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An ordinal tree is an arbitrary rooted tree where the children of each node are ordered. Succinct
representations for ordinal trees with efficient query support have been extensively studied. The
best previously known result is due to Geary, Raman, and Raman [SODA 2004, pages 1–10].
The number of bits required by their representation for an n-node ordinal tree T is 2n + o(n),
whose first-order term is information-theoretically optimal. Their representation supports a large
set of O(1)-time queries on T . Based upon a balanced string of 2n parentheses, we give an
improved 2n + o(n)-bit representation for T . Our improvement is two fold: Firstly, the set of
O(1)-time queries supported by our representation is a proper superset of that supported by the
representation of Geary, Raman, and Raman. Secondly, it is also much easier for our representation
to support new queries by simply adding new auxiliary strings.

Categories and Subject Descriptors: E.1 [Data]: Trees; E.4 [Coding and Information The-

ory]: Data compaction and compression; F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures; G.2.2

[Discrete Mathematics]: Graph Theory—Graph algorithms, Trees; H.3.1 [Information Stor-

age and Retrieval]: Content Analysis and Indexing—Dictionaries, Indexing methods

General Terms: Algorithm, Design, Theory

Additional Key Words and Phrases: Succinct data structures, XML document representation

1. INTRODUCTION

An ordinal tree (see, e.g., [Geary et al. 2004; Benoit et al. 2005]) is an arbitrary
rooted tree where the children of each node are ordered. All trees in the paper are
ordinal. The number of distinct n-node trees is 22n−Θ(log n) [Graham et al. 1989], so
the information-theoretically minimum number of bits to differentiate these trees is
2n−Θ(log n). There are three major types of 2n-bit representations for an n-node
tree T :
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Fig. 1. Three representations for the same tree.

—Balanced parentheses [Munro and Raman 2001; Chuang et al. 1998; He et al.
1999; Chiang et al. 2005; Munro and Rao 2004; Bonichon et al. 2006], a folklore
encoding consisting of a balanced string of parentheses representing the counter-
clockwise depth-first traversal of T , where an open (respectively, closed) paren-
thesis denotes a descending (respectively, ascending) edge traversal. For techni-
cal reason, one usually adds a pair of enclosing parentheses to the above 2n − 2
parentheses, resulting in a representation consisting of 2n parentheses.

—Level order unary degree sequence (LOUDS) [Jacobson 1989], representing a node
of degree d as a string of d copies of 1-bits followed by a 0-bit, where these nodes
are represented in a level-order traversal of T .

—Depth first unary degree sequence (DFUDS) [Benoit et al. 2005], representing a
node of degree d as a string of d copies of 1-bits followed by a 0-bit, where these
nodes are represented in a depth-first traversal of T .

An example is shown in Figure 1.
Initiated by Jacobson [Jacobson 1989], succinct representations for trees with

efficient query support have been extensively studied in the literature. Jacob-
son [Jacobson 1989] extended the LOUDS representation into a Θ(n)-bit encoding
to support the parent query and the rank and select queries for nodes in level-order
traversal of T in Θ(logn) time. Clark and Munro [Clark 1996; Clark and Munro
1996] squeezed Jacobson’s encoding into a 3n+o(n)-bit representation, from which
the above queries and the subtree-size query can be supported in O(1) time. Later
succinct representations, all have 2n+o(n) bits, form the following trade-off between
the choices of base representations and the sets of supported O(1)-time queries:

—Based upon balanced parentheses, Munro and Raman [Munro and Raman 2001]
showed that an o(n)-bit auxiliary string suffices to support the following queries in
O(1) time: parent, depth, subtree-size, and the rank and select queries for nodes
in pre-order and post-order traversal of T . Munro, Raman, and Rao [Munro
et al. 2001] showed an o(n)-bit auxiliary string to support O(1)-time query for
leaf-rank, leaf-select, and leaf-size. Chiang, Lin, and Lu [Chiang et al. 2005]
showed an o(n)-bit auxiliary string to support O(1)-time degree query. Munro
and Rao [Munro and Rao 2004] further gave an o(n)-bit auxiliary string to sup-
port O(1)-time level-ancestor query.

