
Linear-Time Algorithms for Tree Root Problems

Maw-Shang Chang1,�, Ming-Tat Ko2, and Hsueh-I Lu3,��

1 Department of Computer Science and Information Engineering,
National Chung Cheng University, Ming-Shiun, Chiayi 621, Taiwan

mschang@cs.ccu.edu.tw
2 Institute of Information Science,
Academia Sinica, Taipei 115, Taiwan

mtko@iis.sinica.edu.tw
3 Department of Computer Science and Information Engineering,

National Taiwan University, Taipei 106, Taiwan
hil@csie.ntu.edu.tw

http://www.csie.ntu.edu.tw/~hil

Abstract. Let T be a tree on a set V of nodes. The p-th power T p of T
is the graph on V such that any two nodes u and w of V are adjacent in
T p if and only if the distance of u and w in T is at most p. Given an n-
node m-edge graph G and a positive integer p, the p-th tree root problem
asks for a tree T , if any, such that G = T p. Given a graph G, the tree
root problem asks for a positive integer p and a tree T , if any, such that
G = T p. Kearney and Corneil gave the best previously known algorithms
for both problems. Their algorithm for the former (respectively, latter)
problem runs in O(n3) (respectively, O(n4)) time. In this paper, we give
O(n + m)-time algorithms for both problems.

1 Introduction

Let H be a graph on a set V of nodes. The p-th power Hp of H is the graph on
V such that any two nodes u and w of V are adjacent in Hp if and only if the
distance of u and w in H is at most p. If G = Hp, then we say that graph H is
a p-th root of graph G or, equivalently, G is the p-th power of H . Determining
whether the input graph is a power of some other graph is the graph root prob-
lem. Graph roots and powers have been extensively studied in the literature.
Motwani and Sudan [12] proved the NP-completeness of recognizing squares of
graphs. Lau [9] showed that squares of bipartite graphs can be recognized in
polynomial time and proved the NP-completeness of recognizing cubes of bi-
partite graphs. Lau and Corneil [10] also studied the tractability of recognizing
powers of proper interval, split, and chordal graphs. Lin and Skiena [11] gave a
linear-time algorithm to find square roots of planar graphs.

If G = T p for some tree T and number p, we call such a tree T a p-th tree
root of G. Given a graph G and a positive integer p, the p-th tree root problem
� The author thanks the Institute of Information Science of Academia Sinica of Taiwan

for their hospitality and support where part of this research took place.
�� Corresponding author.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 411–422, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

412 M.-S. Chang, M.-T. Ko, and H.-I. Lu

asks for a tree T , if any, with G = T p. Given a graph G, the tree root problem
asks for a tree T and a number p, if any, with G = T p. Ross and Harary [14]
characterized squares of trees and showed that square tree roots, when they
exist, are unique up to isomorphism. Lin and Skiena [11] gave a linear-time
algorithm to recognize squares of trees. Kearney and Corneil [7] gave the best
previously known algorithms for the p-th tree root problem and the tree root
problem. Their algorithm for the p-th tree root problem runs in O(n3) time for
any n-node graph, leading to an O(n4)-time algorithm for the tree root problem.
Gupta and Singh [4] gave a characterization of graphs which are the p-th powers
of trees and proposed a heuristic algorithm to construct a p-th tree root. The
running time of their algorithm is O(n3), but they did not prove the correctness
of their algorithm. It was unknown whether the p-th tree root problem can be
solved in o(n3) time [7, 9].

In this paper we improve Kearney and Corneil’s result [7] by giving linear
time algorithms, in the size of the input graph, for the tree root problem as well
as the p-th tree root problem for any given p. For the p-th tree root problem, our
linear-time algorithm processes the input graph in two different but analogous
ways, depending on whether p is even. If p is even, our algorithm is based upon a
new observation that the p-th power T p of a tree T is a chordal graph admitting
a unique clique tree which is isomorphic to the p

2 -centroid T (p
2) of T . Since it

takes linear time to compute a clique tree for a chordal graph, T (p
2) can thus

be obtained efficiently. To determine the remaining topology of T , we resort to
a linear-time computable clique-position function for all nodes. We also prove
that the existence of clique-position function is a new characterization for graphs
admitting tree roots. To be more specific, there is a one-to-one mapping between
the nodes of T (p

2) and the maximal cliques of T p. The clique-position for a node
u of T can be used to determine the distance between u and the node w in T (p

