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Linear-Time Compression of Bounded-Genus Graphs into 
Information-Theoretically Optimal Number of Bits 

Hsueh-I Lu* 

1 I n t r o d u c t i o n  

This extended abstract  summarizes a new result for the 
graph compression problem, addressing how to compress 
a graph G into a binary string Z with the requirement 
that  Z can be decoded to recover G. Graph compression 
finds important  applications in 3D model compression of 
Computer  Graphics [12, 17-20] and compact routing ta-  
ble of Computer  Networks [7}. For brevity, let a ~r-graph 
stand for a graph with property n. The information- 
theoretically optimal number  of bits required to repre- 
sent an n-node n-graph is [log 2 N~(n)],  where N,~(n) 
is the number of distinct n-node *r-graphs. Although 
determining or approximating the close forms of N~ (n) 
for nontrivial classes of n is challenging, we provide a 
linear-time methodology for graph compression schemes 
that  are information-theoretically optimal with respect 
to continuous super-additive functions (abbreviated as 
optimal for the rest of the extended abstract) .  1 Specifi- 
cally, if 7r satisfies certain properties, then we can com- 
press any n-node m-edge 1r-graph G into a binary string 
Z such tha t  G and Z can be computed from each other 
in O(m + n) time, and tha t  the bit count of Z is at 
most fl(n) + o(fl(n)) for any continuous super-additive 
function fl(n) with log 2 N~(n) < fl(n) + o(fl(n)). Our 
methodology is applicable to general classes of graphs; 
this extended abstract  focuses on graphs with sublinear 
genus. 2 For example, if the input n-node ,r-graph G is 
equipped with an embedding on its genus surface, which 
is a reasonable assumption for graphs arising from 3D 
model compression, then our methodology is applicable 
to any 7r satisfying the following statements: 
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IA function ~(n) is super-additive if/~(nl) + ~(n2) <:/~(rtl -i- 
n~). A function fl(n) is continuousiffl(n+o(n)) =/~(n)-t-o(B(n)). 
For instance, •(n) = cort ez log c2 n is continuous and super- 
additive, for any real numbers co, cl, c2 with e0, c2 > 0 and el _> 1. 
The continuity and super-additivlty are closed under additions. 

2The bottleneck of 3D model compression is the so-called 
aconneetivity encoding" [20], which encodes a graph embedded 
on the surface of a 3D object. To achieve good resolution for 
the 3I) representation of an object, it is reasonable to assume the 
number of "holes" in the 3D object to be sublinear in the number 
of nodes of the graph. 

F1. The genus of any n-node ~r-graph is O(lo-~) ;  

F2. Any subgraph of a n-graph remains a w-graph; 
F3. logN~(n)  = a (n ) ;  3 and 
F4. There is an integer k = O(1) such that  it takes 

O(n) t ime to determine whether an O(log (k) n)-node 
graph satisfies property n. 4 

For instance, ~r can be the property of being a directed 
3-colorable simple graph with genus no more than ten. 5 
The  result is a novel application of planarization algo- 
r i thm for bounded-genus graphs [5] and separator de- 
composition tree of planar graphs [9]. Rooted trees were 
the only known nontrivial class of graphs with linear- 
t ime optimal coding schemes. He, Kao, and Lu [11] 
provided O(nlogn)-time compression schemes for pla- 
nar  and plane graphs tha t  are optimal.  Our results sig- 
nificantly enlarge the classes of graphs that  admit ef- 
ficient optimal compression schemes. More results on 
various versions of graph compression problems or suc- 
cinct graph representations can be found in [1-4, 6,8, 
10, 14,15] and the references therein. 

2 C o m p r e s s i n g  b o u n d e d - g e n u s  g r a p h s  

The genus of a graph is the smallest integer g such tha t  
G can be embedded on an orientable surface with g 
handles without edge crossings. Determining the genus 
of a general graph is NP-complete  [21], but  it takes 
linear t ime to determine whether a graph is of genus 
g [13] for any g = 0(1) .  