—Based upon the DFUDS representation, Benoit et al. [Benoit et al. 2005] gave
an o(n)-bit auxiliary string that supports the following queries in O(1) time:
child-rank, child-select, degree, subtree-size, and node-rank and node-select in
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parentheses DFUDS Geary et al. new

pre-order select and rank ∨ ∨ ∨ ∨

post-order select and rank ∨ ∨ ∨

child-select and child-rank ∨ ∨ ∨

leaf-select, leaf-rank, and leaf-size ∨ ∨

lowest common ancestor ∨

subtree height ∨

subtree size ∨ ∨ ∨ ∨

level ancestor ∨ ∨ ∨

distance ∨

degree ∨ ∨ ∨ ∨

depth ∨ ∨ ∨

Table I. A summary for current 2n + o(n)-bit encodings for an n-node tree: Parentheses [Munro
and Raman 2001; Chiang et al. 2005; Munro and Rao 2004; Munro et al. 2001], DFUDS [Benoit
et al. 2005], Geary et al. [Geary et al. 2004].

the pre-order traversal of T . However, such a choice of the base representation
still does not provide O(1)-time support for the depth and level-ancestor queries,
the node-rank and node-select queries in the post-order traversal of T , and the
rank, select, and size queries for leaves.

Recently, Geary, Raman, and Raman [Geary et al. 2004] almost resolved the
above trade-off by giving a 2n+ o(n)-bit encoding for T that supports in O(1) time
the aforementioned queries except those leaf-related ones [Munro et al. 2001]. Their
approach differs from all previous work achieving 2n+o(n) bits in that their encod-
ing does not consist of a 2n-bit base representation for the topology of T plus an
o(n)-bit auxiliary string. Instead, they decomposed T into several types of subtrees,
whose topologies are represented in a hierarchical way, where different levels are
composed of mixtures of different base representations and auxiliary strings. Such
an involved structure seriously complicates the possibility of supporting additional
queries using other stand-alone auxiliary strings. An implementation based upon a
similar concept is studied in [Geary et al. 2004]. Very recently, Delpratt, Rahman,
and Raman [Delpratt et al. 2006] showed that LOUDS-based representation can
also be implemented to have competitive practical performance.

In the present paper, we give new o(n)-bit auxiliary strings for the 2n-bit balanced
string of parentheses representing T . Together with previous o(n)-bit auxiliary
strings for balanced parentheses [Munro and Raman 2001; Chiang et al. 2005;
Munro and Rao 2004], our 2n+o(n)-bit encoding for T supports all of Geary et al.’s
queries in O(1) time. Consisting of a base representation plus o(n)-bit auxiliary
strings, our encoding is better in the ease of supporting new queries by adding
new o(n)-bit auxiliary strings. To demonstrate such an advantage, we also show
how to handle O(1)-time queries currently unsupported by Geary et al.’s encoding,
including (a) lowest common ancestor, (b) distance, and (c) subtree height. Table I
summarizes the above discussion.

We follow the convention of unit-cost RAM model of computation with Θ(log n)-
bit word size [van Emde Boas 1990], which is assumed in all the previous work
except that of Jacobson [Jacobson 1989]. The rest of the paper is organized as
follows. Section 2 gives the preliminaries. Section 3 shows our auxiliary strings
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for distance, subtree height, and lowest common ancestor. Section 4 shows our
auxiliary strings for child-rank and child-select.

2. PRELIMINARIES

Let T be the input n-node tree. Let vi denote the i-th node of T in the pre-order
traversal of T . Let S be the balanced string of 2n parentheses for T . Let S[i, j]
denote the substring of S from index i to index j. Let S[i] = S[i, i]. Let ℓi be the
index such that S[ℓi] is the i-th open parenthesis in S. Let ri be the index such that
S[ri] is the closed parenthesis that matches S[ℓi] in S. One can easily see that the
correspondence between vi and the matched parentheses S[ℓi] and S[ri]: vi is the
parent of vj if and only if S[ℓi] and S[ri] is the closest parenthesis pair that encloses
S[ℓj] and S[rj ]. Let w(i, j) = j − i + 1. For the rest of the paper, all logarithms
are of base 2. Let B = ⌈log3 n⌉, b = ⌈(log log n)3⌉, nB = ⌈ 2n

B
⌉, and nb = ⌈ 2n

b
⌉.

Lemma 2.1 (see [Bell et al. 1990; Elias 1975]). For any O(n)-bit strings

S1, S2, . . . , Sk with k = O(1), there is an O(log n)-bit auxiliary string αconcat such

that, given the concatenation of αconcat, S1, S2, . . . , Sk as input, the index of the

first symbol of any given Si in the concatenation is computable in O(1) time.

Let S1 ◦ S2 ◦ · · · ◦ Sk denote the concatenation of αconcat, S1, S2, . . . , Sk as in
Lemma 2.1.

Lemma 2.2 (see [Munro and Raman 2001; Chiang et al. 2005]). Let S

be a length-2n string of balanced parentheses that represents an n-node tree T . It

takes O(n) time to compute an o(n)-bit string αaux such that the following queries

for S can be determined from S and αaux in O(1) time: (a) the parent, degree, and

depth of vi in T , (b) the parenthesis that matches S[i] in S, and (c) the rank and

select queries for open and closed parentheses in S.

