Balanced Parentheses Strike Back

Hsueh-I Lu
National Taiwan University
and
Chia-Chi Yeh
National Taiwan University

An ordinal tree is an arbitrary rooted tree where the children of each node are ordered. Succinct representations for ordinal trees with efficient query support have been extensively studied. The best previously known result is due to Geary, Raman, and Raman [SODA 2004, pages 1-10]. The number of bits required by their representation for an n-node ordinal tree T is $2 n+o(n)$, whose first-order term is information-theoretically optimal. Their representation supports a large set of $O(1)$-time queries on T. Based upon a balanced string of $2 n$ parentheses, we give an improved $2 n+o(n)$-bit representation for T. Our improvement is two fold: Firstly, the set of $O(1)$-time queries supported by our representation is a proper superset of that supported by the representation of Geary, Raman, and Raman. Secondly, it is also much easier for our representation to support new queries by simply adding new auxiliary strings.
Categories and Subject Descriptors: E. 1 [Data]: Trees; E. 4 [Coding and Information Theory]: Data compaction and compression; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-Computations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms, Trees; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing-Dictionaries, Indexing methods
General Terms: Algorithm, Design, Theory
Additional Key Words and Phrases: Succinct data structures, XML document representation

1. INTRODUCTION

An ordinal tree (see, e.g., [Geary et al. 2004; Benoit et al. 2005]) is an arbitrary rooted tree where the children of each node are ordered. All trees in the paper are ordinal. The number of distinct n-node trees is $2^{2 n-\Theta(\log n)}$ [Graham et al. 1989], so the information-theoretically minimum number of bits to differentiate these trees is $2 n-\Theta(\log n)$. There are three major types of $2 n$-bit representations for an n-node tree T :

[^0]

Balanced parentheses: ((()()))(()()())). LOUDS: $\quad 11010111011000000$. DFUDS: 11010110001110000.

Fig. 1. Three representations for the same tree.
-Balanced parentheses [Munro and Raman 2001; Chuang et al. 1998; He et al. 1999; Chiang et al. 2005; Munro and Rao 2004; Bonichon et al. 2006], a folklore encoding consisting of a balanced string of parentheses representing the counterclockwise depth-first traversal of T, where an open (respectively, closed) parenthesis denotes a descending (respectively, ascending) edge traversal. For technical reason, one usually adds a pair of enclosing parentheses to the above $2 n-2$ parentheses, resulting in a representation consisting of $2 n$ parentheses.
-Level order unary degree sequence (LOUDS) [Jacobson 1989], representing a node of degree d as a string of d copies of 1 -bits followed by a 0 -bit, where these nodes are represented in a level-order traversal of T.
-Depth first unary degree sequence (DFUDS) [Benoit et al. 2005], representing a node of degree d as a string of d copies of 1 -bits followed by a 0 -bit, where these nodes are represented in a depth-first traversal of T.
An example is shown in Figure 1.
Initiated by Jacobson [Jacobson 1989], succinct representations for trees with efficient query support have been extensively studied in the literature. Jacobson [Jacobson 1989] extended the LOUDS representation into a $\Theta(n)$-bit encoding to support the parent query and the rank and select queries for nodes in level-order traversal of T in $\Theta(\log n)$ time. Clark and Munro [Clark 1996; Clark and Munro 1996] squeezed Jacobson's encoding into a $3 n+o(n)$-bit representation, from which the above queries and the subtree-size query can be supported in $O(1)$ time. Later succinct representations, all have $2 n+o(n)$ bits, form the following trade-off between the choices of base representations and the sets of supported $O(1)$-time queries:
-Based upon balanced parentheses, Munro and Raman [Munro and Raman 2001] showed that an $o(n)$-bit auxiliary string suffices to support the following queries in $O(1)$ time: parent, depth, subtree-size, and the rank and select queries for nodes in pre-order and post-order traversal of T. Munro, Raman, and Rao [Munro et al. 2001] showed an $o(n)$-bit auxiliary string to support $O(1)$-time query for leaf-rank, leaf-select, and leaf-size. Chiang, Lin, and Lu [Chiang et al. 2005] showed an $o(n)$-bit auxiliary string to support $O(1)$-time degree query. Munro and Rao [Munro and Rao 2004] further gave an $o(n)$-bit auxiliary string to support $O(1)$-time level-ancestor query.
-Based upon the DFUDS representation, Benoit et al. [Benoit et al. 2005] gave an $o(n)$-bit auxiliary string that supports the following queries in $O(1)$ time: child-rank, child-select, degree, subtree-size, and node-rank and node-select in

	parentheses	DFUDS	Geary et al.	new
pre-order select and rank	\vee	\vee	\vee	\vee
post-order select and rank	\vee		\vee	\vee
child-select and child-rank		\vee	\vee	\vee
leaf-select, leaf-rank, and leaf-size	\vee			\vee
lowest common ancestor				\vee
subtree height				\vee
subtree size	\vee	\vee	\vee	\vee
level ancestor	\vee		\vee	\vee
distance				\vee
degree	\vee	\vee	\vee	\vee
depth	\vee		\vee	\vee

Table I. A summary for current $2 n+o(n)$-bit encodings for an n-node tree: Parentheses [Munro and Raman 2001; Chiang et al. 2005; Munro and Rao 2004; Munro et al. 2001], DFUDS [Benoit et al. 2005], Geary et al. [Geary et al. 2004].
the pre-order traversal of T. However, such a choice of the base representation still does not provide $O(1)$-time support for the depth and level-ancestor queries, the node-rank and node-select queries in the post-order traversal of T, and the rank, select, and size queries for leaves.

Recently, Geary, Raman, and Raman [Geary et al. 2004] almost resolved the above trade-off by giving a $2 n+o(n)$-bit encoding for T that supports in $O(1)$ time the aforementioned queries except those leaf-related ones [Munro et al. 2001]. Their approach differs from all previous work achieving $2 n+o(n)$ bits in that their encoding does not consist of a $2 n$-bit base representation for the topology of T plus an $o(n)$-bit auxiliary string. Instead, they decomposed T into several types of subtrees, whose topologies are represented in a hierarchical way, where different levels are composed of mixtures of different base representations and auxiliary strings. Such an involved structure seriously complicates the possibility of supporting additional queries using other stand-alone auxiliary strings. An implementation based upon a similar concept is studied in [Geary et al. 2004]. Very recently, Delpratt, Rahman, and Raman [Delpratt et al. 2006] showed that LOUDS-based representation can also be implemented to have competitive practical performance.

In the present paper, we give new $o(n)$-bit auxiliary strings for the $2 n$-bit balanced string of parentheses representing T. Together with previous $o(n)$-bit auxiliary strings for balanced parentheses [Munro and Raman 2001; Chiang et al. 2005; Munro and Rao 2004], our $2 n+o(n)$-bit encoding for T supports all of Geary et al.'s queries in $O(1)$ time. Consisting of a base representation plus $o(n)$-bit auxiliary strings, our encoding is better in the ease of supporting new queries by adding new $o(n)$-bit auxiliary strings. To demonstrate such an advantage, we also show how to handle $O(1)$-time queries currently unsupported by Geary et al.'s encoding, including (a) lowest common ancestor, (b) distance, and (c) subtree height. Table I summarizes the above discussion
We follow the convention of unit-cost RAM model of computation with $\Theta(\log n)$ bit word size [van Emde Boas 1990], which is assumed in all the previous work except that of Jacobson [Jacobson 1989]. The rest of the paper is organized as follows. Section 2 gives the preliminaries. Section 3 shows our auxiliary strings
for distance, subtree height, and lowest common ancestor. Section 4 shows our auxiliary strings for child-rank and child-select.

