
Data Structures and Algorithms (NTU, Class 01, Spring 2012) instructor: Hsuan-Tien Lin

Midterm Examination Problem Sheet
TIME: 04/24/2012, 14:20–17:20

This is a open-book exam. You can use any printed materials as your reference during the exam. Any
electronic devices are not allowed.
Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.
Both English and Chinese (if suited) are allowed for answering the questions. We do not accept any
other languages.

There are 10 questions in the exam, each worth 20 points—the full credit is 200 points. For the 10
questions, 3 of them are marked with * and are supposedly simple; 4 of them are marked with ** and
are supposedly regular; 3 of them are marked with *** and are supposedly difficult. The questions are
roughly ordered by the difficulty level.

(1) (20%, *) George and Mary decide to be together forever (a.k.a. 一直走下去). To symbolize
their love to each other, they decide to exchange their very first gifts. For the following code, the
C++ function exchange is supposed to do the task, but the result appears incorrect.

(a) Illustrate (with drawing) what the memory layout is for George, Mary, boy, girl at //DRAW.

(b) Modify the code to complete the exchange successfully, without using any pointers. Please
simply highlight which line you want to change (you only need to change one!), and write
down how you want to change it.

1 typedef GIFT int ;
2 struct Person{ GIFT g i f t ; } ;
3

4 void exchange (Person boy , Person g i r l){
5 GIFT onTable = g i r l . g i f t ;
6 g i r l . g i f t = boy . g i f t ;
7 boy . g i f t = onTable ;
8 //DRAW
9 }

10

11 Person George , Mary ;
12

13 int main (){
14 //some more code to l e t George and Mary prepare g i f t s
15 exchange (George , Mary) ;
16 //now George shou ld take Mary ’ s g i f t , and Mary take s George ’ s
17 return 0 ;
18 }

(2) (20%, *) Considering representing a queue by a fixed-size circular array of size 4, where the
front and the tail of the (empty) queue are both at 0 in the beginning. After executing each step
of the following operations sequentially, list the contents of the array, as well as where head and
tail are. For locations without contents, please use a special character to represent them.

enqueue(1); enqueue(3); dequeue(); enqueue(2); enqueue(4);

dequeue(); enqueue(5); enqueue(6); dequeue(); dequeue();

(3) (20%, **) Consider having two stacks for storing integers, a red one and a blue one with the
push and pop operations only. Illustrate how to implement the int pop mth(color s, int m)

operation that pops the m-th element from the top (and only that element) from stack s. Note
that pop mth(s, 1) should be equivalent to the usual pop from stack s, and after the operation,
all other elements should remain in their original orders.

1 of 3

Data Structures and Algorithms (NTU, Class 01, Spring 2012) instructor: Hsuan-Tien Lin

(4) (20%, **) The following code causes illegal memory access.

(a) Illustrate (with drawing) what the memory layout is at //DRAW.

(b) Explain why the //SEGFAULT line could lead to illegal memory access.

1 class VectorBad{
2 public :
3 int∗ data ;
4 VectorBad (){ data = new int [2] ; }
5 ˜VectorBad (){ delete [] data ; }
6 }
7 } ;
8

9 int main (){
10 VectorBad a ; a . data [0] = 1 ; a . data [1] = 3 ;
11 {
12 VectorBad temp = a ;
13 for (int i =0; i <2; i++) temp . data [i] += (i ∗ i) ;
14 //DRAW
15 }
16 a . data [1] = 5 ; //SEGFAULT
17 return 0 ;
18 }

(5) (20%, **) The following recursive code reverses a singly-linked list.

1 void r e v e r s e L i s t (Node∗ head){
2 i f (head−>next){
3 Node∗ t a i l = head−>next ;
4 r e v e r s e L i s t (head−>next)
5 t a i l−>next = head ;
6 }
7 }

(a) Illustrate how the code reverses a linked list A->B->C when calling reverseList(A). You need
to describe the steps clearly for the TAs.

(b) Complete the following tail-recursive code that also reverses the linked list.

1 void reverseListAndAppend (Node∗ head , Node∗ append){
2 i f (head−>next){
3 Node∗ tmp = head−>next ;
4 head−>next = append ;
5 //what to put here ? reverseListAndAppend (. . . , . . .) ;
6 }
7 else {
8 //what to put here ?
9 }

10 }
11 void r e v e r s e L i s t (Node∗ head){
12 //what to put here ? reverseListAndAppend (. . . , . . .)
13 }

2 of 3

Data Structures and Algorithms (NTU, Class 01, Spring 2012) instructor: Hsuan-Tien Lin

(6) (20%, *) The lower-triangular matrix is a matrix M with M [r][c] = 0 whenever c > r. Naturally,
we do not want to waste storage on the 0 part. A common way of storing a lower-triangular matrix
is called a “rectangular representation.” For instance, the content of a 4 by 4 lower triangular

matrix

1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10

can fit in a 5 by 2 rectangular matrix

10 9
1 6
2 3
4 5
7 8

.

Following the example above, design a data structure that implements the rectangular storage
scheme for an arbitrary lower-triangular matrix (Hint: discuss cases of even or odd number of
columns). Illustrate the scheme clearly and discuss how to access the element at row r and column c
of the lower-triangular matrix.

For the following two questions, you can only use this definition:
Let f, g be functions fron nonnegative integers to real numbers. We say f(n) = O(g(n)) if there is a real
constant c > 0 and an integer constant n0 ≥ 1 such that f(n) ≤ cg(n) for n ≥ n0.

(7) (20%, **) Prove or disapprove the following statement. “For non-negative functions f, g, h, if
f(n) = O(g(n)), then f(n) + h(n) = O(g(n) + h(n)).”

(8) (20%, ***) Prove or disapprove the following statements.

(a) “If a < 1 or (a = 1 and b ≤ 0), then 2an
2+bn+c = O(2n

2

).”

(b) “If 2an
2+bn+c = O(2n

2

), then a < 1 or (a = 1 and b ≤ 0).”

(9) (20%, ***) A linked list allows a node to link to the next one, which can be slow if you want to
access a node far far away. Consider the following multiply-linked list, which allows a node store K
pointers, each linking to next-1, next-2 (a node two steps away), next-4 (a node four steps away),
next-8, · · · , next-2K−1. Finish the code for getDataNext. Which walks s steps from the current
node and then return the pointer to the destination node, and NULL otherwise. Your code should
run within O(logN) of time complexity, where N is the number of elements in the multiply-linked
list. Briefly explain why your code runs within O(logN).

1 #define K (32)
2 class MLNode{
3 public :
4 int data ;
5 MLNode next [K] ; // next [i] l i n k s to a node (2ˆ i) s t e p s away
6 //or NULL i f the node does not e x i s t
7

8 MLNode∗ getDataNext (unsigned int s){
9 i f (s == 0) return this ;

10 //FINISH THE REST OF THE CODE
11 }
12 } ;

(10) (20%, ***) Consider an array a of N integers a0 < a1 < a2 < · · · < aM and aM > aM+1 · · · >
aN−1. In other words, aM is the maximum element of the array. Write down an O(logN)-time
algorithm that finds the value of aM . Briefly describe why the algorithm is correct. (Hint: think
about binary search.)

3 of 3