2)
that is closest to u in T . Having determined the clique positions of all nodes,
we grow the remaining tree topology from the outermost layer to the innermost
layer. As for the case that p is odd, our algorithm works in an analogous way. In
particular, the minimal node separators of T p plays the role of maximal cliques of
T p for the case that p is even. The separator tree of T p is unique and isomorphic
to the p+1

2 -centroid T (p+1
2) of T . The remaining topology of T can be determined

by a linear-time computable separator-position function of T p.
Our linear-time algorithm for the p-th tree root problem immediately yields

a quadratic-time algorithm for the tree root problem. Deriving from (1) the
diameters of the clique tree and separator tree of the input graph and (2) the
clique positions and separator positions of nodes in the input graph, we also
show a linear-time algorithm for finding the minimum p, if any, such that the
input graph admits a p-th tree root. As a result, we have a linear-time algorithm
for the tree root problem.

Due to space limit, the case for odd p is omitted in this extended abstract.
The rest of the paper is organized as follows. Section 2 gives the preliminaries.
Section 3 gives our linear-time algorithm for the p-th tree root problem for the

Linear-Time Algorithms for Tree Root Problems 413

case that p is even. Section 4 gives our linear-time algorithm for finding the
smallest even number p such that the input graph admits a p-th tree root.

2 Preliminaries

For any set S, let |S| denote the cardinality of S. All graphs in this paper
are undirected, simple, and have no self-loops. Let V (G) (respectively, E(G))
consist of the nodes (respectively, edges) of graph G. For any subset U of V (G),
let G[U] denote the subgraph of G induced by U . A node is dominating in G
if it is adjacent to all other nodes in G. Let Dom(G) consist of the dominating
nodes of G, which can be computed from G in linear time.

2.1 Notation for Trees

Let T be a tree. Let PathT (u, w) denote the path of T between u and w.
Let dT (u, w) denote the distance of nodes u and w in T . Define dT (u) =
maxw∈V (T) dT (u, w). The diameter dT of a tree T is maxu∈V (T) dT (u). Let
ΓT (u, i) consist of the nodes w with dT (u, w) ≤ i.

Define the i-centroid T (i) of T as follows. Let T (0) = T . For each i with
1 ≤ i ≤ dT

2 , let T (i) be the tree obtained by deleting the leaf nodes of T (i − 1).
If i > dT

2 , then T (i) is the empty graph. The centroid Cent(T) of T is T (�dT

2 �),
which is either a single node or a single edge. The centroid of T can be computed
from T in O(|V (T)|) time.

v7

v27

v31

v2

v3

v8

v4

v26

v9 v5

v30

v23 v11

v32

v13

v18

v14

v15

v12

v10

v16

v20

v6

v21

v24
v28

v22v25

v19 v17

v29

v1

(a) (c)

K26
K30

K23K24

K29K27

v27

v26
v30

v23v24

v29

(b)

Fig. 1. (a) A tree T . (b) The 3-centroid T (3) of T . (c) The clique tree of T 6, where
Ki = ΓT (vi, 3).

We use the tree T shown in Figure 1(a), which also appeared in [7], to illustrate
the aforementioned notation: ΓT (v10, 3) = {v1, v2, v10, v12, v15, v24, v27}. The 3-
centroid T (3) of T , as shown in Figure 1(b), is the subtree of T induced by
{v24, v27, v30, v29, v26, v23},

414 M.-S. Chang, M.-T. Ko, and H.-I. Lu

2.2 Chordal Graphs

A graph G is chordal if it contains no induced subgraph which is a cycle of
size greater than three. Chordal graphs, which can be recognized in linear time
[15, 13], have been extensively studied in the literature. It is well known that any
tree power is chordal (see, e.g., [7]).

A subset S of V (G) is a separator of a connected graph G if G[V (G) \ S] has
at least two connected components. A separator S of G is minimal if any proper
subset of S is not a separator of G. A separator S of G is a (u, w)-separator of G
if nodes u and w are in different connected components of G[V (G)\S]. A (u, w)-
separator S is minimal if any proper subset of S is not a (u, w)-separator of G.
A minimal node separator is a minimal (u, w)-separator for some nodes u and
w. Note that a minimal node separator is not necessarily a minimal separator,
as the minimal (u, w)-separator may contain the minimal (x, y)-separator for
some other nodes x and y. Graph G is chordal if and only if every minimal node
separator of G induces a clique in G [2].