2. PRELIMINARIES

Let T be the input n-node tree. Let v_{i} denote the i-th node of T in the pre-order traversal of T. Let S be the balanced string of $2 n$ parentheses for T. Let $S[i, j]$ denote the substring of S from index i to index j. Let $S[i]=S[i, i]$. Let ℓ_{i} be the index such that $S\left[\ell_{i}\right]$ is the i-th open parenthesis in S. Let r_{i} be the index such that $S\left[r_{i}\right]$ is the closed parenthesis that matches $S\left[\ell_{i}\right]$ in S. One can easily see that the correspondence between v_{i} and the matched parentheses $S\left[\ell_{i}\right]$ and $S\left[r_{i}\right]: v_{i}$ is the parent of v_{j} if and only if $S\left[\ell_{i}\right]$ and $S\left[r_{i}\right]$ is the closest parenthesis pair that encloses $S\left[\ell_{j}\right]$ and $S\left[r_{j}\right]$. Let $w(i, j)=j-i+1$. For the rest of the paper, all logarithms are of base 2. Let $B=\left\lceil\log ^{3} n\right\rceil, b=\left\lceil(\log \log n)^{3}\right\rceil, n_{B}=\left\lceil\frac{2 n}{B}\right\rceil$, and $n_{b}=\left\lceil\frac{2 n}{b}\right\rceil$.

Lemma 2.1 (see [Bell et al. 1990; Elias 1975]). For any $O(n)$-bit strings $S_{1}, S_{2}, \ldots, S_{k}$ with $k=O(1)$, there is an $O(\log n)$-bit auxiliary string $\alpha_{\text {concat }}$ such that, given the concatenation of $\alpha_{\text {concat }}, S_{1}, S_{2}, \ldots, S_{k}$ as input, the index of the first symbol of any given S_{i} in the concatenation is computable in $O(1)$ time.

Let $S_{1} \circ S_{2} \circ \cdots \circ S_{k}$ denote the concatenation of $\alpha_{\text {concat }}, S_{1}, S_{2}, \ldots, S_{k}$ as in Lemma 2.1.

Lemma 2.2 (See [Munro and Raman 2001; Chiang et al. 2005]). Let S be a length-2n string of balanced parentheses that represents an n-node tree T. It takes $O(n)$ time to compute an o (n)-bit string $\alpha_{\text {aux }}$ such that the following queries for S can be determined from S and $\alpha_{\text {aux }}$ in $O(1)$ time: (a) the parent, degree, and depth of v_{i} in $T,(b)$ the parenthesis that matches $S[i]$ in S, and (c) the rank and select queries for open and closed parentheses in S.

By Lemma 2.2, given $S \circ \alpha_{a u x}$, indices i, ℓ_{i}, and r_{i} can be determined from one another in $O(1)$ time. Our technique of dividing the input strings into multiple levels of blocks, which has been widely used in many succinct data structures, is inspired by Munro and Raman [Munro 1996; Munro and Raman 2001].

3. DISTANCE, SUBTREE HEIGHT, AND LOWEST COMMON ANCESTOR

Let L be the $2 n$-element array such that each $L[i]$ is the number of open parentheses minus the number of closed parentheses in $S[1, i]$. Therefore, if $S[j]$ is the i-th open parenthesis in S, then $L[j]$ is the level of v_{i} in T. For any indices i and j with $i \leq j$, let index $_{\min }(L, i, j)$ (respectively, index $\max (L, i, j)$) denote the smallest index k with $i \leq k \leq j$ such that $L[k]$ equals the minimum (respectively, maximum) of $L[i], L[i+1], \ldots, L[j]$. As observed by Gabow, Bentley, and Tarjan [Gabow et al. 1984], the lowest-common-ancestor query can be reduced to the above rangeminima query index $x_{\text {min }}$. Similarly, our auxiliary string for supporting the queries of distance, subtree height, and lowest common ancestor is based on the lemma below. Observe that each $L[i]$ can be obtained from S in $O(1)$ time using the auxiliary string $\alpha_{a u x}$ for the rank queries with respect to open and closed parentheses in S. Therefore, the following lemma does not require L in the encoding.

Let I be an array of m indices. Let $k_{\min }(I, m, i, j)$ (respectively, $k_{\max }(I, m, i, j)$) be the smallest index k with $i \leq k \leq j$ that minimizes (respectively, maximizes)
$L[I[k]]$. We first prove the following lemma using techniques extended from Section 3 of [Bender and Farach-Colton 2000].

Lemma 3.1. It takes $O(m \log m)$ time to compute an $O\left(m \log ^{2} m\right)$-bit string $\alpha_{q}(I, m)$ from which $k_{\min }(I, m, i, j)$ and $k_{\max }(I, m, i, j)$ for any indices i and j with $1 \leq i \leq j \leq m$ can be determined from S, $\alpha_{a u x}$, and α_{q} in $O(1)$ time.

Proof. For each $i=1,2, \ldots, m$ and $j=1,2, \ldots,\lceil\log m\rceil$, let $M_{\text {min }}[i][j]$ (respectively, $\left.M_{\max }[i][j]\right)$ be the smallest index k with $i \leq k<i+2^{j}$ that minimizes (respectively, maximizes) $L[I[k]]$. Let $\alpha_{q}(I, m)=M_{\min } \circ M_{\max }$. Observe that $\alpha_{q}(I, m)$ takes $O\left(m \log ^{2} m\right)$ bits and can be computed from L and I in $O(m \log m)$ time using dynamic programming. Let $k_{1}=M_{\min }[i][k]$ and $k_{2}=M_{\min }\left[j-2^{k}+1\right][k]$, where $k=\lfloor\log (j-i)\rfloor$. It is not difficult to see that

$$
k_{\min }(I, m, i, j)= \begin{cases}k_{1} & \text { if } L\left[I\left[k_{1}\right]\right]<L\left[I\left[k_{2}\right]\right] \\ k_{2} & \text { otherwise }\end{cases}
$$

One can compute $k_{\max }(I, m, i, j)$ from $M_{\max }, I$, and L analogously in $O(1)$ time.
Lemma 3.2. It takes $O(n)$ time to compute an o(n)-bit string $\alpha_{r m q}$ such that index $_{\min }(L, i, j)$ and index $\max (L, i, j)$ for any indices i and j can be computed from S, $\alpha_{\text {aux }}$, and $\alpha_{r m q}$ in $O(1)$ time.

