact" intuitions (properties) to be proved later

$$
\begin{aligned}
& \text { Formal Definition of Big-O } \\
& \text { (lim} \frac{f}{9} \leq c \quad \begin{array}{l}
f(n)>0 \\
g(m)>0
\end{array}
\end{aligned}
$$

Consider positive functions $f(n)$ and $g(n)$,
\downarrow $f(n)=O(g(n))$, iff exist $c\left(n_{0}\right)$ such that $f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right)$

- covers the lim intuition if limit exists
- coversother situations without "limit" ${ }_{k}$ e.g. $(\sin (n)) O(1)$
next: prove that lim intuition \Rightarrow formal definition

For positive functions f and g, if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq c$, then $f(n)=O(g(n))$.

- with definition of limit, there exists ϵ, n_{0} such that for all $n \geq n_{0}$, $\left|\frac{f(n)}{g(n)}-c\right|<\epsilon$.
- That is, for all $n \neq \frac{n_{0}, f(n)}{g(n)} . c+\epsilon$.
- Let $c^{\prime}=c+\epsilon, n_{0}^{\prime}=n_{0}$, big- O definition satisfied with $\left(c^{\prime}, n_{0}^{\prime}\right)$. QED.
important to not just have intuition (building), but know definition (building block)

More on Asymptotic Notations

Asymptotic Notations: Definitions

- $f(n)$ grows slower than or similar to $g(n)$: (" $\leq ")$
$f(n)=O(g(n))$, iff exist c, n_{0} such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$
- $f(n)$ grows faster than or similar to $g(n)$: ("之") $\quad \subset>0$

- $f(n)$ grows similar to $g(n)$: (" \approx ")

$$
f(n)=\Theta(g(n)) \text {, iff } f(n)=O(g(n)) \text { and } f(n)=\Omega(g(n))
$$

let's see how to use them $<\frac{f}{g}<8+\epsilon$

The Seven Functions as q $f(n)=O(1)$

$g(n)=$?

- 1: constant
- $\log n:$ ogarithmic (does base matter?)
- nr linear

$$
f(n)=\Delta(\log n)
$$

- n^{2} : square
- n^{3} : cubic
- 2^{n} : exponential (does base matter?)
will often encounter them in future classes

Analysis of Sequential Search

Sequential Search

```
for i}\leftarrow0\mathrm{ to }n-1 d
        if list[i] == num
            return i
            end if
end for
return -1
- best case (e.g. num at 0): time \(\Theta(1)\)
- worst case (e.g. num at last or not found): time \(\Theta(n)\) often just say \(O(n)\)-algorithm (linear complexity)

\section*{Analysis of Binary Search}

\section*{Binary Search}
left \(\leftarrow 0\), right \(\leftarrow n-1\)
while left \(\leq\) right do
( mid \(\leftarrow\) floor \(((\) left + right \() / 2)\)
if list[mid] > num left \(\leftarrow\) mid +1
else if list[mid] < num
\[
\text { right } \leftarrow \text { mid }-1
\]
else
return mid
end if
end while
return -1
- best case (e.g. num at mid): time \(\Theta(1)\)
- worst case (e.g. num not found):
because range (right - left) halved in each WHILE, needs time \(\Theta(\log n)\) iterations to decrease range to 0
\[
16 \rightarrow \uparrow 8 \rightarrow 4 \vec{\uparrow} \rightarrow 2 \rightarrow_{1}
\]

\section*{Sequential and Binary Search}
- Input: any integer array list with size \(n\), an integer num
- Output: if num not within list, -1 ; otherwise, +1126
```