Let G be a chordal graph. Let KG consist of the maximal cliques of G. For
each node u of G, let KG(u) consist of the maximal cliques of G containing
u. A clique tree of a chordal graph G is a tree T with V (T) = KG such that
each KG(u) with u ∈ V (G) induces a subtree of T . Gavril [3] and Buneman [1]
ensured that graph G is chordal if and only if G has a clique tree. Moreover,
a clique tree of any chordal graph G can be computed in O(|V (G)| + |E(G)|)
time [6]. A chordal graph may have more than one clique tree [5]. A chordal
graph is uniquely representable [8] if it admits a unique clique tree.

Lemma 1. Let T be a clique tree of a chordal graph G. Then, S is a minimal
node separator of G if and only if S = K1 ∩ K2 for some edge (K1, K2) of T .

Proof. For each edge e of T , let Se consist of the nodes u of G such that e
belongs to the subtree of T induced by KG(u). That is, Se = {u ∈ V (G) | e ∈
E(T [KG(u)])}. Ho and Lee [5] ensured that S is a minimal node separator of
G if and only if S = Se for some e ∈ E(T). Therefore, it remains to ensure
S(K1,K2) = K1 ∩ K2 by verifying that (K1, K2) is an edge of T [KG(u)] if and
only if {K1, K2} ⊆ KG(u) if and only if u ∈ K1 ∩ K2.

3 The p-th Tree Root Problem for any Given Even p

This section assumes that the given positive number p ≤ n is even. Let h = p
2 .

3.1 Unique Representability

This subsection shows that if T is a tree, then T p has a unique clique tree, which
has to be isomorphic to T (h).

Lemma 2. For any tree T , we have that G = T p if and only if KG = {ΓT (u, h) |
u ∈ V (T (h))}.

Linear-Time Algorithms for Tree Root Problems 415

Proof. Observe that nodes u and w are adjacent in G if and only if there exists
a maximal clique K of G that contains both u and w. Therefore, for any graphs
G and H , we have that G = H if and only if KG = KH . Gupta and Singh [4]
proved that K is a maximal clique of T p if and only if there exists a node u of
T (h) with ΓT (u, h) = K. The lemma is proved.

Theorem 1. If T is a tree, then T p has a unique clique tree. Moreover, the
clique tree of T p is isomorphic to T (h).

Proof. Let T be the tree with

V (T) = {ΓT (u, h) | u ∈ V (T (h))};
E(T) = {(ΓT (u, h), ΓT (w, h)) | (u, w) ∈ E(T (h))}.

It is not hard to verify that T (h) and T are isomorphic. We first show that T is
a clique tree of T p. Observe that by Lemma 2, we have

KT p(u) = {ΓT (w, h) | w ∈ V (T (h)), dT (u, w) ≤ h}
= {ΓT (w, h) | w ∈ V (T (h)) ∩ ΓT (u, h)}.

Since T [V (T (h)) ∩ ΓT (u, h)] is a subtree of T (h), T [KT p(u)] is a subtree of T .
Therefore, T is a clique tree of T p.

To show that T p has no other clique tree, we resort to an observation of Kumar
and Madhavan [8] stating that a chordal graph G is uniquely representable if
(and only if) every minimal node separator of G is contained in exactly two
maximal cliques of G. By Lemmas 1 and 2, each minimal node separator of
T p has the form ΓT (u, h) ∩ ΓT (w, h) for some nodes u and w adjacent in T (h).
Observe that ΓT (u, h) ∩ ΓT (w, h) �⊆ ΓT (x, h) for any node x of T (h) other than
u and w. The theorem is proved.

3.2 Clique-Position Function

Let G be a uniquely representable chordal graph. Let T be the clique tree of
G. We say that (K, i) is a clique position of u in G if KG(u) = ΓT (K, i), i.e.,
the maximal cliques containing u are exactly those nodes in the clique tree T
that are at a distance up to i from K. For notational brevity, we also write
u ∈ ΠG(K, i) to signify that (K, i) is a clique position of u in G, where the
subscript G may be omitted when it is clear from the context. Let us use Figure 1
to explain this crucial concept of the paper. For each index i with vi ∈ V (T (3)),
let Ki = ΓT (vi, 3). By Lemma 2, we know that these Ki are the maximal cliques
of T 6. Observe that

KG(v14) = {K24, K27, K30} = ΓT (K27, 1) = ΓT (K24, 2).

Therefore, both (K27, 1) and (K24, 2) are clique positions of v14 in T 6. One can
also verify that v15 ∈ ΠT 6(K27, 1) ∩ ΠT 6(K24, 2).

A clique-position function of G with respect to p is a function Φ : V (G) →
KG × {0, 1, . . . , h} that satisfies the following conditions.