Proof. First let I_{B} be the n_{B}-element array such that each $I_{B}[i]$ is the smallest index j with $(i-1) B<j \leq i B$ that minimizes $L[j]$. I_{B} takes $O\left(n_{B} \log B\right)=$ $o(n)$ bits. Also, for each $i=1,2, \ldots, n_{B}$, let $I_{b}[i]$ be the $\left\lceil\frac{B}{b}\right\rceil$-element array such that each $I_{b}[i][j]$ is the smallest index t with $(j-1) b<t \leq j b$ that minimizes $L[(i-1) B+t]$. I_{b} takes $O\left(n_{B}\left\lceil\frac{B}{b}\right\rceil \log b\right)=o(n)$ bits. Let $\alpha_{q 1}=\alpha_{q}\left(I_{B}, n_{B}\right)$, and for each $i=1,2, \ldots, n_{B}$, let $\alpha_{q 2}[i]=\alpha_{q}\left(I_{b}[i],\left\lceil\frac{B}{b}\right\rceil\right)$. By Lemma 3.1, both of $\alpha_{q 1}$ and $\alpha_{q 2}$ take $o(n)$ bits and can be obtained in $O(n)$ time. Finally, let $\alpha_{q 3}$ be an $O(n)$-time obtainable table such that any $i n d e x_{\min }(L, i, j)$ and $i n d e x_{\max }(L, i, j)$ with $w(i, j) \leq 2 b$ can be computed from $S[i, j]$ and $\alpha_{q 3}$ in $O(1)$ time. That is, let $\alpha_{q 3}[S[i, i+2 b-1]][j-i+1]=\left(\right.$ index $_{\min }(L, i, j)-i$, index $\left._{\max }(L, i, j)-i\right)$ for any indices i and j with $w(i, j) \leq 2 b$. Since each entry takes $O(\log b)$ bits, the number of bits required by $\alpha_{q 3}$ is $O\left(2^{2 b} 2 b \log b\right)=o(n)$. Let $\alpha_{r m q}=\alpha_{q 1} \circ \alpha_{q 2} \circ \alpha_{q 3} \circ I_{B} \circ I_{b}$, which has $o(n)$ bits and is obtainable in $O(n)$ time.
To answer index $x_{\min }(L, i, j)$ from $S, \alpha_{a u x}$, and $\alpha_{r m q}$, we can always decompose the interval $[i, j]$ into two (not necessarily disjoint) subintervals $\left[i_{1}, j_{1}\right]$ and $\left[i_{2}, j_{2}\right]$ whose union is $[i, j]$. Clearly index $\min (L, i, j)$ can be determined from index $x_{\text {min }}\left(L, i_{1}, j_{1}\right)$ and index $\min \left(L, i_{2}, j_{2}\right)$ in $O(1)$ time. Consider the following cases.
-Case 1: $w(i, j) \leq 2 b$. We simply resort to $S[i, j]$ and $\alpha_{q 3}$.
-Case 2: $w(i, j)>2 b$ and $S[i, j]$ is in the same length- B block of S. Since index $_{\text {min }}(L, i, i+b-1)$ and index $_{\text {min }}(L, j-b+1, j)$ can be determined in $O(1)$ time using Case 1, it suffices to determine $\operatorname{index} \min \left(L, i^{\prime}, j^{\prime}\right)$, where (a) i^{\prime} is the smallest index with $i \leq i^{\prime}$ that is a starting index of a length- b block of S, and (b) j^{\prime} is the largest index with $j^{\prime} \leq j$ that is an ending index of a length- b block
 be determined from $S, \alpha_{a u x}$, and $\alpha_{q 2}$ in $O(1)$ time.
-Case 3: $w(i, j)>2 b$ and $S[i, j]$ belongs to two or more consecutive length- B blocks of S. Let $i^{\prime}-1$ be the ending index of the length- B block of S that contains i. Let $j^{\prime}+1$ be the starting index of the length- B block of S that contains j. Since $\left.i_{n d e x} \min ^{(} L, i, i^{\prime}-1\right)$ and index $\min ^{(}\left(L, j^{\prime}+1, j\right)$ can be determined in $O(1)$ time using Case 2, it suffices to determine $\operatorname{index} \min \left(L, i^{\prime}, j^{\prime}\right)$ for the case that $i^{\prime} \leq j^{\prime}$. Since i^{\prime} is a starting index of a length- B block of S and j^{\prime} is an ending index of a length- B block of S, one can determine index $x_{\min }\left(L, i^{\prime}, j^{\prime}\right)$ from $S, \alpha_{\text {aux }}$, and $\alpha_{q 1}$ in $O(1)$ time.

It is not difficult to answer index $_{\max }(L, i, j)$ from $S, \alpha_{a u x}$, and $\alpha_{r m q}$ analogously in $O(1)$ time.

As pointed out by an anonymous reviewer, our data structure for lowest common ancestor is similar to that of Sadakane [Sadakane 2002] for suffix arrays.

Theorem 3.3. It takes $O(n)$ time to compute an o(n)-bit string $\alpha_{\text {new } 1}$ such that the queries of distance, subtree height, and lowest common ancestor can be answered from S and $\alpha_{\text {new } 1}$ in $O(1)$ time.

Proof. Let $\alpha_{\text {new } 1}=\alpha_{\text {aux }} \circ \alpha_{r m q}$. By Lemmas 2.2 and 3.2, $\alpha_{\text {new } 1}$ has $o(n)$ bits and can be computed from S in $O(n)$ time.
-The height of the subtree rooted at v_{i} is $L\left[\operatorname{index}_{\max }\left(L, \ell_{i}, r_{i}\right)\right]$ minus the depth of v_{i} in T.
-The lowest common ancestor v_{k} of v_{i} and v_{j} with $\ell_{i}<\ell_{j}$ can be determined as follows. If $r_{i}>r_{j}$, then $v_{k}=v_{i}$. Otherwise, $S\left[\operatorname{index}_{\min }\left(L, r_{i}, \ell_{j}\right)\right]$ has to be a closed parenthesis r_{x} such that v_{x} is a child of v_{k}, as observed by Bender and Farach-Colton [Bender and Farach-Colton 2000].
-The distance of v_{i} and v_{j} is exactly the depth of v_{i} plus the depth of v_{j} minus two times of the depth of v_{k}, where v_{k} is the lowest common ancestor of v_{i} and v_{j}.

By Lemmas 2.2 and 3.2, the above queries can all be answered from S and $\alpha_{\text {new } 1}$ in $O(1)$ time.

4. RANK AND SELECT FOR CHILDREN

Before solving rank and select for children, we introduce the following definition and its property. A non-root node v_{i} is k-far if $w\left(\ell_{p}, \ell_{i}\right)>k$ and $w\left(\ell_{i}, r_{p}\right)>k$, where v_{p} is the parent of v_{i}.

Lemma 4.1. If v_{i} and v_{j} are two k-far non-root nodes with $\left|w\left(\ell_{i}, \ell_{j}\right)\right| \leq k$, then v_{i} and v_{j} are siblings.

Proof. Without loss of generality, we assume $\ell_{i}<\ell_{j}$. Since v_{i} and v_{j} are k far non-root nodes with $w\left(\ell_{i}, \ell_{j}\right) \leq k, v_{i}$ cannot be an ancestor or descendant of v_{j}. Thus we have $r_{i}<\ell_{j}$. Assume for a contradiction that v_{p} (respectively, v_{q}) is the parent of v_{i} (respectively, v_{j}) and $v_{p} \neq v_{q}$. Observe that either $r_{i}<\ell_{q}$ or $r_{p}<\ell_{j}$ holds. Since v_{j} is k-far, $r_{i}<\ell_{q}$ implies $w\left(r_{i}, \ell_{j}\right)>k$. Since v_{i} is k-far, $r_{p}<\ell_{j}$ implies $w\left(r_{i}, \ell_{j}\right)>k$. Either case leads to a contradiction, so the lemma is proved.

