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Abstract

We study an abstract optimization problem arising from biomolecular sequence analysis. For a sequenceA of
pairs(ai, wi) for i = 1, . . . , n andwi >0, asegmentA(i, j) is a consecutive subsequence ofA starting with index
i and ending with indexj. Thewidthof A(i, j) isw(i, j) = ∑

i�k� jwk, and thedensityis (
∑

i�k� j ak)/w(i, j).

Themaximum-density segmentproblem takesA and two valuesL andU as input and asks for a segment ofAwith
the largest possible density among those of width at leastL and at mostU. WhenU is unbounded, we provide a
relatively simple,O(n)-time algorithm, improving upon theO(n log L)-time algorithm by Lin, Jiang and Chao.
We then extend this result, providing anO(n)-time algorithm for the case when bothL andU are specified.
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1. Introduction

Non-uniformity of nucleotide composition within genomic sequences was first revealed through ther-
mal melting and gradient centrifugation experiments[23,27]. The GC content of the DNA sequences in
all organisms varies from 25% to 75%. GC-ratios have the greatest variations among bacteria’s DNA
sequences, while the typical GC-ratios of mammalian genomes are between 45% and 50%. The GC
content of human DNA varies widely throughout the genome, ranging between 30% and 60%. Despite
intensive research effort in the past two decades, the underlying causes of the observed heterogeneity
remain contested[3–5,9,10,12,13,20,37,39]. Researchers[30,36] observed that the compositional het-
erogeneity is highly correlated to the GC content of the genomic sequences. Other investigations showed
that gene length[8], gene density[41], patterns of codon usage[34], distribution of different classes of
repetitive elements[8,35], number of isochores[3], lengths of isochores[30], and recombination rate
within chromosomes[14] are all correlated with GC content. More research related to GC-rich segments
can be found in[17,19,22,24,28,29,32,38,40]and the references therein.
Although GC-rich segments of DNA sequences are important in gene recognition and comparative

genomics, only a few algorithms for identifying GC-rich segments appear in the literature.A widely used
approach measures the GC-content statistics for fixed-length windows[11,18,30,31]. Due to the fixed
length of these windows, the approaches are simple and efficient yet likely to miss GC-rich segments that
do not precisely align with a window. Huang[21] proposed an algorithm to accommodate windows with
variable lengths. Specifically, by assigning−p points to each AT-pair and 1− p points to each GC-pair,
wherep is a number with 0�p�1, Huang gave a linear-time algorithm for computing a segment of length
no less thanL whose score is maximized. However, as observed by Huang, this approach tends to output
segments that are significantly longer than the givenL.
In this paper, we study the following abstraction of the problem. LetA be a sequence of pairs(ai, wi)

for i = 1, . . . , n andwi > 0. A segmentA(i, j) is a consecutive subsequence ofA starting with
index i and ending with indexj. Thewidth of A(i, j) is w(i, j) = ∑

i�k�j wk, and thedensityis
(
∑

i�k�j ak)/w(i, j).LetLandUbepositive valueswithL�U . Themaximum-density segmentproblem
takesA, L, andU as input and asks for a segment ofAwith the largest possible density among those of
width at leastL and at mostU. This generalizes a previously studied model, which we term theuniform
model, in whichwi = 1 for all i. All of the previous work discussed in this section involves the uniform
model.We introduce the generalized model as it might be used to compress a sequenceAof real numbers
to reduce its sequence length and thus its density-analysis time in practice or theory.
In its most basic form, the sequenceA corresponds to the given DNA sequence, whereai = 1 if the

corresponding nucleotide in the DNA sequence is G or C; andai = 0 otherwise. In the work of Huang,
sequence entries took on values ofp and 1− p for some real number 0�p�1. More generally, we can
look for regions where a given set of patterns occur very often. In such applications,ai could be the
relative frequency with which the corresponding DNA character appears in the given patterns. Further
natural applications of this problemcan be designed for sophisticated sequence analyses such asmismatch
density[33], ungapped local alignments[1], and annotated multiple sequence alignments[36].
Nekrutendo and Li[30], and Rice et al.[31] employed algorithms for the case whereL = U . This case

is trivially solvable inO(n) time using a sliding window of the appropriate width. More generally, when
L �= U , this yields a trivialO(n(U − L + 1)) algorithm. Huang[21] studied the case whereU = n,
i.e., there is effectively no upper bound on the width of the desired segment. He observed that an optimal
segment exists with width at most 2L−1. Therefore, this case is equivalent to the case withU = 2L−1
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and thus can be solved inO(nL) time. Recently, Lin et al.[26] gave anO(n log L)-time algorithm for
this case based on the introduction of right-skew partitions of a sequence.
In this paper, we present anO(n)-time algorithm solving the maximum-density segment problem.