By Lemma 2.2, given S ◦ αaux, indices i, ℓi, and ri can be determined from one
another in O(1) time. Our technique of dividing the input strings into multiple
levels of blocks, which has been widely used in many succinct data structures, is
inspired by Munro and Raman [Munro 1996; Munro and Raman 2001].

3. DISTANCE, SUBTREE HEIGHT, AND LOWEST COMMON ANCESTOR

Let L be the 2n-element array such that each L[i] is the number of open parentheses
minus the number of closed parentheses in S[1, i]. Therefore, if S[j] is the i-th open
parenthesis in S, then L[j] is the level of vi in T . For any indices i and j with
i ≤ j, let indexmin(L, i, j) (respectively, indexmax (L, i, j)) denote the smallest index
k with i ≤ k ≤ j such that L[k] equals the minimum (respectively, maximum)
of L[i], L[i + 1], . . . , L[j]. As observed by Gabow, Bentley, and Tarjan [Gabow
et al. 1984], the lowest-common-ancestor query can be reduced to the above range-
minima query indexmin . Similarly, our auxiliary string for supporting the queries of
distance, subtree height, and lowest common ancestor is based on the lemma below.
Observe that each L[i] can be obtained from S in O(1) time using the auxiliary
string αaux for the rank queries with respect to open and closed parentheses in S.
Therefore, the following lemma does not require L in the encoding.

Let I be an array of m indices. Let kmin(I, m, i, j) (respectively, kmax (I, m, i, j))
be the smallest index k with i ≤ k ≤ j that minimizes (respectively, maximizes)
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L[I[k]]. We first prove the following lemma using techniques extended from Sec-
tion 3 of [Bender and Farach-Colton 2000].

Lemma 3.1. It takes O(m log m) time to compute an O(m log2 m)-bit string

αq(I, m) from which kmin(I, m, i, j) and kmax (I, m, i, j) for any indices i and j

with 1 ≤ i ≤ j ≤ m can be determined from S, αaux, and αq in O(1) time.

Proof. For each i = 1, 2, . . . , m and j = 1, 2, . . . , ⌈log m⌉, let Mmin [i][j] (re-
spectively, Mmax [i][j]) be the smallest index k with i ≤ k < i + 2j that minimizes
(respectively, maximizes) L[I[k]]. Let αq(I, m) = Mmin ◦ Mmax . Observe that
αq(I, m) takes O(m log2 m) bits and can be computed from L and I in O(m log m)
time using dynamic programming. Let k1 = Mmin [i][k] and k2 = Mmin [j−2k+1][k],
where k = ⌊log(j − i)⌋. It is not difficult to see that

kmin(I, m, i, j) =

{

k1 if L[I[k1]] < L[I[k2]]
k2 otherwise.

One can compute kmax (I, m, i, j) from Mmax , I, and L analogously in O(1) time.

Lemma 3.2. It takes O(n) time to compute an o(n)-bit string αrmq such that

indexmin(L, i, j) and indexmax (L, i, j) for any indices i and j can be computed from

S, αaux, and αrmq in O(1) time.

Proof. First let IB be the nB-element array such that each IB [i] is the smallest
index j with (i − 1)B < j ≤ iB that minimizes L[j]. IB takes O(nB log B) =
o(n) bits. Also, for each i = 1, 2, . . . , nB, let Ib[i] be the ⌈B

b
⌉-element array such

that each Ib[i][j] is the smallest index t with (j − 1)b < t ≤ jb that minimizes
L[(i − 1)B + t]. Ib takes O(nB⌈B

b
⌉ log b) = o(n) bits. Let αq1 = αq(IB , nB), and

for each i = 1, 2, . . . , nB, let αq2[i] = αq(Ib[i], ⌈
B
b
⌉). By Lemma 3.1, both of αq1

and αq2 take o(n) bits and can be obtained in O(n) time. Finally, let αq3 be
an O(n)-time obtainable table such that any indexmin(L, i, j) and indexmax (L, i, j)
with w(i, j) ≤ 2b can be computed from S[i, j] and αq3 in O(1) time. That is, let
αq3[S[i, i + 2b − 1]][j − i + 1] = (indexmin(L, i, j) − i, indexmax (L, i, j) − i) for any
indices i and j with w(i, j) ≤ 2b. Since each entry takes O(log b) bits, the number
of bits required by αq3 is O(22b2b log b) = o(n). Let αrmq = αq1 ◦αq2 ◦αq3 ◦ IB ◦ Ib,
which has o(n) bits and is obtainable in O(n) time.