For presentational brevity, we classify non-root nodes into the following three disjoint classes: A node is
-narrow if it is not b-far;
-medium if it is b-far but not B-far; and
-wide if it is B-far.

4.1 Child rank

Let child_rank $\left(S, v_{k}\right)$ denote the number c such that v_{k} is the c-th child of its parent. We have the following theorem.

TheOrem 4.2. It takes $O(n)$ time to compute an o(n)-bit string $\alpha_{\text {new } 2}$ such that child_rank $\left(S, v_{k}\right)$ for each node v_{k} can be answered from S and $\alpha_{\text {new } 2}$ in $O(1)$ time.

Proof. Let v_{p} be the parent of v_{k}. If $S[i, j]$ is a balanced string of parentheses, let $\operatorname{sibling}(S, i, j)$ be the number of non-enclosed parenthesis pairs in $S[i, j]$. Observe that

$$
\begin{aligned}
\operatorname{child_ rank}\left(S, v_{k}\right) & =\operatorname{sibling}\left(S, \ell_{p}+1, \ell_{k}-1\right)+1 \\
& =\operatorname{degree}\left(S, v_{p}\right)-\operatorname{sibling}\left(S, \ell_{k}, r_{p}-1\right)+1
\end{aligned}
$$

Therefore, it remains to support each query $\operatorname{sibling}(S, i, j)$ in $O(1)$ time.
If v_{k} is narrow, we only need to answer $\operatorname{sibling}(S, i, j)$ with $w(i, j) \leq b$. We simply build an $O(n)$-time obtainable table M_{1} to store the answers for any possible inputs. That is, let $M_{1}[S[i, i+b-1]][j-i+1]=\operatorname{sibling}(S, i, j)$ for any indices i and j with $w(i, j) \leq b$. Since $\operatorname{sibling}(S, i, j) \leq w(i, j)$, each entry requires $O(\log b)$ bits and M_{1} takes $O\left(2^{b} b \log b\right)=o(n)$ bits.

If v_{k} is medium, we cannot afford to store all the answers of $\operatorname{sibling}(S, i, j)$ with $w(i, j) \leq B$. We split S into length- b blocks. By Lemma 4.1, any two medium nodes v_{i} and v_{j} with $\left|w\left(\ell_{i}, \ell_{j}\right)\right| \leq b$ have the same parent, so for each block we save at most one medium node as a shortcut. Define tables M_{2} and M_{3} as follows. For each $t=1,2, \ldots, n_{b}$,
-let $M_{2}[t]=\left(\ell_{i}, \operatorname{sibling}\left(S, \ell_{p}+1, \ell_{i}-1\right)\right)$, where ℓ_{i} is the smallest index, if any, with $(t-1) b<\ell_{i} \leq t b$ such that v_{i} is a medium child of v_{p} with $w\left(\ell_{p}, \ell_{i}\right) \leq B$; and
-let $M_{3}[t]=\left(\ell_{i}, \operatorname{sibling}\left(S, \ell_{i}, r_{p}-1\right)\right)$, where ℓ_{i} is the smallest index, if any, with $(t-1) b<\ell_{i} \leq t b$ such that v_{i} is a medium child of v_{p} with $w\left(\ell_{i}, r_{p}\right) \leq B$.

Note that M_{2} and M_{3} have n_{b} entries, each requiring $O(\log B)$ bits, so both of them take $O\left(n_{b} \log B\right)=o(n)$ bits. Therefore, for any medium child v_{k} of v_{p}, if $w\left(\ell_{p}, \ell_{k}\right) \leq B$, then

$$
\begin{aligned}
\operatorname{sibling}\left(S, \ell_{p}+1, \ell_{k}-1\right) & =\operatorname{sibling}\left(S, \ell_{p}+1, \ell_{i}-1\right)+\operatorname{sibling}\left(S, \ell_{i}, \ell_{k}-1\right) \\
& =m+M_{1}\left[S\left[\ell_{i}, \ell_{i}+b-1\right]\right]\left[\ell_{k}-\ell_{i}\right],
\end{aligned}
$$

where $\left(\ell_{i}, m\right)=M_{2}\left[\left\lceil\frac{\ell_{k}}{b}\right\rceil\right]$. Similarly, if $w\left(\ell_{k}, r_{p}\right) \leq B$, then

$$
\begin{aligned}
\operatorname{sibling}\left(S, \ell_{k}, r_{p}-1\right) & =\operatorname{sibling}\left(S, \ell_{i}, r_{p}-1\right)-\operatorname{sibling}\left(S, \ell_{i}, \ell_{k}-1\right) \\
& =m-M_{1}\left[S\left[\ell_{i}, \ell_{i}+b-1\right]\right]\left[\ell_{k}-\ell_{i}\right]
\end{aligned}
$$

```
function child_rank \(\left(S, v_{k}\right)\)
    let \(v_{p}\) be the parent of \(v_{k}\);
    if \(w\left(\ell_{p}, \ell_{k}\right) \leq b\), then return \(M_{1}\left[S\left[\ell_{p}+1, \ell_{p}+b\right]\right]\left[\ell_{k}-\ell_{p}-1\right]+1\);
    if \(w\left(\ell_{k}, r_{p}\right) \leq b\), then return degree \(\left.\left(S, v_{p}\right)-M_{1}\left[S\left[\ell_{k}, \ell_{k}+b-1\right]\right]\left[r_{p}-\ell_{k}\right]\right]+1\);
    if \(w\left(\ell_{p}, \ell_{k}\right) \leq B\), then let \(\left(\ell_{i}, m\right)=M_{2}\left[\left\lceil\frac{\ell_{k}}{b}\right\rceil\right]\), and return \(m+M_{1}\left[S\left[\ell_{i}, \ell_{i}+b-1\right]\right]\left[\ell_{k}-\ell_{i}\right]+1\);
    if \(w\left(\ell_{k}, r_{p}\right) \leq B\), then let \(\left(\ell_{i}, m\right)=M_{3}\left[\left\lceil\frac{\ell_{k}}{b}\right\rceil\right]\), and return degree \(\left(S, v_{p}\right)-m+M_{1}\left[S\left[\ell_{i}, \ell_{i}+\right.\right.\)
    \(b-1]]\left[\ell_{k}-\ell_{i}\right]+1\);
6: let \(\left(\ell_{j}, m\right)=M_{5}\left[\left\lceil\frac{\ell_{k}}{B}\right\rceil\right]\left[\left\lceil\frac{\ell_{k} \bmod B}{b}\right\rceil\right]\), and return \(M_{4}\left[\left\lceil\frac{\ell_{k}}{B}\right\rceil\right]+m+M_{1}\left[S\left[\ell_{j}, \ell_{j}+b-1\right]\right]\left[\ell_{k}-\ell_{j}\right]+1\);
```