416 M.-S. Chang, M.-T. Ko, and H.-I. Lu

Condition C1: For each u ∈ V (G), Φ(u) is a clique position of u in G.
Condition C2: For each K ∈ KG, there exists a unique node u of G with Φ(u) =

(K, h).
Condition C3: If Φ(u) = (K, i) for some K ∈ KG and i < h, then there is a

node w of G with Φ(w) = (K, i + 1).

Given a chordal graph T p, an integer p, and the clique tree T of T p, the rest
of the subsection shows how to compute a clique-position function of T p with
respect to p. Note that our algorithm does not know T .

For each node u ∈ V (T) \ V (T (h)), define �(u) to be the largest index i with
i ≤ h − 1 such that u belongs to Π(K, i) for some maximal clique K of T p.
If u ∈ V (T) \ V (T (h)), then u ∈ Π(κ(w), h − dT (u, w)), where w is the node
of T (h) that is closest to u in T . Therefore, �(u) is well defined for each node
u ∈ V (T) \ V (T (h)). To simplify the description of our algorithm, each node u
of T p is initially white, signifying that Φ(u) is still undefined. If Φ(u) is defined
but may be changed later, then u is gray. If Φ(u) is defined and will not be
changed later, then u is black. Our algorithm is as shown in Algorithm 1, whose
correctness is ensured by the following lemma.

Input: A positive even number p, and a graph T p and its clique tree T .
Output: A clique-position function Φ of T p with respect to p.

1: For each node u of T p, compute the clique positions of u in T p and let u be white.
2: For each K ∈ KTp , choose a white node u ∈ Π(K, h), let Φ(u) = (K, h), and let u

be black.
3: Let K∗ be a maximal clique of T p in V (Cent(T)).
4: For each white node u ∈ Dom(T p), let Φ(u) = (K∗, h − 1) and let u be gray.
5: For each white node u ∈ V (T p) \ Dom(T p), compute �(u).
6: while there are still white nodes in V (T p) \ Dom(T p) do
7: Let u be a white node in V (T p) \ Dom(T p) with the smallest �(u).
8: Let κ(u) be a maximal clique of T p with u ∈ Π(κ(u), �(u)).
9: Let Φ(u) = (κ(u), �(u)) and let u be black.

10: For each white node w ∈ Π(κ(u), �(u)), let Φ(w) = (κ(u), �(u)) and let w be
gray.

11: for j = �(u) + 1 to h − 1 do
12: Choose a non-black node w ∈ Π(κ(u), j). Let Φ(w) = (κ(u), j) and let w be

black.
13: For each white node w ∈ Π(κ(u), j), let Φ(w) = (κ(u), j) and let w be gray.
14: end for
15: end while

Algorithm 1: Computing a clique-position function of T p with respect to p

Lemma 3. Algorithm 1 correctly computes a clique-position function of T p with
respect to p.

Proof. Our proof is based upon the facts that T is one of the p-th tree roots of
T p and the clique tree T of T p is isomorphic to T (h). As we will see, the challenge

Linear-Time Algorithms for Tree Root Problems 417

of the proof lies in showing that the algorithm does not abort at Steps 2 and 12.
Let us first assume that the algorithm does not abort at Steps 2 and 12, and
show that the function Φ computed by the algorithm has to be a clique-position
function of T p.

– Condition C1. One can verify that the algorithm assigns Φ(u) = (K, i) only
if u ∈ Π(K, i). It is also easy to see that Φ(u) is defined for every node of
T , i.e., no white nodes left, at the end of the algorithm. Thus, Condition C1
holds for the function Φ computed by the algorithm.

– Condition C2. Since the algorithm does not abort at Step 2, the algorithm
successfully assigns clique positions for |KT p | nodes at the end of Step 2.
Since the rest of the algorithm never assigns (K, h) to any Φ(u), Condition C2
holds for the function Φ computed by the algorithm.

– Condition C3. By Condition C2 of Φ, we know that Condition C3 holds for
each node processed at Step 4. For each iteration of the while-loop (Steps 6–
15), we first let Φ(u) = (κ(u), �(u)) and turn u into black. Then, in the
for-loop (Steps 11–14), for each index j with �(u) < j < h, the algorithm
assigns Φ(w) = (κ(u), j) for some non-black node w and turns w into black.
Therefore, as long as the algorithm does not abort at Step 12, one can see
that Condition C3 holds for each node not processed at Step 4.

