Hsuan-Tien Lin

Dept. of CSIE, NTU

May 16—-17, 2011

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011



What We Have Done

Selection Sort, Tournament Sort
Bubble Sort

Insertion Sort

Merge Sort

Heap Sort

BST (Tree) Sort

Reading Assignment:
Motivation of Sorting

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011 1/13



Selection Sort: Review and Refinements

idea: linearly select the minimum one from “unsorted” part;
put the minimum one to the end of the “sorted” part ’

Implementations

@ common implementation: swap minimum with a[/] for putting in
i-th iteration

@ rotate implementation: rotate minimum down to a[i] in i-th iteration
@ linked-list implementation: insert minimum to the i-th element

@ space O(1): in-place

@ time O(n?) and ©(n?)

o rotate/linked-list: stable by selecting minimum with smallest index
—same-valued elements keep their index orders

@ common: unstable

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011



Tournament Sort: Review and Refinements

idea: selection sort with winner tree (or loser tree)
rather than select linearly

@ space O(n)
@ time O(nlogn)
@ a good representative of O(nlog n) family; hardly really used

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011



Merge Sort: Review and Refinements

idea: replace winner tree with merge tree;
the root would then be the sorted result

Implementations

@ naive implementation: build the whole tree0(n log n) space
@ level implementation: keep only level of tree per iter. O(n) space

@ linked-list implementation: keep only one linked list in one iter.
(with sub-lists of length 2¥) O(1) space

recursive implementation: top-down Q(log n) space for stack call
natural: use inititally ordered sub-lists as leaf (2(n) space for heads

time O(nlogn) (1, 2, 3, 5, 9) (7) (6) (5, 10)
usually stable (if carefully implemented), parallellize well

popular in external sort with extension to k-way merge
(using winner tree)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 4/13



Heap Sort: Review and Refinements

idea: max-tournament sort with a max-heap in original array
rather than external winner tree

@ space O(1)

@ time O(nlogn)

@ not stable

@ favorable over merge sort on embedded system (constant space)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 5/13



Bubble Sort: Review and Refinements

idea: swap disordered neighbors repeatedly J

@ space O(1)

e time O(n?)

@ stable

@ adaptive: can early stop

@ a deprecated choice except in very specific applications with a few
disordered neighbors or if swapping neighbors is cheap (old tape
days)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 6/13



Insertion Sort: Review and Refinements

idea: insert a card from the unsorted pile to its place in the sorted pile |

Implementations

@ naive implementation: sequential search sorted pile from the front
O(n) time per search, O(n) per insert

@ backwise implementation: sequential search sorted pile from the
back O(n) time per search, O(n) per insert

@ binary-search implementation: binary search the sorted pile
O(log n) time per search, O(n) per insert

@ linked-list implementation: same as naive but on linked lists
O(n) time per search, O(1) per insert

@ skip-listimplementation: doable but a bit overkill (more space)

@ rotation implementation: neighbor swap rather than insert
(gnome sort)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 TI1c



Insertion Sort: Review and Refinements (ll)

@ space O(1)

e time O(n?)

@ stable

@ backwise implementation adaptive

@ usually preferred over bubble (faster) and over selection (adaptive)

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011 8/13



Shell Sort: Introduction

adaptive insertion sort on every k» elements; - - -

idea: adaptive insertion sort on every k; elements;
adaptive insertion sort on every k,, = 1 element

insertion sort with “long jumps”

space O(1), like insertion sort

time: difficult to analyze, often faster than O(n?)

unstable, adaptive n~{3/2}, nlog™2 n

usually good practical performance and somewhat easy to
implement

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 9/13



Tree Sort: Review and Refinements

idea: replace heap with a BST;
an in-order traveral outputs the sorted result ’

@ space O(n)

e time: worst O(n?) (unbalanced tree), average O(nlog n)
@ unstable

@ suitable for stream data and incremental sorting

H.-T. Lin (NTU CSIE) Saorting 05/16—05/17, 2011 10/13



Quick Sort: Introduction

idea: simulate tree sort without building the tree |
make a[0] the root of a BST name a[0] the pivot
fori—1,---,n—1do fori<~1,.-- .n—1do
if a[i] < a[0] if a[i] < a0]
insert a[/] to the left-subtree put a[/] to the left pile of the
of BST pivot
else else
insert &[i] to the put a[i] to the right pile of
right-subtree of BST the pivot
end if end if
end for end for
in-order traversal of left-subtree, output quick-sorted left; output
then root, then right-subtree a[0]; output quick-sorted right

H.-T. Lin (NTU CSIE) Sorting 05/16—05/17, 2011 11/13



Quick Sort Simulation

6,1,4,9,7,8,3,10,2,5
1 4 [5][2][3][8]10[7][9]
{[31} 14 [5][2] {6} [8] 10 [7][9]

hand-written implementation
(14325)6(97810)
(01(4325))6(97810)
()1((32)4(5))6(97810)

(0 1(((2)3())4(5))6(97810)
123456 ((78)9(10))
123456 ((7(8))9(10))
12345678910

H.-T. Lin {NTU CSIE) Sorting 05/16—0517, 2011



Quick Sort: Introduction (II)

Implementations
@ naive implementation: pick first element in the pile as pivot
@ random implementation: pick a random element in the pile as pivot

@ median-of-3 implementation: pick median(front, middle, back) as
pivot

space: worst O(n), average O(log n) on stack calls
time: worst O(n?), average O(nlog n)
not stable

usually best choice for large data (if not requiring stability), can be
mixed with other sorts for small data

H.-T. Lin (NTU CSIE) Sorting 05/16—05/17, 2011 13/13