Our techniques exploit the structure of locally optimal segments to improve upon theO(n log L)-time
algorithm of Lin et al.[26], while also extending the results to arbitrary values ofU and to the non-
uniform model. The remainder of this paper is organized as follows. Section2 introduces some notation
and definitions. In Section3, we carefully review the previous work of Lin, Jiang and Chao, in which they
introduce the concept of right-skew partitions. Our main results are presented in Section4: first a simple,
O(n)-time algorithm for the special case whereU is unbounded, and then anO(n)-time algorithm for
general values ofL andU.
Other related works include algorithms for the problem of computing a segment〈ai, . . . , aj 〉 with a

maximum sumai +· · ·+aj as opposed to a maximum density. Bentley[2] gave anO(n)-time algorithm
for the case whereL = 0 andU = n. Within the same linear time complexity, Huang[21] solved the
case with arbitraryL yet unboundedU. More recently, Lin et al.[26] solved the case with arbitraryL and
U.

2. Notation and preliminaries

We considerA to be a sequence ofn objects, where each object is represented by a pair of two real
numbers(ai, wi) for i = 1, . . . , n andwi > 0. If wi = 1 for all i, we denote this as theuniformmodel.
For i�j , we letA(i, j) denote that segment ofA which begins at indexi and ends with indexj. We let
w(i, j) denote thewidthof A(i, j), defined asw(i, j) = ∑

i�k�j wk. We let�(i, j) denote thedensity
of A(i, j), defined as

�(i, j) =

 ∑

i�k�j

ak


 /

w(i, j).

We note that the prefix sums of the input sequence can be precomputed inO(n) time. With these, the
values ofw(i, j) and�(i, j) can be computed inO(1) time for any(i, j) using the following formulas:

w(i, j)=
∑

1�k�j

wk −
∑

1�k� i−1

wk,

�(i, j)=

 ∑

1�k�j

ak −
∑

1�k� i−1

ak


 /

w(i, j).

The maximum-density segment problem is to find a segmentA(i, j) of maximum density, subject to
L�w(i, j)�U . Without loss of generality, we assume thatwi �U for all i, as items with larger width
could not be used in a solution.
For a given indexi, we letLi denote the minimum index such thatw(i, Li)�L if such an index

exists, and we letUi denote the maximum index such thatw(i, Ui)�U . A direct consequence of these
definitions is that segmentA(i, j) has width satisfyingL�w(i, j)�U if and only if Li is well defined
andLi �j�Ui . Recalling thatwi > 0 for all i, another consequence of these definitions is the following
lemma.
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Fig. 1. Algorithm for precomputingUi for all i.

Lemma 1. For indicesi < j , Ui �Uj , and if bothLi andLj are well defined thenLi �Lj .

Proof. SinceA(j,Ui) is contained inA(i, Ui), the fact thatw(i, Ui)�U implies thatw(j,Ui)�U .
ThusUj must be at leastUi , by definition. Similarly, if bothLi andLj are well defined, thenA(j, Lj )

is contained inA(i, Lj ). The fact thatw(j, Lj )�L implies thatw(i, Lj )�L and soLi must be at most
Lj by definition. �

This monotonicity allows for the full set ofLi andUi values to be precomputed inO(n) time by a
simple sweep-line technique. The precomputation of theUi values is shown in Fig.1; a similar technique
can be used for computingLi values. It is not difficult to verify the correctness and efficiency of these
computations.

3. Right-skew segments

For the uniform model, Lin et al.[26] defined segmentA(i, k) to beright-skewif and only if �(i, j)�
�(j + 1, k) for all i�j < k. A partition of a sequenceA into segmentsA1A2 . . . Am was termed a
decreasingly right-skew partitionif it is the case that eachAi is right-skew, and that�(Ax) > �(Ay) for
anyx < y. Based on these definitions, they proved the following lemma.

Lemma 2. Every sequence A has a unique decreasingly right-skew partition.

