## Homework \#2 Selected Solution

### 2.1 Asymptotic Complexity

In this problem, you can use any theorems in the textbook and any theorems on the class slides as the foundation of your proof. You cannot use any other theorems unless you prove them first.
(1) (10\%) Do Exercise 1(b) on page 41 of the textbook (Subsec. 1.5.3).

Proof. Let $n_{0}=0$ and $c=1$. For $n \geq n_{0}$, we see that

$$
\begin{aligned}
n! & =n \cdot(n-1) \cdot(n-2) \cdots \cdots 1 \\
& \leq n \cdot n \cdot n \cdots \cdots n \\
& =c \cdot n^{n}
\end{aligned}
$$

Thus, by the definition in the textbook, $n!=O\left(n^{n}\right)$.
(2) $(10 \%)$ Do Exercise 1(f) on page 41 of the textbook (Subsec. 1.5.3).

Proof. We will take $c_{1}=1, c_{2}=2, n_{0}=3$ and try to use the definition to prove the results.
For $n \geq n_{0}=3, n$ must be $\geq 1$. Then, $2^{n} \geq 2 \geq 0$. Thus,

$$
n^{2^{n}}+6 \cdot 2^{n} \geq n^{2^{n}}=c_{1} \cdot n^{2^{n}}
$$

Now, for $n \geq n_{0}=3$, we shall prove that the property $2^{n} \geq 2 n$ first. The proof can be done with a mathematical induction. When $n=3$ we see that the property is true by $2^{n}=8 \geq 6=2 n$. Assume that the property is true for $n=k$. Then, for $n=k+1 \geq 3$, we first know that $k \geq 2 \geq 1$. That is, $2^{k} \geq 2$. Thus,

$$
2^{n}=2^{k+1}=2^{k}+2^{k} \geq 2 k+2=2(k+1)
$$

Note that we used the assumed $2^{k} \geq 2 k$ in the derivation. By mathematical induction, $2^{n} \geq 2 n$ is true for all $n \geq n_{0}=3$.
Then, since $\log _{2} n \geq \log _{2} 3 \geq 1$ for $n \geq n_{0}=3$, and $n \geq n_{0}=3 \geq \log _{2} 6$,

$$
2^{n} \log _{2} n \geq 2^{n} \geq 2 n \geq n+\log _{2} 6
$$

Thus,

$$
n^{2^{n}} \geq 6 \cdot 2^{n}
$$

That is,

$$
n^{2^{n}}+6 \cdot 2^{n} \leq 2 \cdot n^{2^{n}}=c_{2} n^{2^{n}}
$$

(3) $(10 \%)$ Do Exercise 2(c) on page 41 of the textbook (Subsec. 1.5.3).

Assume that the statement is true, there exists $c_{2}$ and $n_{0}$ such that

$$
c_{2} n^{2} \leq n^{2} / \log n
$$

for all $n \geq n_{0}$. That is,

$$
\log n \leq \frac{1}{c_{2}}
$$

Take $n=\max \left(n_{0}, 10^{\frac{1}{c_{2}}+1}\right)$. We see that $n \geq n_{0}$ but

$$
\log n \geq \frac{1}{c_{2}}+1>\frac{1}{c_{2}}
$$

which is a contradiction. Thus, the statement is not true.
(4) $(10 \%)$ Do Exercise 2(e) on page 41 of the textbook (Subsec. 1.5.3).

Assume that the statement is true, there exists $c$ and $n_{0}$ such that

$$
3^{n} \leq c \cdot 2^{n}
$$

for all $n \geq n_{0}$. That is,

$$
n\left(\log _{2} 3-1\right) \leq \log _{2} c
$$

Take $n=\max \left(n_{0}, \frac{\log _{2} c}{\log _{2} 3-1}+1\right)$. We see that $n \geq n_{0}$ but

$$
n\left(\log _{2} 3-1\right) \geq \log _{2} c+\log _{2} 3-1>\log _{2} c
$$

which is a contradiction. Thus, the statement is not true.