We then show that the algorithm does not abort at Step 2. Observe that each
node u of T (h) belongs to Π(ΓT (u, h), h). By Lemma 2, for each maximal clique
K of T p, the number of maximal cliques K ′ of T p with ΓT (K ′, h) = ΓT (K, h) is
no more than |Π(K, h)|. Therefore, Step 2 successfully assigns clique positions
for |KT p | nodes.

It remains to prove that the algorithm does not abort at Step 12. We first
show that if an iteration of the while-loop enters the for-loop, then the node u of
the iteration has a unique clique position in T p. We can focus only on the case
with 1 ≤ �(u) ≤ h−2, because (1) if �(u) = 0, then u has a unique clique position
in T p, and (2) if �(u) ≥ h−1, then the algorithm does not enter the for-loop. We
also observe that κ(u) cannot be a leaf of T . The reason is that if κ(u) is a leaf
of T , then T has at least one leaf whose unique clique position in T p is (κ(u), 0).
Since the while-loop processes nodes u in non-decreasing order of �(u), �(u) ≥ 1
implies that u cannot be white at the beginning of the iteration of the while-loop.
Let v be the node of T (h) such that κ(u) = ΓT (v, h). Since κ(u) is not a leaf
of T , node v is not a leaf of T (h). See Figure 2 for an illustration for the proof.
Let S = ΓT (h)(v, �(u)). Since �(u) ≥ 1 and u is not a dominating node of T p,
there is an edge (x, y) of T (h) such that y ∈ S − {v} and x /∈ S. Since v is not a
leaf of T (h), there has to be a neighbor w of v in T (h) such that PathT (h)(w, y)
contains v. Since �(u) ≤ h − 2, we know ΓT (h)(w, �(u) + 1) �= S. There has to be
an edge (x′, y′) of T (h) such that y′ ∈ S, x′ /∈ S, and PathT (h)(x′, x) contains
y, y′, w, and v. By the existence of edges (x, y) and (x′, y′) of T (h), we know
that S = ΓT (h)(z, j) implies z = v and j = �(u). Thus, (κ(u), �(u)) is the unique
clique position of u in T p.

Let ui be the node u for the i-th iteration of the while-loop that enters the
for-loop. We already showed that (κ(ui), �(ui)) is the unique clique position of ui

418 M.-S. Chang, M.-T. Ko, and H.-I. Lu

in T p. Let vi be the node with κ(ui) = ΓT (vi, h). By definition of our algorithm,
all the maximal cliques κ(ui) have to be distinct. Thus, all paths PathT (ui, vi)
are disjoint. Therefore, the number of indices i such that PathT (ui, vi) contains
nodes in any Π(κ, �) is no more than the cardinality of Π(κ, �). It follows that
our algorithm does not abort at Step 12.

3.3 A New Characterization for Tree Powers

Theorem 2. A graph G has a p-th tree root if and only if G is a uniquely
representable chordal graph admitting a clique-position function with respect to p.

Proof. Lemma 3 ensures the only-if direction. The rest of the proof shows the
other direction. Let T be the clique tree of G. Let Φ be a clique-position function
of G with respect to p. We construct a tree T with V (T) = V (G) as follows.

– Let S consist of the nodes u of G with Φ(u) = (K, h) for some maximal
clique K of G. By Condition C2 of Φ, we know that Φ provides a one-to-one
mapping between S and KG. Let T [S] be the tree isomorphic to T via this
isomorphism.

– As for each node u of G not in S, we know that Φ(u) = (K, i) for some
maximal clique K of G and some index i with 0 ≤ i < h. We simply add
an edge between u and an arbitrary node w with Φ(w) = (K, i + 1). By
Condition C3 of Φ, such a node w always exists.

One can see that the resulting T is a tree. It is also clear that the path of T
attached to T [S] has length no more than h.

We first prove T (h) = T [S] by showing that each leaf of T [S] is attached by
a length-h path in T . By definition of T , it suffices to ensure that for each leaf
K of T , there exists a node v of G with Φ(v) = (K, 0): Let K ′ be the maximal
clique of G with (K, K ′) ∈ E(T). By the maximality of K, there exists a node
u in K \ K ′. By definition of clique tree, KG(u) induces a subtree of T . Since
K is a leaf of T , it follows that KG(u) = {K}, i.e., (K, 0) is the unique clique
position of u in G. By Condition C1 of Φ, we have Φ(u) = (K, 0).

Next we show that Φ(v) = (K, h) implies ΓT (v, h) = K.