Fig. 2. An $O(1)$-time algorithm that computes child_rank $\left(S, v_{k}\right)$.
where $\left(\ell_{i}, m\right)=M_{3}\left[\left\lceil\frac{\ell_{k}}{b}\right\rceil\right]$.
Similar tricks work for wide nodes, but they have to be applied in two levels. We first split S into length- B blocks. For each $t=1,2, \ldots, n_{B}$, let $M_{4}[t]=$ $\operatorname{sibling}\left(S, \ell_{p}+1, \ell_{i}-1\right)$, where ℓ_{i} is the smallest index, if any, with $(t-1) B<\ell_{i} \leq t B$ such that v_{i} is a wide child of v_{p}. We further split each length- B block into length- b blocks. For each $t=1,2, \ldots, n_{B}$ and $u=1,2, \ldots,\left\lceil\frac{B}{b}\right\rceil$, let $M_{5}[t][u]=$ $\left(\ell_{j}, \operatorname{sibling}\left(S, \ell_{p}+1, \ell_{j}-1\right)-M_{4}[t]\right)$, where ℓ_{j} is the smallest index, if any, with $(u-1) b<\ell_{j}-(t-1) B \leq u b$ such that v_{j} is a wide child of v_{p}. Note that $\operatorname{sibling}\left(S, \ell_{p}+1, \ell_{j}-1\right)-M_{4}[t] \leq B$. One can easily verify that the number of bits required by M_{4} is $O\left(n_{B} \log n\right)=o(n)$ and the number of bits required by M_{5} is $O\left(n_{B}\left\lceil\frac{B}{b}\right\rceil \log B\right)=o(n)$. Thus, for any wide child v_{k} of v_{p}, we have

$$
\begin{aligned}
\operatorname{sibling}\left(S, \ell_{p}+1, \ell_{k}-1\right) & =\operatorname{sibling}\left(S, \ell_{p}+1, \ell_{j}-1\right)+\operatorname{sibling}\left(S, \ell_{j}, \ell_{k}-1\right) \\
& =M_{4}\left[\left\lceil\frac{\ell_{k}}{B}\right\rceil\right]+m+M_{1}\left[S\left[\ell_{j}, \ell_{j}+b-1\right]\right]\left[\ell_{k}-\ell_{j}\right],
\end{aligned}
$$

where $\left(\ell_{j}, m\right)=M_{5}\left[\left\lceil\frac{\ell_{k}}{B}\right\rceil\right]\left[\left\lceil\frac{\ell_{k} \bmod B}{b}\right\rceil\right]$.
Finally, let $\alpha_{\text {new } 2}=\alpha_{\text {aux }} \circ M_{1} \circ M_{2} \circ M_{3} \circ M_{4} \circ M_{5}$, which is an $o(n)$-bit string obtainable from S in $O(n)$ time. The $O(1)$-time algorithm for computing child_rank $\left(S, v_{k}\right)$ is shown in Figure 2.

4.2 Child select

First we need the following lemmas to handle the select query for children. For any node v_{i}, let $\operatorname{index}_{c}\left(S, \ell_{i}, m, c\right)=\ell_{j}-\ell_{i}$, where v_{j} is a sibling of v_{i} with $w\left(\ell_{i}, \ell_{j}\right) \leq m$ such that child_rank $\left(S, v_{j}\right)=$ child_rank $\left(S, v_{i}\right)+c$. If such a v_{j} does not exist, $\operatorname{index}_{c}\left(S, \ell_{i}, m, c\right)=\phi$.
Lemma 4.3. It takes $O(n)$ time to compute an $o(n)$-bit string α_{b} such that index $\left(S, \ell_{i}, b^{2}, c\right)$ for any node v_{i} and index c can be computed from S and α_{b} in $O(1)$ time.

Proof. We simply build an $O(n)$-time obtainable table α_{b} to store the answers for any possible inputs. That is, let $\alpha_{b}\left[S\left[\ell_{i}, \ell_{i}+b^{2}-1\right]\right][c]=\operatorname{index}_{c}\left(S, \ell_{i}, b^{2}, c\right)$ for any node v_{i} and index c. Since each entry takes $O(\log b)$ bits, α_{b} requires $O\left(2^{b^{2}} b^{2} \log b\right)=o(n)$ bits.

Lemma 4.4. Given a node v_{i}, it takes $O(B)$ time to compute an o(B)-bit string $\alpha_{B}\left(\ell_{i}\right)$ such that index $\left(S, \ell_{i}, B, c\right)$ for any index c can be computed from S, α_{b}, and ACM Journal Name, Vol. V, No. N, June 2007.
$\alpha_{B}\left(\ell_{i}\right)$ in $O(1)$ time.
Proof. For each $t=0,1, \ldots,\left\lceil\frac{B}{b}\right\rceil-1$, let $W_{1}[t]=\operatorname{index}_{c}\left(S, \ell_{i}, B, t b\right) . W_{1}$ takes $O\left(\left\lceil\frac{B}{b}\right\rceil \log B\right)=o(B)$ bits. If $w\left(W_{1}[t], W_{1}[t+1]\right)>b^{2}$, we save the answers of $\operatorname{index}_{c}\left(S, \ell_{i}, B, t b+z\right)$ for each $z=0,1, \ldots, b-1$ in W_{2}. W_{2} takes at most $O\left(\left\lceil\frac{B}{b^{2}}\right\rceil b \log B\right)=o(B)$ bits. Otherwise, by Lemma 4.3 index $_{c}\left(S, \ell_{i}, B, t b+z\right)$ can be computed in $O(1)$ time using $W_{1}[t]+\operatorname{index}_{c}\left(S, \ell_{i}+W_{1}[t], b^{2}, z\right)$. Let $\alpha_{B}\left(\ell_{i}\right)=$ $W_{1} \circ W_{2}$, which has $o(B)$ bits and is obtainable in $O(B)$ time.

Given an array A of $\left\lceil\frac{m}{u}\right\rceil$ positive $\lceil\log u\rceil$-bit integers with $m \leq n$ and $u=$ $\left\lceil\log ^{3} m\right\rceil$, let index $x_{\text {sum }}(A, x)$ denote the largest index y with $\sum_{t=1}^{y} A[t]<x$.

Lemma 4.5. It takes $O(m)$ time to compute an $o(m)$-bit string $\alpha_{A}(A, m)$ such that index $x_{\text {sum }}(A, x)$ for any index x can be determined from A and $\alpha_{A}(A, m)$ in $O(1)$ time.

Proof. This is a special case of the search query of the searchable partial sums problem [Raman et al. 2001; Hon et al. 2003]. Theorem 3 of [Hon et al. 2003] gave an $o(m)$-bit auxiliary string to support this query in $O(1)$ time, but it is unclear whether the preprocessing time is $O(m)$. Let us briefly prove this lemma as follows.