To answer indexmin(L, i, j) from S, αaux, and αrmq, we can always decompose the
interval [i, j] into two (not necessarily disjoint) subintervals [i1, j1] and [i2, j2] whose
union is [i, j]. Clearly indexmin(L, i, j) can be determined from indexmin(L, i1, j1)
and indexmin(L, i2, j2) in O(1) time. Consider the following cases.

—Case 1: w(i, j) ≤ 2b. We simply resort to S[i, j] and αq3.

—Case 2: w(i, j) > 2b and S[i, j] is in the same length-B block of S. Since
indexmin(L, i, i + b − 1) and indexmin(L, j − b + 1, j) can be determined in O(1)
time using Case 1, it suffices to determine indexmin(L, i′, j′), where (a) i′ is the
smallest index with i ≤ i′ that is a starting index of a length-b block of S, and
(b) j′ is the largest index with j′ ≤ j that is an ending index of a length-b block
of S. Since i′ and j′ are in the same length-B block of S, indexmin(L, i′, j′) can
be determined from S, αaux, and αq2 in O(1) time.
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—Case 3: w(i, j) > 2b and S[i, j] belongs to two or more consecutive length-B
blocks of S. Let i′−1 be the ending index of the length-B block of S that contains
i. Let j′+1 be the starting index of the length-B block of S that contains j. Since
indexmin(L, i, i′ − 1) and indexmin(L, j′ + 1, j) can be determined in O(1) time
using Case 2, it suffices to determine indexmin(L, i′, j′) for the case that i′ ≤ j′.
Since i′ is a starting index of a length-B block of S and j′ is an ending index of a
length-B block of S, one can determine indexmin(L, i′, j′) from S, αaux, and αq1

in O(1) time.

It is not difficult to answer indexmax (L, i, j) from S, αaux, and αrmq analogously
in O(1) time.

As pointed out by an anonymous reviewer, our data structure for lowest common
ancestor is similar to that of Sadakane [Sadakane 2002] for suffix arrays.

Theorem 3.3. It takes O(n) time to compute an o(n)-bit string αnew1 such that

the queries of distance, subtree height, and lowest common ancestor can be answered

from S and αnew1 in O(1) time.

Proof. Let αnew1 = αaux ◦ αrmq. By Lemmas 2.2 and 3.2, αnew1 has o(n) bits
and can be computed from S in O(n) time.

—The height of the subtree rooted at vi is L[indexmax (L, ℓi, ri)] minus the depth
of vi in T .

—The lowest common ancestor vk of vi and vj with ℓi < ℓj can be determined as
follows. If ri > rj , then vk = vi. Otherwise, S[indexmin(L, ri, ℓj)] has to be a
closed parenthesis rx such that vx is a child of vk, as observed by Bender and
Farach-Colton [Bender and Farach-Colton 2000].

—The distance of vi and vj is exactly the depth of vi plus the depth of vj minus
two times of the depth of vk, where vk is the lowest common ancestor of vi and
vj .

By Lemmas 2.2 and 3.2, the above queries can all be answered from S and αnew1

in O(1) time.

4. RANK AND SELECT FOR CHILDREN

Before solving rank and select for children, we introduce the following definition
and its property. A non-root node vi is k-far if w(ℓp, ℓi) > k and w(ℓi, rp) > k,
where vp is the parent of vi.

Lemma 4.1. If vi and vj are two k-far non-root nodes with |w(ℓi, ℓj)| ≤ k, then

vi and vj are siblings.

Proof. Without loss of generality, we assume ℓi < ℓj. Since vi and vj are k-
far non-root nodes with w(ℓi, ℓj) ≤ k, vi cannot be an ancestor or descendant of
vj . Thus we have ri < ℓj . Assume for a contradiction that vp (respectively, vq)
is the parent of vi (respectively, vj) and vp 6= vq. Observe that either ri < ℓq or
rp < ℓj holds. Since vj is k-far, ri < ℓq implies w(ri, ℓj) > k. Since vi is k-far,
rp < ℓj implies w(ri, ℓj) > k. Either case leads to a contradiction, so the lemma is
proved.

ACM Journal Name, Vol. V, No. N, June 2007.



Balanced Parentheses Strike Back · 7

For presentational brevity, we classify non-root nodes into the following three
disjoint classes: A node is

—narrow if it is not b-far;

—medium if it is b-far but not B-far; and

—wide if it is B-far.

4.1 Child rank

Let child rank(S, vk) denote the number c such that vk is the c-th child of its parent.
We have the following theorem.

Theorem 4.2. It takes O(n) time to compute an o(n)-bit string αnew2 such that

child rank(S, vk) for each node vk can be answered from S and αnew2 in O(1) time.

Proof. Let vp be the parent of vk. If S[i, j] is a balanced string of parentheses,
let sibling(S, i, j) be the number of non-enclosed parenthesis pairs in S[i, j]. Observe
that

child rank(S, vk) = sibling(S, ℓp + 1, ℓk − 1) + 1

= degree(S, vp) − sibling(S, ℓk, rp − 1) + 1.