Our compression algorithm is a subroutine call 
encode~(Go), where Go is an input no-node 1r-graph. 
Let A be a function with A(n0) = w(1) such that 
the indexing scheme of all A(n0)-node 7r-graphs can 
be obtained in O(no) time. (Statement F4 implies 
the existence of such a function A.) The indexing 
scheme of A(n0)-node 7r-graphs can be implemented by 
precomputing a table M of N.(A(no)) entries, where the 

~'N'~'e that this condition holds even for trees: log s N,r(n) = 
2n - o(n) for ~r being a rooted tree. 

k 
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4By log (k) n we mean log log log-.- log n. 
5Observe that determining whether an input graph satisfies 

such a ~r is NP-complete. 
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i - th  ent ry  contains an adjacency mat r ix  represent ing the  
i-th A(n0)-node u-graph.  The  subrout ine  encode=(G) is 
described as follows, where IGI denotes  the number  of  
nodes in G: 
S t e p  1. If [G] > A(n0), then  go to  Step  2. Otherwise,  
let code~(G) be the index of G in M,  upda te  the node 
labels of G according to  the  adjacency mat r ix  of G 
s tored in M,  and finally r e tu rn  coded(G) .  
S t e p  2. Let  n -- tG[. Decompose  G in O(n)  t ime  
into edge-di~oint  u-subgraphs G0, G 1 , . . . ,  G~ such t h a t  

~- o(n) ,  ~-~i=0 [G'I = n+°(l-ff--g~), Go has O(l~gn)edges,  

and IG~[ --~ O(log °(1) n) holds for each 1 < i < £. 
S t e p  3. Recursively call encode=(Gi)  for each 1 < i <: 
£. Then ,  upda te  the  label of  each node  of  C according 
to  its labels in its residing subgraphs  G~ de te rmined  
by encode~(G~). Based upon  the  new labels, c rea te  
an o(n)-bi t  s tr ing S sufficient for recovering G from 
G1, G 2 , - . - ,  Gt.  Let  code~(G) be the conca tena t ion  of S 
and code~(Gi)  with 1 < i < £, appended  by an o(n)-bi t  
s t r ing [16] with which all these o(n) conca tena ted  strings 
can be recovered from code=(G).  R e t u r n  code~(G).  

We can prove t ha t  the  ou tpu t  bi t  count  of  ou r  com- 
pression algori thm is opt imal .  Moreover,  our  compres-  
sion algori thm and the  corresponding decoding algo- 
r i t hm take linear t ime. Our  f ramework is equipped wi th  
the  mechanism of node relabeling, and  thus  is more  pow- 
erful t han  t ha t  of He et  el. [11]. 

I t  remains to  show how to  implement  Step 2 for 
any vr-graph satisfying S ta tements  F1 -F4 .  For  decom- 
posit ion,  we resort  to  Djidjev and  Venkate~an's O ( n  ÷ 
g)- t ime planarizat ion a lgor i thm for n-node  genus-g 
graphs  [5] and Goodrich 's  O(n)*t ime a lgor i thm for sep- 
a ra to r  decomposi t ion trees of  n -node  planar  graphs [9]. 
F rom these two algori thm, one can obta in  in O(n) - t ime  

o n a set So of (log n) nodes whose removal  decomposes G 

into o(lo-~n ) disjoint O(log ° (D n ) -node  subgraphs.  Le t  g 
Go be the  subgraph of G induced by  So. We then  par-  
t i t ion the nodes of G - So into $1, $ 2 , . . . ,  St  according 
to  the  embedding of  G such t h a t  each set is e i ther  of  
size w( logn)  or adjacent  to  at  mos t  one node in So. For  
each i > 1, let G~ be the subgraph  of  G induced by  Bi 
and the  neighbors of  Si in G. We can prove tha t  these 
G0, G 1 , . . . ,  Gt  indeed satisfy the  required conditions.  
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