Let $d\left(x_{1}, x_{2}\right)$ denote index $x_{\text {sum }}\left(A, x_{2}\right)-$ index $_{\text {sum }}\left(A, x_{1}\right)$. For each $t=0, \ldots,\left\lceil\frac{m}{u}\right\rceil-$ 1 , let $W_{3}[t]=\operatorname{index}_{\text {sum }}(A, t u)$. W_{3} needs $O\left(\left\lceil\frac{m}{u}\right\rceil \log m\right)=o(m)$ bits. If $d(t u,(t+$ 1) $u)>\left\lceil\log ^{2} u\right\rceil$, for each $z=0,1, \ldots, u-1$ we save the values of $d(t u, t u+z)$ in W_{4}. Because A is an array of positive integers, we have $d(t u, t u+z) \leq z$ and W_{4} needs at most $O\left(\left\lceil\frac{m}{u \log ^{2} u}\right\rceil u \log u\right)=o(m)$ bits. Otherwise, let

$$
W_{5}\left[A\left[\text { index }_{\text {sum }}(A, t u), \text { index }_{\text {sum }}(A, t u)+\left\lceil\log ^{2} u\right\rceil-1\right]\right][z]=d(t u, t u+z)
$$

for each $z=0,1, \ldots, u-1$. W_{5} takes $O\left(2^{\log ^{3} u} u \log \log u\right)=o(m)$ bits and is obtainable in $O(m)$ time. Now, let $\alpha_{A}(A, m)=W_{3} \circ W_{4} \circ W_{5}$, which requires $o(m)$ bits and can be obtained in $O(m)$ time. To answer $\operatorname{index}_{\text {sum }}(A, x)$ in $O(1)$ time, first let t and z be the integers with $x=t u+z$ and $0 \leq z<u$, and then find the values of index $_{\text {sum }}(A, t u)$ and $d(t u, t u+z)$ from $\alpha_{A}(A, m)$. The answer is index $_{\text {sum }}(A, t u)+d(t u, t u+z)$.

Let child_select $\left(S, v_{p}, c\right)$ denote the index ℓ_{k} such that v_{k} is the c-th child of v_{p}. We have the following theorem.

Theorem 4.6. It takes $O(n)$ time to compute an o(n)-bit string $\alpha_{\text {new } 3}$ such that child_select $\left(S, v_{p}, c\right)$ for each node v_{p} and c can be answered from S and $\alpha_{n e w 3}$ in $O(1)$ time.

Proof. We say that nodes in a set D are d-disjoint [Chiang et al. 2005] if
$-w\left(\ell_{i}, r_{i}\right)>d$ holds for any node v_{i} in D; and
-any two nodes v_{i} and v_{j} in D satisfy at least one of $\left|w\left(\ell_{i}, \ell_{j}\right)\right|>d$ and $\left|w\left(r_{i}, r_{j}\right)\right|>$ d.

Let X be a $2\left\lceil\frac{2 n}{d}\right\rceil$-element array. For each $t=1,2, \ldots,\left\lceil\frac{2 n}{d}\right\rceil$, we store v_{i} in $X[2 t-1]$, where ℓ_{i} is the smallest index, if any, with $(t-1) d<\ell_{i} \leq t d$ such that v_{i} is in D; and also store v_{j} in $X[2 t]$, where r_{j} is the largest index, if any, with $(t-1) d<r_{j} \leq t d$ such that v_{j} is in D. Then, every node v_{i} in D takes at least one slot in X, and
can be easily verified using ℓ_{i} and r_{i}. We simply say that X has v_{i} if and only if v_{i} takes at least one of $X\left[2\left\lceil\frac{\ell_{i}}{d}\right\rceil-1\right]$ or $X\left[2\left\lceil\frac{r_{i}}{d}\right\rceil\right]$. For notational brevity, let $X\left[v_{i}\right]$ denote the element taken by v_{i}.

The preprocessing is under the following traversal procedure: first traverse each node v_{p} of T in prefix order, and for each v_{p} traverse every child v_{i} of v_{p} in counterclockwise order. Since selecting and matching a parenthesis on S takes $O(1)$ time, and each node is traversed at most two times, one as v_{p} and the other as v_{i}, the whole procedure takes $O(n)$ time. The discussion below focuses on nodes v_{p} and v_{i} in each iteration of the aforementioned traversal.

- Case 1: v_{i} is a wide child of v_{p}. Let counter denote the number of wide nodes discovered before each iteration. It is not difficult to see that the parents of wide nodes are B-disjoint. Let X_{1} be the $2 n_{B}$-element array with $X_{1}\left[v_{p}\right]=$ (before ${ }_{p}$, first, last), where before ${ }_{p}$ is the value of counter before we get v_{p}, and first (respectively, last) is the rank of the first (respectively, last) wide child of v_{p}. Then we partition S into length- B blocks. Let Y_{1} be the n_{B}-element array with $Y_{1}[t]=\left(\right.$ before $\left._{i}, \ell_{i}\right)$, where ℓ_{i} is the smallest index in a block such that v_{i} is wide, before $_{i}$ is the value of counter before we get v_{i}, and t is the first empty entry of Y_{1}. Both of X_{1} and Y_{1} take $O\left(n_{B} \log n\right)=o(n)$ bits.
- Case 2: v_{i} is a medium child of v_{p}. First we partition S into length- B blocks. If $w\left(\ell_{p}, \ell_{i}\right) \leq B$, we say that v_{i} belongs to the $\left\lceil\frac{\ell_{p}}{B}\right\rceil$-th block, otherwise the $\left\lceil\frac{r_{p}}{B}\right\rceil$-th block. For each $t=1,2, \ldots, n_{B}$, let counter $[t]$ denote the number of medium nodes belonging to the t-th block before each iteration. Note that at most B medium nodes belong to a block. Similarly, one can verify that the parents of medium nodes are b-disjoint. Let X_{2} be the $2 n_{b}$-element array with $X_{2}\left[v_{p}\right]=\left(\right.$ before $_{L}$, first $_{L}$, last $_{L}$, before $_{R}$, first $_{R}$, last $\left._{R}\right)$, where
-before ${ }_{L}$ (respectively, before $_{R}$) is the value of counter $\left[\left\lceil\frac{\ell_{p}}{B}\right\rceil\right]$ (respectively, the value of counter $\left[\left\lceil\frac{r_{p}}{B}\right\rceil\right]$) before we get v_{p},
- first $_{L}$ (respectively, first $_{R}$) is the rank of the first medium child of v_{p} belonging to the $\left\lceil\frac{\ell_{p}}{B}\right\rceil$-th (respectively, $\left\lceil\frac{r_{p}}{B}\right\rceil$-th) block, and
- last $_{L}$ (respectively, last $_{R}$) is the rank of the last medium child of v_{p} belonging to the $\left\lceil\frac{\ell_{p}}{B}\right\rceil$-th (respectively, $\left\lceil\frac{r_{p}}{B}\right\rceil$-th) block.
Note that $1 \leq$ first $_{L} \leq$ last $_{L} \leq B$ and degree $\left(S, v_{p}\right)-B \leq$ first $_{R} \leq$ last $_{R} \leq$ degree $\left(S, v_{p}\right)$. We further partition each length- B block into length- b blocks. For each $t=1,2, \ldots, n_{B}$, let $Y_{2}[t]$ be the $\left\lceil\frac{B}{b}\right\rceil$-element array with $Y_{2}[t][u]=$ (before ${ }_{i}, \ell_{i}$), where ℓ_{i} is the smallest index in a length- b block such that v_{i} is a medium node belonging to the t-th length- B block, before is the value of counter $[t]$ before we get v_{k}, and u is the first empty entry of $Y_{2}[t]$. Observe that X_{2} needs $O\left(n_{b} \log B\right)=o(n)$ bits and Y_{2} needs $O\left(n_{B}\left\lceil\frac{B}{b}\right\rceil \log B\right)=o(n)$ bits.