Therefore, it remains to support each query sibling(S, i, j) in O(1) time.
If vk is narrow, we only need to answer sibling(S, i, j) with w(i, j) ≤ b. We simply

build an O(n)-time obtainable table M1 to store the answers for any possible inputs.
That is, let M1[S[i, i+ b−1]][j− i+1] = sibling(S, i, j) for any indices i and j with
w(i, j) ≤ b. Since sibling(S, i, j) ≤ w(i, j), each entry requires O(log b) bits and M1

takes O(2bb log b) = o(n) bits.
If vk is medium, we cannot afford to store all the answers of sibling(S, i, j) with

w(i, j) ≤ B. We split S into length-b blocks. By Lemma 4.1, any two medium
nodes vi and vj with |w(ℓi, ℓj)| ≤ b have the same parent, so for each block we save
at most one medium node as a shortcut. Define tables M2 and M3 as follows. For
each t = 1, 2, . . . , nb,

—let M2[t] = (ℓi, sibling(S, ℓp + 1, ℓi − 1)), where ℓi is the smallest index, if any,
with (t − 1)b < ℓi ≤ tb such that vi is a medium child of vp with w(ℓp, ℓi) ≤ B;
and

—let M3[t] = (ℓi, sibling(S, ℓi, rp − 1)), where ℓi is the smallest index, if any, with
(t − 1)b < ℓi ≤ tb such that vi is a medium child of vp with w(ℓi, rp) ≤ B.

Note that M2 and M3 have nb entries, each requiring O(log B) bits, so both of
them take O(nb log B) = o(n) bits. Therefore, for any medium child vk of vp, if
w(ℓp, ℓk) ≤ B, then

sibling(S, ℓp + 1, ℓk − 1) = sibling(S, ℓp + 1, ℓi − 1) + sibling(S, ℓi, ℓk − 1)

= m + M1[S[ℓi, ℓi + b − 1]][ℓk − ℓi],

where (ℓi, m) = M2[⌈
ℓk

b
⌉]. Similarly, if w(ℓk, rp) ≤ B, then

sibling(S, ℓk, rp − 1) = sibling(S, ℓi, rp − 1) − sibling(S, ℓi, ℓk − 1)

= m − M1[S[ℓi, ℓi + b − 1]][ℓk − ℓi],
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function child rank(S, vk)

1: let vp be the parent of vk ;
2: if w(ℓp, ℓk) ≤ b, then return M1[S[ℓp + 1, ℓp + b]][ℓk − ℓp − 1] + 1;
3: if w(ℓk, rp) ≤ b, then return degree(S, vp) − M1[S[ℓk, ℓk + b − 1]][rp − ℓk]] + 1;

4: if w(ℓp, ℓk) ≤ B, then let (ℓi, m) = M2[⌈
ℓk

b
⌉], and return m+M1[S[ℓi, ℓi + b−1]][ℓk − ℓi]+1;

5: if w(ℓk, rp) ≤ B, then let (ℓi, m) = M3[⌈ ℓk

b
⌉], and return degree(S, vp) − m + M1[S[ℓi, ℓi +

b − 1]][ℓk − ℓi] + 1;

6: let (ℓj , m) = M5[⌈
ℓk

B
⌉][⌈

ℓkmodB

b
⌉], and return M4[⌈

ℓk

B
⌉]+m+M1[S[ℓj, ℓj +b−1]][ℓk −ℓj ]+1;

Fig. 2. An O(1)-time algorithm that computes child rank(S, vk).

where (ℓi, m) = M3[⌈
ℓk

b
⌉].

Similar tricks work for wide nodes, but they have to be applied in two lev-
els. We first split S into length-B blocks. For each t = 1, 2, . . . , nB, let M4[t] =
sibling(S, ℓp+1, ℓi−1), where ℓi is the smallest index, if any, with (t−1)B < ℓi ≤ tB

such that vi is a wide child of vp. We further split each length-B block into
length-b blocks. For each t = 1, 2, . . . , nB and u = 1, 2, . . . , ⌈B

b
⌉, let M5[t][u] =

(ℓj , sibling(S, ℓp + 1, ℓj − 1) − M4[t]), where ℓj is the smallest index, if any, with
(u − 1)b < ℓj − (t − 1)B ≤ ub such that vj is a wide child of vp. Note that
sibling(S, ℓp + 1, ℓj − 1)−M4[t] ≤ B. One can easily verify that the number of bits
required by M4 is O(nB log n) = o(n) and the number of bits required by M5 is
O(nB⌈B

b
⌉ log B) = o(n). Thus, for any wide child vk of vp, we have

sibling(S, ℓp + 1, ℓk − 1) = sibling(S, ℓp + 1, ℓj − 1) + sibling(S, ℓj , ℓk − 1)

= M4[⌈
ℓk

B
⌉] + m + M1[S[ℓj , ℓj + b − 1]][ℓk − ℓj ],

where (ℓj , m) = M5[⌈
ℓk

B
⌉][⌈ ℓkmodB

b
⌉].