– To show K ⊆ ΓT (v, h), let u be a node in K, where Φ(u) = (K ′, i). Observe
that dT (K, K ′) ≤ i. Let w be the node of S with Φ(w) = (K ′, h). Since
T [S] is isomorphic to T , we know dT (v, w) ≤ i. By Condition C1 of Φ,
u ∈ K ′. By the definition of T , dT (u, w) = h − i. It follows that dT (v, u) =
dT (v, w) + dT (w, u) ≤ h. Thus, u ∈ ΓT (v, h).

�(u)

w y′ x′yx

�(u)

v

Fig. 2. An illustration for showing that u has only one clique position in T p

Linear-Time Algorithms for Tree Root Problems 419

– To show ΓT (v, h) ⊆ K, let u be a node in ΓT (v, h), where Φ(u) = (K ′, i).
Let w be the node with Φ(w) = (K ′, h). By the definition of T , dT (u, v) =
dT (u, w)+dT (w, v) = h−i+dT (w, v). Since dT (u, v) ≤ h, we have dT (w, v) ≤
i. Since T [S] is isomorphic to T , we have that dT (K, K ′) ≤ i. By Condi-
tion C1 of Φ, u ∈ Π(K ′, i). Hence KG(u) = ΓT (K ′, i). Since dT (K, K ′) ≤ i,
we have u ∈ K.

Since Φ(v) = (K, h) implies ΓT (v, h) = K, we have that KG = {ΓT (v, h) | v ∈ S}
by Condition C2 of Φ. By T [S] = T (h), we know that KG = {ΓT (v, h) | v ∈
V (T (h))}. By (the “if” direction of) Lemma 2, G = T p.

3.4 A Linear-Time Algorithm

Theorem 3. The p-th tree root problem for any n-node m-edge graph G and
any even number p can be solved in O(n + m) time.

Proof. The constructive proof for the “if” direction of Theorem 2 can be
implemented to run in O(n) time. Since chordal graphs can be recognized in
linear time [13, 15] and a clique tree T of the input chordal graph G can be
obtained in linear time [6], the remaining task for solving the p-th tree root
problem for G in O(n + m) time is to compute a clique-position function, if
any, of G with respect to p. Although Algorithm 1 is designed for computing a
clique-position function for T p, we can still run it on any chordal graph G. If the
execution of the algorithm aborts at Step 2 or 12, Lemma 3 ensures that G does
not admit any p-th tree root. If the algorithm does not abort at Step 12 and
successfully outputs a function Φ, it takes O(n) time to determine whether Φ is
indeed a clique-position function of G, thereby figuring out whether G admits a
p-th tree root.

It suffices to show that Step 1 of Algorithm 1, i.e., determining the clique
positions of all nodes in G, can be implemented to run in O(n+m) time. Observe
that

∑
K∈KG

|V (K)| = O(n + m). All clique positions of all nodes in G can
be computed in time linear in the size of G as follows. For each node u ∈
V (G) \ Dom(G), let Xu consist of the nodes X of KG(u) such that the degree
of X in T [KG(u)] is less than the degree of X in T . Observe that u ∈ V (G) \
Dom(G) implies that Xu is non-empty. The sets KG(u) and Xu for all nodes
u ∈ V (G)\Dom(G) can be computed in O(n+m) time. It remains to show how
to solve the following problem.

Let τ be a tree, some of whose leaves are marked. A node u of τ is a
center of τ if u has the same distance δ to all marked leaves of τ and
the distance between u and any node of τ is no more than δ. Under the
assumption that τ has a center, the problem is to identify all centers of
τ in O(V (τ)) time.

Let y be an arbitrary marked leaf of τ . If |V (Cent(τ))| = 1, then let x be the
single node in Cent(τ). If |V (Cent(τ))| = 2, then let x be the node of Cent(τ)
whose distance to y in τ is larger. If τ has centers, then x has to be one of them.
Let z be a node of V (τ) \ {x}. Let Z be the connected component of τ − x that

420 M.-S. Chang, M.-T. Ko, and H.-I. Lu

contains z. One can verify that Z contains a marked leaf of τ if and only if z is
not a center of τ . Therefore, the above problem can be solved in O(|V (τ)|) time.
The theorem is proved.

4 The p-th Tree Root Problem for Unknown Even p

Theorem 4. Let G be an n-node m-edge graph. Then, it takes O(n + m) time
to determine the smallest even number p, if any, such that G admits a p-th tree
root.