For each $t=1,2, \ldots, n_{B}$, let $\alpha_{B 1}[t]=\alpha_{B}\left(\ell_{i}\right)$ with $\left(\right.$ before $\left._{i}, \ell_{i}\right)=Y_{1}[t]$. By Lemma 4.4, $\alpha_{B 1}$ takes $o(n)$ bits and is obtainable in $O(n)$ time. Let A_{1} be the n_{B}-element array such that $\sum_{t=1}^{u} A_{1}[t]=$ before $_{i}$ with $\left(\right.$ before $\left._{i}, \ell_{i}\right)=Y_{1}[u]$ holds for each $u=1,2, \ldots, n_{B}$. Note that $0<A_{1}[t] \leq B$ holds for any index t, so A_{1} takes $O\left(n_{B} \log B\right)=o(n)$ bits. Also, for each $t=1,2, \ldots, n_{B}$, let $A_{2}[t]$ be the $\left\lceil\frac{B}{b}\right\rceil$ element array such that $\sum_{u=1}^{x} A_{2}[t][u]=$ before $_{i}$ with (before $\left.i_{i}, \ell_{i}\right)=Y_{2}[t][x]$ holds

```
function child_select \(\left(S, v_{p}, c\right)\)
    if \(X_{1}\) has \(v_{p}\) then
        let \(\left(\right.\) before \(_{p}\), first, last \()=X_{1}\left[v_{p}\right]\);
        if first \(\leq c \leq\) last then
            let \(z=\) before \(_{p}+c-\) first +1 and \(\left(\right.\) before \(\left._{i}, \ell_{i}\right)=Y_{1}\left[\operatorname{index}_{\text {sum }}\left(A_{1}, z\right)\right]\);
            return \(\ell_{i}+\operatorname{index}_{c}\left(S, \ell_{i}, B, z-\right.\) before \(\left._{i}\right)\);
        end if
    end if
    if \(X_{2}\) has \(v_{p}\) then
        let \(\left(\right.\) before \(_{L}\), first \(_{L}\), last \(_{L}\), before \(_{R}\), first \(_{R}\), last \(\left._{R}\right)=X_{2}\left[v_{p}\right]\);
        if first \(_{L} \leq c \leq\) last \(_{L}\) then
            let \(t=\left\lceil\frac{\ell_{p}}{B}\right\rceil, z=\) before \(_{L}+c-\) first \(_{L}+1\), and \(\left(\right.\) before \(\left._{i}, \ell_{i}\right)=Y_{2}[t]\left[\operatorname{index}_{s u m}\left(A_{2}[t], z\right)\right]\);
            return \(\ell_{i}+\operatorname{index}_{c}\left(S, \ell_{i}, b^{2}, z-\right.\) before \(\left._{i}\right)\);
        end if
        if first \(_{R} \leq c \leq\) last \(_{R}\) then
            let \(t=\left\lceil\frac{r_{p}}{B}\right\rceil, z=\) before \(_{R}+c-\) first \(_{R}+1\), and \(\left(\right.\) before \(\left._{i}, \ell_{i}\right)=Y_{2}[t]\left[\right.\) index \(\left._{\text {sum }}\left(A_{2}[t], z\right)\right]\);
            return \(\ell_{i}+\operatorname{index}_{c}\left(S, \ell_{i}, b^{2}, z-\right.\) before \(\left._{i}\right)\);
        end if
    end if
    if \(\operatorname{index}_{c}\left(S, \ell_{p}+1, b^{2}, c\right) \neq \phi\), then return \(\ell_{p}+1+\operatorname{index}\left(S, \ell_{p}+1, b^{2}, c\right)\);
    else return \(r_{p}-F\left[S\left[r_{p}-b+1, r_{p}\right]\right]\left[\operatorname{degree}\left(S, v_{p}\right)-c\right]\);
```

Fig. 3. An $O(1)$-time algorithm that computes child_select $\left(S, v_{p}, c\right)$.
for each $x=1,2, \ldots,\left\lceil\frac{B}{b}\right\rceil$. Observe that $0<A_{2}[t][u] \leq b$ holds for any indices t and u, so A_{2} takes $O\left(n_{B}\left\lceil\frac{B}{b}\right\rceil \log b\right)=o(n)$ bits. Let $\alpha_{A 1}=\alpha_{A}\left(A_{1}, n\right)$, and for each $t=1,2, \ldots, n_{B}$, let $\alpha_{A 2}[t]=\alpha_{A}\left(A_{2}[t], B\right)$. By Lemma 4.5, both of $\alpha_{A 1}$ and $\alpha_{A 2}$ take $o(n)$ bits and are obtainable in $O(n)$ time. At last, we construct an $O(n)$-time obtainable table F with $F\left[S\left[r_{p}-b+1, r_{p}\right]\right]\left[\operatorname{degree}\left(S, v_{p}\right)-c\right]=r_{p}-\ell_{i}$, where v_{i} is the c-th child of v_{p} with $w\left(\ell_{i}, r_{p}\right) \leq b$. Note that degree $\left(S, v_{p}\right)-c \leq b$, so F takes $O\left(2^{b} b \log b\right)=o(n)$ bits.

To implement child select in $O(1)$ time, let $\ell_{k}=\operatorname{child_ select}\left(S, v_{p}, c\right) . v_{k}$ is wide if and only if X_{1} has v_{p} and first $\leq c \leq$ last, where (before ${ }_{p}$, first, last) $=X_{1}\left[v_{p}\right]$. Moreover, letting $z=$ before $_{p}+c-$ first $+1, v_{k}$ is the z-th wide node discovered during the traversal procedure. Let $\left(\right.$ before $\left._{i}, \ell_{i}\right)=Y_{1}\left[\operatorname{index}_{\text {sum }}\left(A_{1}, z\right)\right]$, so v_{k} is a sibling of v_{i} with $w\left(\ell_{i}, \ell_{k}\right) \leq B$ such that child_rank $\left(S, v_{k}\right)=$ child_rank $\left(S, v_{i}\right)+z-$ before $_{i}$. By Lemma 4.4, we can locate v_{k} using $\ell_{k}=\ell_{i}+\operatorname{index}_{c}\left(S, \ell_{i}, B, z-\right.$ before $\left._{i}\right)$.
v_{k} is medium if and only if X_{2} has v_{p} and at least one of first $L_{L} \leq c \leq$ last $_{L}$ and first $_{R} \leq c \leq$ last $_{R}$ is satisfied, where $\left(\right.$ before $_{L}$, first $_{L}$, last $_{L}$, before $_{R}$, first $_{R}$, last $\left._{R}\right)=$ $X_{2}\left[v_{p}\right]$. If first $L_{L} \leq c \leq$ last $_{L}$, let $t=\left\lceil\frac{\ell_{p}}{B}\right\rceil$ and $z=$ before $_{L}+c-$ first $_{L}+1$. If first $_{R} \leq c \leq$ last $_{R}$, let $t=\left\lceil\frac{r_{p}}{B}\right\rceil$ and $z=$ before $_{R}+c-$ first $_{R}+1$. Then, v_{k} is the z-th medium node belonging to the t-th length- B block discovered during the traversal procedure. Let $\left(\right.$ before $\left._{i}, \ell_{i}\right)=Y_{2}[t]\left[\right.$ index $\left._{\text {sum }}\left(A_{2}[t], z\right)\right]$, so v_{k} is a sibling of v_{i} with $w\left(\ell_{i}, \ell_{k}\right) \leq b$ such that child_rank $\left(S, v_{k}\right)=$ child_rank $\left(S, v_{i}\right)+z-$ before $_{i}$. By Lemma 4.3, we can locate v_{k} using $\ell_{k}=\ell_{i}+\operatorname{index}_{c}\left(S, \ell_{i}, b^{2}, z-\right.$ before $\left._{i}\right)$.