DIRECT-SEQ-SEARCH
(list, n, num)
for }i\leftarrow0\mathrm{ to n-1 do
if list[i] == num
return +1126
SORT-AND-BIN-SEARCH
(list, n, num)
Sel-Sort(list,n)
return
BIN-SEARCH(list,n, num) \geq0? + 1126:-1

```
    end if
end for
return - 1
- Direct-Seq-Search: \(O(n)\) time
- Sort-And-Bin-SEARCH: \(\frac{O\left(n^{2}\right)}{V}\) time for Sel-Sort and \(\frac{O(\log n)}{\vee}\)
next: operations for "combining" asymptotic complexity

Properties of Asymptotic Notations

\section*{Some Properties of Big－O I}

Theorem（封開律）
if \(f_{1}(n) \underset{=}{=} O\left(g_{2}(n)\right), f_{2}(n) \underset{\text { un }}{=} O\left(g_{2}(n)\right)\) then \(f_{1}(n)+f_{2}(n)=O\left(g_{2}(n)\right)\)
\(\checkmark\) When \(n \geq n_{1}, f_{1}(n) \leq C_{1} g_{2}(n)\)
\(\checkmark\) ．When \(n \geq \overline{n_{2}}, \overline{f_{2}}(n) \leq c_{2} g_{2}(n)\)
－So，when \(\overline{n \geq} \frac{\sqrt{n_{1}, n_{2}} n^{\prime}}{n_{1}} f_{1}(n)+f_{2}(n) \leq \frac{\left(c_{1}+c_{2}\right)}{c^{\prime}} g_{2}(n)\)
QED
Theorem（遞移律）
if \(f_{1}(n)=O\left(g_{1}(n)\right), g_{1}(n)=O\left(g_{2}(n)\right)\) then \(f_{1}(n)=O\left(g_{2}(n)\right)\)
－When \(n \geq n_{1}, f_{1}(n) \leq c_{1} g_{1}(n)\)
－When \(n \geq n_{2}, g_{1}(n) \leq c_{2} \bar{g}_{2}(n)\)
－So，when \(n \geq\left[\frac{\max \left(n_{1}, n_{2}\right)}{n^{\prime}}, f_{1}(n)<C_{C^{\prime}}^{c_{1} c_{2} g_{2}(n)}\right.\)

Some Properties of Big－O II


Theorem（ 併吞律）
\[
\text { if } f_{1}(n)=O\left(g_{1}(n)\right), f_{2}(n)=O\left(g_{2}(n)\right) \text { and } g_{1}(n)=O\left(g_{2}(n)\right) \text { then }
\]
\[
f_{1}(n)+f_{2}(n) \stackrel{O}{=} O\left(g_{2}(n)\right)
\]

Proof：use two theorems above．
Theorem
\[
\text { If } f(n)=a_{n}\left(n^{m}\right)+\cdots+a_{1} n+a_{0}, \text { then } f(n)=O\left(n^{m}\right)
\]

Proof：use the theorem above． similar proof for \(\Omega\) and \(\Theta\)
\[
\frac{f_{1}+f_{2}}{\text { sel-s-st-bir-search }}=O\left(n^{2}\right)
\]

\section*{Some More on Big－O}

Recursive－Bin－Search is \(\delta(\log n)\) time and \(O(\log n)\) space
－by 遞移律，time also \(O(n)\)
－time also \(O(n \log n)\)
－time also \(O\left(n^{2}\right)\)
－also \(O\left(2^{n}\right)\)
prefer the tightest Big－O！

\section*{Practical Complexity}
some input sizes are time-wise infeasible for some algorithms
when 1-billion-steps-per-second
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(n\) & \(n\) & \(n \log _{2} n\) & \(n^{2}\) & \(n^{3}\) & \(n^{4}\) & \(n^{10}\) & \(2^{n}\) \\
\hline 10 & \(0.01 \mu s\) & \(0.03 \mu s\) & \(0.1 \mu \mathrm{~s}\) & \(1 \mu s\) & \(10 \mu s\) & 10s & \(1 \mu s\) \\
\hline 20 & \(0.02 \mu s\) & \(0.09 \mu s\) & \(0.4 \mu s\) & \(8 \mu s\) & \(160 \mu s\) & 2.84h & 1 ms \\
\hline 30 & \(0.03 \mu s\) & \(0.15 \mu s\) & \(0.9 \mu \mathrm{~s}\) & \(27 \mu s\) & \(810 \mu \mathrm{~s}\) & 6.83d & 1 s \\
\hline 40 & 0.04 \(\mu \mathrm{s}\) & \(0.21 \mu s\) & \(1.6 \mu \mathrm{~s}\) & \(64 \mu s\) & 2.56 ms & \(121 d\) & 18 m \\
\hline 50 & \(0.05 \mu s\) & \(0.28 \mu s\) & \(2.5 \mu \mathrm{~s}\) & \(125 \mu s\) & 6.25 ms & 3.1 y & 13d \\
\hline 100 & \(0.10 \mu s\) & \(0.66 \mu s\) & 10 ms & 1 ms & 100 ms & \(3171 y\) & \(4.70^{13} y\) \\
\hline \(10^{3}\) & \(1 \mu s\) & \(9.96 \mu \mathrm{~s}\) & 1 ms & 1 s & 16.67 m & \(3 \cdot 10^{13} y\) & \(3 \cdot 10^{284} y\) \\
\hline \(10^{4}\) & \(10 \mu s\) & \(130{ }^{\text {c }}\) & 100ms & 1000 s & 115.7d \({ }^{2}\) & \(3 \cdot 10^{23} y\) & \\
\hline \(10^{5}\) & \(100 \mu s\) & 1.66 ms & 10s & \(11.57 d\) & 3171y & \(3 \cdot 10^{33} y\) & \\
\hline \(10^{6}\) & 1 ms & 9.92 ms & 16.67 m & (32y) & \(3 \cdot 10^{7} y\) & \(3 \cdot 10^{43} y\) & \\
\hline
\end{tabular}
note: similar for space complexity,
e.g. store an \(N\) by \(N\) double matrix when \(N=50000\) ?

100000```