Finally, let αnew2 = αaux ◦ M1 ◦ M2 ◦ M3 ◦ M4 ◦ M5, which is an o(n)-bit
string obtainable from S in O(n) time. The O(1)-time algorithm for computing
child rank(S, vk) is shown in Figure 2.

4.2 Child select

First we need the following lemmas to handle the select query for children. For any
node vi, let indexc(S, ℓi, m, c) = ℓj−ℓi, where vj is a sibling of vi with w(ℓi, ℓj) ≤ m

such that child rank(S, vj) = child rank(S, vi) + c. If such a vj does not exist,
indexc(S, ℓi, m, c) = φ.

Lemma 4.3. It takes O(n) time to compute an o(n)-bit string αb such that

indexc(S, ℓi, b
2, c) for any node vi and index c can be computed from S and αb

in O(1) time.

Proof. We simply build an O(n)-time obtainable table αb to store the answers
for any possible inputs. That is, let αb[S[ℓi, ℓi + b2 − 1]][c] = indexc(S, ℓi, b

2, c)
for any node vi and index c. Since each entry takes O(log b) bits, αb requires

O(2b2b2 log b) = o(n) bits.

Lemma 4.4. Given a node vi, it takes O(B) time to compute an o(B)-bit string

αB(ℓi) such that indexc(S, ℓi, B, c) for any index c can be computed from S, αb, and
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αB(ℓi) in O(1) time.

Proof. For each t = 0, 1, ..., ⌈B
b
⌉ − 1, let W1[t] = indexc(S, ℓi, B, tb). W1 takes

O(⌈B
b
⌉ log B) = o(B) bits. If w(W1[t], W1[t + 1]) > b2, we save the answers

of indexc(S, ℓi, B, tb + z) for each z = 0, 1, . . . , b − 1 in W2. W2 takes at most
O(⌈ B

b2
⌉b log B) = o(B) bits. Otherwise, by Lemma 4.3 indexc(S, ℓi, B, tb + z) can

be computed in O(1) time using W1[t] + indexc(S, ℓi + W1[t], b
2, z). Let αB(ℓi) =

W1 ◦ W2, which has o(B) bits and is obtainable in O(B) time.

Given an array A of ⌈m
u
⌉ positive ⌈log u⌉-bit integers with m ≤ n and u =

⌈log3 m⌉, let indexsum(A, x) denote the largest index y with
∑y

t=1 A[t] < x.

Lemma 4.5. It takes O(m) time to compute an o(m)-bit string αA(A, m) such

that indexsum(A, x) for any index x can be determined from A and αA(A, m) in

O(1) time.

Proof. This is a special case of the search query of the searchable partial sums
problem [Raman et al. 2001; Hon et al. 2003]. Theorem 3 of [Hon et al. 2003] gave
an o(m)-bit auxiliary string to support this query in O(1) time, but it is unclear
whether the preprocessing time is O(m). Let us briefly prove this lemma as follows.

Let d(x1, x2) denote indexsum(A, x2)−indexsum (A, x1). For each t = 0, . . . , ⌈m
u
⌉−

1, let W3[t] = indexsum(A, tu). W3 needs O(⌈m
u
⌉ log m) = o(m) bits. If d(tu, (t +

1)u) > ⌈log2 u⌉, for each z = 0, 1, . . . , u − 1 we save the values of d(tu, tu + z) in
W4. Because A is an array of positive integers, we have d(tu, tu + z) ≤ z and W4

needs at most O(⌈ m
u log2 u

⌉u logu) = o(m) bits. Otherwise, let

W5[A[indexsum(A, tu), indexsum(A, tu) + ⌈log2 u⌉ − 1]][z] = d(tu, tu + z)

for each z = 0, 1, . . . , u − 1. W5 takes O(2log3 uu log log u) = o(m) bits and is
obtainable in O(m) time. Now, let αA(A, m) = W3 ◦ W4 ◦ W5, which requires
o(m) bits and can be obtained in O(m) time. To answer indexsum(A, x) in O(1)
time, first let t and z be the integers with x = tu + z and 0 ≤ z < u, and then
find the values of indexsum(A, tu) and d(tu, tu + z) from αA(A, m). The answer is
indexsum(A, tu) + d(tu, tu + z).