If v_{k} is neither wide nor medium, it must be narrow. If $\operatorname{index}_{c}\left(S, \ell_{p}+1, b^{2}, c\right) \neq \phi$, then we have $\ell_{k}=\ell_{p}+1+\operatorname{index}_{c}\left(S, \ell_{p}+1, b^{2}, c\right)$. Otherwise, $\ell_{k}=r_{p}-F\left[S\left[r_{p}-\right.\right.$ $\left.\left.b+1, r_{p}\right]\right]\left[\operatorname{degree}\left(S, v_{p}\right)-c\right]$.

Finally, let $\alpha_{\text {new } 3}=\alpha_{a u x} \circ \alpha_{b} \circ \alpha_{B 1} \circ X_{1} \circ Y_{1} \circ X_{2} \circ Y_{2} \circ A_{1} \circ \alpha_{A 1} \circ A_{2} \circ \alpha_{A 2} \circ F$,
which takes $o(n)$ bits and can be computed from S in $O(n)$ time. The $O(1)$-time algorithm for computing child_select $\left(S, v_{p}, c\right)$ is shown in Figure 3.

Acknowledgments

We thank Kai-min Chung for helpful discussion. We also thank the anonymous reviewers for their helpful comments.

REFERENCES

Bell, T. C., Cleary, J. G., and Witten, I. H. 1990. Text Compression. Prentice-Hall, Englewood Cliffs, NJ.
Bender, M. A. and Farach-Colton, M. 2000. The LCA problem revisited. In Proceedings of the 4 th Latin American Symposium on Theoretical Informatics, G. H. Gonnet, D. Panario, and A. Viola, Eds. Lecture Notes in Computer Science 1776. Springer, Punta del Este, Uruguay, 88-94.
Benoit, D., Demaine, E. D., Munro, J. I., Raman, R., Raman, V., and Rao, S. S. 2005. Representing trees of higher degree. Algorithmica 43, 4, 275-292.
Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., and Schaeffer, G. 2006. Planar graphs, via well-orderly maps and trees. Graph and Combinatorics 22, 1-18.
Chiang, Y.-T., Lin, C.-C., And Lu, H.-I. 2005. Orderly spanning trees with applications. SIAM Journal on Computing 34, 4, 924-945.
Chuang, R. C.-N., Garg, A., He, X., Kao, M.-Y., and Lu, H.-I. 1998. Compact encodings of planar graphs via canonical ordering and multiple parentheses. In Proceedings of the 25 th International Colloquium on Automata, Languages, and Programming, K. G. Larsen, S. Skyum, and G. Winskel, Eds. Lecture Notes in Computer Science 1443. Springer-Verlag, Aalborg, Denmark, 118-129.
Clark, D. R. 1996. Compact PAT trees. Ph.D. thesis, University of Waterloo.
Clark, D. R. and Munro, J. I. 1996. Efficient suffix trees on secondary storage. In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. ACM/SIAM, Atlanta, Georgia, 383-391.
Delpratt, O., Rahman, N., and Raman, R. 2006. Engineering the LOUDS succinct tree representation. In Proceedings of the 5th International Workshop on Experimental Algorithms. Lecture Notes in Computer Science 4007. Springer-Verlag, Cala Galdana, Menorca, Spain, 134145.

Elias, P. 1975. Universal codeword sets and representations of the integers. IEEE Transactions on Information Theory IT-21, 194-203.
Gabow, H. N., Bentley, J. L., and Tarjan, R. E. 1984. Scaling and related techniques for geometry problems. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing. ACM Press, New York, NY, USA, 135-143.
Geary, R. F., Rahman, N., Raman, R., and Raman, V. 2004. A simple optimal representation for balanced parentheses. In Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching, S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusöz, Eds. Lecture Notes in Computer Science 3109. Springer-Verlag, Istanbul, Turkey, 159-172.
Geary, R. F., Raman, R., and Raman, V. 2004. Succinct ordinal trees with level-ancestor queries. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, J. I. Munro, Ed. SIAM, New Orleans, Louisiana, USA, 1-10.
Graham, R. L., Knuth, D. E., and Patashnik, O. 1989. Concrete Mathematics. Addison-Wesley, Reading, Massachusetts.
He, X., Kao, M.-Y., and Lu, H.-I. 1999. Linear-time succinct encodings of planar graphs via canonical orderings. SIAM Journal on Discrete Mathematics 12, 3, 317-325.
Hon, W.-K., Sadakane, K., and Sung, W.-K. 2003. Succinct data structures for searchable partial sums. In Proceedings of the 14 th Symposium on Algorithms and Computation, T. Ibaraki, N. Katoh, and H. Ono, Eds. Lecture Notes in Computer Science 2906. Springer-Verlag, Kyoto, Japan, 505-516.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science. IEEE, Research Triangle Park, North Carolina, 549-554.
Munro, J. I. 1996. Tables. In Proceedings of the 16th Conference on Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science 1180. Springer-Verlag, Hyderabad, India, 37-42.
Munro, J. I. and Raman, V. 2001. Succinct representation of balanced parentheses, static trees and planar graphs. SIAM Journal on Computing 31, 3, 762-776.
Munro, J. I., Raman, V., and Rao, S. S. 2001. Space efficient suffix trees. Journal of Algorithms 39, 2, 205-222.
Munro, J. I. and Rao, S. S. 2004. Succinct representations of functions. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science 3142. Springer-Verlag, Turku, Finland, 1006-1015.
Raman, R., Raman, V., and Rao, S. S. 2001. Succinct dynamic data structures. In Proceedings of the 7th International Workshop on Algorithms and Data Structures, F. K. H. A. Dehne, J.-R. Sack, and R. Tamassia, Eds. Lecture Notes in Computer Science 2125. Springer-Verlag, Providence, RI, USA, 426-437.
Sadakane, K. 2002. Succinct representations of lcp information and improvements in the compressed suffix arrays. In Proceedings of the 13 th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM/SIAM, San Francisco, 225-232.
van Emde Boas, P. 1990. Machine models and simulations. In Handbook of Theoretical Computer Science, J. van Leeuwen, Ed. Vol. A. Elsevier, Amsterdam, Chapter 1, 1-60.

Received Month Year; revised Month Year; accepted Month Year

[^0]: Authors' Address: Department of Computer Science and Information Engineering, National Taiwan University. 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, Republic of China. Emails: hil@csie.ntu.edu.tw, r93048@csie.ntu.edu.tw. Web: www.csie.ntu.edu.tw/~hil/. This research is supported in part by NSC Grants 94-2213-E-002-126 and 95-2221-E-002-077.
 The first author is the corresponding author, who is also affiliated with the Graduate Institute of Networking and Multimedia and the Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University.
 Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
 (C) $2007 \mathrm{ACM} 0000-0000 / 2007 / 0000-0001 \$ 5.00$