Proof. Since tree powers are chordal and chordal graphs can be recognized in
linear time, we may assume without loss of generality that G is chordal, thereby
admitting a clique tree T . Let K∗ be a node in Cent(T). Let J consist of the
even numbers j such that Π(K∗, j/2) is non-empty. Let

p∗ =

⎧
⎨

⎩

maxJ if |Dom(G)| = 0;
dT + |Dom(G)| − 1 if 1 ≤ |Dom(G)| ≤ 2;
2�dT /2� + 2 if |Dom(G)| ≥ 3.

Let P consist of the positive numbers p such that the input graph admits a
p-tree root. We first show that if P is non-empty, then p∗ = min P . For brevity
of proof, we regard T as being rooted at K∗: For any maximal clique K of G
other than K∗, the parent of K in T , denote π(K), is the maximal clique K ′ of
G such that (K, K ′) is an edge of PathT (K, K∗). We say that K is a child of
π(K) in T .

Case 1: |Dom(G)| = 0. By Condition C2 of any clique-position function of G
with respect to p, we have P ⊆ J . We show P = {maxJ} by proving that that
j ≤ p holds for any even numbers j ∈ J and p ∈ P . Assume for a contradiction
that j > p holds for some even numbers j ∈ J and p ∈ P . Let T be a p-th tree
root of G. Let v(·) be an isomorphism between T and T (p/2). That is, v(K) is
the node in V (T (p/2)) such that ΓT (v(K), p/2) = K.

Since Dom(G) = ∅, we know dT > 2p. Therefore, dT = dT (p/2) > p. It follows
from dT > p and j > p that

ΓT (K∗, p/2) � ΓT (K∗, j/2).

Let w be a node in Π(K∗, j/2), implying KG(w) = ΓT (K∗, j/2). Let u∗ = v(K∗).
We know u∗ ∈ Π(K∗, p/2), implying KG(u∗) = ΓT (K∗, p/2). It follows that

KG(u∗) � KG(w),

thereby u∗ �= w. Since K∗ is a centroid of T , u∗ is also a centroid of T (p/2). By
dT (p/2) > p and u∗ �= w, there is a node u in V (T (p/2)) such that dT (u, u∗) = p/2
and dT (u, w) > p/2. Let K = ΓT (u, h). We have u∗ ∈ V (K) and w /∈ V (K).
Thus, K is a maximal clique in KG(u∗)\KG(w), contradicting KG(u∗) � KG(w).

Linear-Time Algorithms for Tree Root Problems 421

Case 2: 1 ≤ |Dom(G)| ≤ 2. We show that P consists of the single number
dT − |Dom(G)|+1 as follows. Let p be a number in P . Let T be a p-th tree root
of G. By 1 ≤ |Dom(G)| ≤ 2, it is not hard to see that Dom(G) consists of the
centroids of T . If |Dom(G)| = 1, then dT = 2p. It follows that dT (p/2) = dT = p.
If |Dom(G)| = 2, then dT = 2p − 1. It follows that dT (p/2) = dT = p − 1. For
either case, we have p = dT + |Dom(G)| − 1. Since G has exactly one clique tree
T , the diameter of T is fixed. We have |P | = 1.

Case 3: |Dom(G)| ≥ 3. We show that min P = 2�dT /2� + 2. Let p be an index
in P . Let T be a p-th tree root of G. By |Dom(G)| ≥ 3, one can verify that
dT ≤ 2p − 2. Therefore, dT = dT (p/2) ≤ p − 2, implying that minP ≥ dT + 2.
Observe that 2�dT /2� + 2 is the smallest even number that is no less than
dT +2. We prove the equality by showing that if p ≥ dT +4, then G also admits
a (p − 2)-nd tree root.

The rest of the proof assumes dT ≤ p − 4, which directly implies that

ΓT (K∗, p/2 − 2) = KG. (1)

For any maximal clique K of G other than K∗, observe that dT ≤ p − 4 also
implies

Π(K, p/2) ⊆ Π(π(K), p/2 − 1); (2)
Π(K, p/2 − 1) ⊆ Π(π(K), p/2 − 2). (3)

Let Φ be a clique-position function of G with respect to p. Let Φ1(u) (respec-
tively, Φ2(u)) denote the first (respectively, second) component of Φ(u). Let Φ′

be obtained from Φ by the following steps.