Let child select(S, vp, c) denote the index ℓk such that vk is the c-th child of vp.
We have the following theorem.

Theorem 4.6. It takes O(n) time to compute an o(n)-bit string αnew3 such that

child select(S, vp, c) for each node vp and c can be answered from S and αnew3 in

O(1) time.

Proof. We say that nodes in a set D are d-disjoint [Chiang et al. 2005] if

—w(ℓi, ri) > d holds for any node vi in D; and

—any two nodes vi and vj in D satisfy at least one of |w(ℓi, ℓj)| > d and |w(ri, rj)| >

d.

Let X be a 2⌈ 2n
d
⌉-element array. For each t = 1, 2, . . . , ⌈ 2n

d
⌉, we store vi in X [2t−1],

where ℓi is the smallest index, if any, with (t−1)d < ℓi ≤ td such that vi is in D; and
also store vj in X [2t], where rj is the largest index, if any, with (t − 1)d < rj ≤ td

such that vj is in D. Then, every node vi in D takes at least one slot in X , and
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can be easily verified using ℓi and ri. We simply say that X has vi if and only if
vi takes at least one of X [2⌈ ℓi

d
⌉ − 1] or X [2⌈ ri

d
⌉]. For notational brevity, let X [vi]

denote the element taken by vi.
The preprocessing is under the following traversal procedure: first traverse each

node vp of T in prefix order, and for each vp traverse every child vi of vp in counter-
clockwise order. Since selecting and matching a parenthesis on S takes O(1) time,
and each node is traversed at most two times, one as vp and the other as vi, the
whole procedure takes O(n) time. The discussion below focuses on nodes vp and vi

in each iteration of the aforementioned traversal.

—Case 1: vi is a wide child of vp. Let counter denote the number of wide nodes
discovered before each iteration. It is not difficult to see that the parents of
wide nodes are B-disjoint. Let X1 be the 2nB-element array with X1[vp] =
(beforep ,first , last), where beforep is the value of counter before we get vp, and
first (respectively, last) is the rank of the first (respectively, last) wide child of
vp. Then we partition S into length-B blocks. Let Y1 be the nB-element array
with Y1[t] = (beforei , ℓi), where ℓi is the smallest index in a block such that vi

is wide, beforei is the value of counter before we get vi, and t is the first empty
entry of Y1. Both of X1 and Y1 take O(nB log n) = o(n) bits.

—Case 2: vi is a medium child of vp. First we partition S into length-B blocks.

If w(ℓp, ℓi) ≤ B, we say that vi belongs to the ⌈
ℓp

B
⌉-th block, otherwise the

⌈
rp

B
⌉-th block. For each t = 1, 2, . . . , nB, let counter [t] denote the number of

medium nodes belonging to the t-th block before each iteration. Note that at
most B medium nodes belong to a block. Similarly, one can verify that the
parents of medium nodes are b-disjoint. Let X2 be the 2nb-element array with
X2[vp] = (beforeL,firstL, lastL, beforeR,firstR, lastR), where

—beforeL (respectively, beforeR) is the value of counter[⌈
ℓp

B
⌉] (respectively, the

value of counter[⌈
rp

B
⌉]) before we get vp,

—firstL (respectively, firstR) is the rank of the first medium child of vp belonging

to the ⌈
ℓp

B
⌉-th (respectively, ⌈

rp

B
⌉-th) block, and

—lastL (respectively, lastR) is the rank of the last medium child of vp belonging

to the ⌈
ℓp

B
⌉-th (respectively,⌈

rp

B
⌉-th) block.

Note that 1 ≤ firstL ≤ lastL ≤ B and degree(S, vp) − B ≤ firstR ≤ lastR ≤
degree(S, vp). We further partition each length-B block into length-b blocks.
For each t = 1, 2, . . . , nB, let Y2[t] be the ⌈B

b
⌉-element array with Y2[t][u] =

(beforei , ℓi), where ℓi is the smallest index in a length-b block such that vi is
a medium node belonging to the t-th length-B block, before is the value of
counter[t] before we get vk, and u is the first empty entry of Y2[t]. Observe
that X2 needs O(nb log B) = o(n) bits and Y2 needs O(nB⌈B

b
⌉ log B) = o(n)

bits.