1. For each node u with Φ2(u) ≤ p/2 − 2, we simply let Φ′(u) = Φ(u).
2. For the node u with Φ(u) = (K∗, p/2), i.e., u = v(K∗), let Φ′(u) = (K∗, p/2−

1). For each node u of G with Φ(u) = (K∗, p/2−1), let Φ′(u) = (K∗, p/2−2).
3. For each maximal clique K �= K∗ of G that is not a leaf of T , we do the

following:
(a) Choose an arbitrary child K1 of K in T and let Φ′(v(K1)) = (K, p/2−1).
(b) For each child K2 of K other than K1, let Φ′(v(K2)) = (π(K), p/2 − 2).
(c) For each node u of G with Φ(u) = (K, p/2−1), let Φ′(u) = (π(K), p/2−

2).
4. For each maximal clique K �= K∗ of G that is a leaf of T , we do the following:

(a) Choose an arbitrary node u with Φ(u) = (K, p/2 − 1) and let Φ′(u) =
(K, p/2 − 1).

(b) For each node w �= u with Φ(w) = (K, p/2−1), let Φ′(w) = (π(K), p/2−
2).

5. Let u be the node with Φ(u) = (K∗, p/2). Let Φ′(u) = (K∗, p/2−1). For each
node w with Φ(w) = (K, p/2) and π(K) = K∗, let Φ′(w) = (K∗, p/2 − 2).

We show that Φ′ is a clique-position function of G with respect to p − 2.

422 M.-S. Chang, M.-T. Ko, and H.-I. Lu

– Condition C1: One can verify that Φ′(u) is well defined for each node u of
G. Moreover, by Condition C1 of Φ and Equations (1), (2), and (3), one can
also verify that Φ′(u) is a clique position of u in G.

– Condition C2: By Condition C2 of Φ and Steps 2, 3(a), 4(a), and 5, one can
see that for each maximal clique K of G, there exists a unique node u of G
with Φ′(u) = (K, p/2 − 1).

– Condition C3: Condition C2 of Φ′ ensures that if u is a node with Φ′
2(u) =

p/2− 2, then there is a node w with Φ′
1(w) = Φ′

1(u) and Φ′
2(w) = Φ′

2(u) + 1.
Condition C3 of Φ and Step 1 ensures that if u is a node with Φ′

2(u) < p/2−2,
then there is a node w with Φ′

1(w) = Φ′
1(u) and Φ′

2(w) = Φ′
2(u) + 1.

Observe that whether P is empty or not, p∗ can always be computed from G in
linear time. (This includes the case that J = Dom(G) = ∅, i.e., p∗ is undefined.)
Thus, the above proof reduces the tree root problem G to the p∗-th tree root
problem for G, which by Theorem 3 can be solved in linear time.

References

1. P. Buneman. Characterization of rigid circuit graphs. Discrete Mathematics, 9:205–
212, 1974.

2. G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, 25:71–76, 1961.

3. F. Gavril. The intersection graphs of subtrees in trees are exactly chordal graphs.
Journal of Combinatorial Theory, Series B, 16:47–56, 1974.

4. S. K. Gupta and A. Singh. On tree roots of graphs. International Journal of
Computer Mathematics, 73:157–166, 1999.

5. C.-W. Ho and R. C. T. Lee. Counting clique trees and computing perfect elimina-
tion schemes in parallel. Information Processing Letters, 31:61–68, 1989.

6. W.-L. Hsu and T.-H. Ma. Fast and simple algorithms for recognizing chordal
comparability graphs and interval graphs. SIAM Journal on Computing, 28:1004–
1020, 1999.

7. P. E. Kearney and D. G. Corneil. Tree powers. Journal of Algorithms, 29:111–131,
1998.

8. P. S. Kumar and C. E. V. Madhavan. Clique tree generalization and new subclasses
of chordal graphs. Discrete Applied Mathematics, 117:109–131, 2002.

9. L. C. Lau. Bipartite roots of graphs. In Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 952–961, 2004.

10. L. C. Lau and D. G. Corneil. Recognizing powers of proper interval, split, and
chordal graphs. SIAM Journal on Computing, 18(1):83–102, 2004.

11. Y. L. Lin and S. Skiena. Algorithms for square roots of graphs. SIAM Journal on
Discrete Mathematics, 8:99–118, 1995.

12. R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Applied
Mathematics, 54:81–88, 1994.

13. D. Rose, R. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination of
graph. SIAM Journal on Computing, 5(2):266–283, 1976.

14. I. C. Ross and F. Harary. The squares of a tree. Bell System Technical Journal,
39:641–647, 1960.

15. R. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordality of
graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13(3):566–576, 1984.

	Introduction
	Preliminaries
	Notation for Trees
	Chordal Graphs

	The p-th Tree Root Problem for any Given Even p
	Unique Representability
	Clique-Position Function
	A New Characterization for Tree Powers
	A Linear-Time Algorithm

	The p-th Tree Root Problem for Unknown Even p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