For each t = 1, 2, . . . , nB, let αB1[t] = αB(ℓi) with (beforei , ℓi) = Y1[t]. By
Lemma 4.4, αB1 takes o(n) bits and is obtainable in O(n) time. Let A1 be the
nB-element array such that

∑u
t=1 A1[t] = beforei with (beforei , ℓi) = Y1[u] holds

for each u = 1, 2, . . . , nB. Note that 0 < A1[t] ≤ B holds for any index t, so A1

takes O(nB log B) = o(n) bits. Also, for each t = 1, 2, . . . , nB, let A2[t] be the ⌈B
b
⌉-

element array such that
∑x

u=1 A2[t][u] = beforei with (beforei , ℓi) = Y2[t][x] holds
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function child select(S, vp, c)

1: if X1 has vp then

2: let (beforep ,first , last) = X1[vp];
3: if first ≤ c ≤ last then

4: let z = beforep + c − first + 1 and (beforei , ℓi) = Y1[indexsum(A1, z)];
5: return ℓi + indexc(S, ℓi, B, z − beforei );
6: end if

7: end if

8: if X2 has vp then

9: let (beforeL, firstL, lastL, beforeR ,firstR, lastR) = X2[vp];
10: if firstL ≤ c ≤ lastL then

11: let t = ⌈
ℓp

B
⌉, z = beforeL + c − firstL + 1, and (beforei , ℓi) = Y2[t][indexsum(A2[t], z)];

12: return ℓi + indexc(S, ℓi, b
2, z − beforei );

13: end if

14: if firstR ≤ c ≤ lastR then

15: let t = ⌈
rp

B
⌉, z = beforeR + c − firstR + 1, and (beforei , ℓi) = Y2[t][indexsum(A2[t], z)];

16: return ℓi + indexc(S, ℓi, b
2, z − beforei );

17: end if

18: end if

19: if indexc(S, ℓp + 1, b2, c) 6= φ, then return ℓp + 1 + indexc(S, ℓp + 1, b2, c);
20: else return rp − F [S[rp − b + 1, rp]][degree(S, vp) − c];

Fig. 3. An O(1)-time algorithm that computes child select(S, vp, c).

for each x = 1, 2, . . . , ⌈B
b
⌉. Observe that 0 < A2[t][u] ≤ b holds for any indices t

and u, so A2 takes O(nB⌈B
b
⌉ log b) = o(n) bits. Let αA1 = αA(A1, n), and for each

t = 1, 2, . . . , nB, let αA2[t] = αA(A2[t], B). By Lemma 4.5, both of αA1 and αA2

take o(n) bits and are obtainable in O(n) time. At last, we construct an O(n)-time
obtainable table F with F [S[rp − b + 1, rp]][degree(S, vp) − c] = rp − ℓi, where vi is
the c-th child of vp with w(ℓi, rp) ≤ b. Note that degree(S, vp) − c ≤ b, so F takes
O(2bb log b) = o(n) bits.

To implement child select in O(1) time, let ℓk = child select(S, vp, c). vk is wide
if and only if X1 has vp and first ≤ c ≤ last , where (beforep ,first , last) = X1[vp].
Moreover, letting z = beforep+c−first+1, vk is the z-th wide node discovered during
the traversal procedure. Let (beforei , ℓi) = Y1[indexsum(A1, z)], so vk is a sibling of
vi with w(ℓi, ℓk) ≤ B such that child rank(S, vk) = child rank(S, vi) + z − beforei .
By Lemma 4.4, we can locate vk using ℓk = ℓi + indexc(S, ℓi, B, z − beforei ).

vk is medium if and only if X2 has vp and at least one of firstL ≤ c ≤ lastL and
firstR ≤ c ≤ lastR is satisfied, where (beforeL,firstL, lastL, beforeR,firstR, lastR) =

X2[vp]. If firstL ≤ c ≤ lastL, let t = ⌈
ℓp

B
⌉ and z = beforeL + c − firstL + 1. If

firstR ≤ c ≤ lastR, let t = ⌈
rp

B
⌉ and z = beforeR + c − firstR + 1. Then, vk is

the z-th medium node belonging to the t-th length-B block discovered during the
traversal procedure. Let (beforei , ℓi) = Y2[t][indexsum(A2[t], z)], so vk is a sibling of
vi with w(ℓi, ℓk) ≤ b such that child rank(S, vk) = child rank(S, vi) + z − beforei .
By Lemma 4.3, we can locate vk using ℓk = ℓi + indexc(S, ℓi, b

2, z − beforei).
If vk is neither wide nor medium, it must be narrow. If indexc(S, ℓp+1, b2, c) 6= φ,

then we have ℓk = ℓp + 1 + indexc(S, ℓp + 1, b2, c). Otherwise, ℓk = rp − F [S[rp −
b + 1, rp]][degree(S, vp) − c].

Finally, let αnew3 = αaux ◦ αb ◦ αB1 ◦X1 ◦ Y1 ◦X2 ◦ Y2 ◦A1 ◦αA1 ◦A2 ◦αA2 ◦ F ,
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which takes o(n) bits and can be computed from S in O(n) time. The O(1)-time
algorithm for computing child select(S, vp, c) is shown in Figure 3.
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