We denote this unique partition asDRSP(A). Within the proof of the above lemma, the authors
implicitly demonstrated the following fact.

Lemma 3. If segmentA(x, y) is not right-skew, thenDRSP(A(x, y)) is precisely equal to the union
ofA(x, k) andDRSP(A(k + 1, y)) whereA(x, k) is the longest possible right-skew segment beginning
with index x.

Because of this structural property, the decreasingly right-skew partitions of all suffixes ofA(1, n)
can be simultaneously represented by keeping aright-skew pointer, p[i], for each 1�i�n. The pointer
is such thatA(i, p[i]) is the first right-skew segment ofDRSP(A(i, n)). They implicitly used dynamic
programming to construct all such right-skew pointers inO(n) time.
In order to find a maximum-density segment of width at leastL, they searched independently for the

“good partner” of each indexi. The good partner ofi is the indexi′ that maximizes�(i, i′)while satisfying
w(i, i′)�L. In order to find each good partner, they made use of versions of the following three lemmas.
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Lemma 4 (Atomic). Let B, C and D be sequences with�(B)��(C)��(D). Then�(BC)��(BCD).

Lemma 5 (Bitonic). Let B be a sequence and letDRSP(C) = C1C2 · · ·Cm for sequence C which
immediately follows B. Let k be the greatest indexi ∈ [0,m] that maximizes�(BC1C2 · · ·Ci). Then
�(BC1C2 · · ·Ci) > �(BC1C2 · · ·Ci+1) if and only ifi�k.

Lemma 6. Given a sequence B, let C denote the shortest segment of B realizing the maximum density
for those segments of width at least L. Then the width of C is at most2L − 1.

Without any upper bound on the desired segment length, the consequence of these lemmas is an
O(log L)-time algorithm for finding a good partner for arbitrary indexi. Since only segments of widthL
or greater are of interest, the segmentA(i, Li)must be included. If considering the possible inclusion of
further elements, Lemma4 assures that if part of a right-skew segment increases the density, including
that entire segment is just as helpful (in the application of that lemma,C represents part of a right-skew
segmentCD). Therefore, the good partner fori must beLi or else the right endpoint of one of the
right-skew segments fromDRSP(A(Li + 1, n)). Lemma5 shows that the inclusion of each successive
right-skew segment leads to a bitonic sequence of densities, thus binary search can be used to locate
the good partner. Finally, Lemma6 assures that at mostL right-skew segments need be considered for
inclusion, and thus the binary search for a giveni runs inO(log L) time. The result is anO(n log L)-time
algorithm for arbitraryL, with U = n.
Though presented in terms of the uniform model, the definition of a right-skew segment involves

only the densities of segments and so it applies equally to our more general model. Lemmas2–5 re-
main valid in the general model. A variant of Lemma6 can be achieved with the additional restric-
tion thatwi �1 for all i, and thus theirO(n log L)-time algorithm applies subject to this additional
restriction.

4. Improved algorithms

Our techniques are built upon the use of decreasingly right-skew partitions, as reviewed in Section3.
Our improvements are based upon the following observation. An exact good partner for an indexi need
not be found if it can be determined that such a partner would result in density no greater than that of a
segment already considered. In particular, we make use of the following key lemma.

Lemma 7. For a given j, assumeA(j, j ′) is a maximum-density segment of those starting with index j,
havingL�w(j, j ′)�U ,and ending with index in a given range[x, y].For a giveni < j ,assumeA(i, i′)
is a maximum-density segment of those starting with index i, havingL�w(i, i′)�U and ending in range
[x, y]. If i′ > j ′, then�(j, j ′)��(i, i′).

Proof. A typical such configuration is shown in Fig.2. By assumption, both indicesi′ and j ′ lie
within the range[x, y]. SinceL�w(j, j ′) < w(j, i′) < w(i, i′)�U , the optimality ofA(j, j ′) guar-
antees that�(j, j ′)��(j, i′). This implies that�(j, j ′)��(j, i′)��(j ′ + 1, i′). SinceL�w(j, j ′) <

w(i, j ′) < w(i, i′)�U , the optimality ofA(i, i′) guarantees that�(i, i′)��(i, j ′), which in turn implies
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i j j ′ i′

Fig. 2. Segments in proof of Lemma7.

�(j ′ + 1, i′)��(i, i′)��(i, j ′). Combining these inequalities,�(j, j ′)��(j, i′)��(j ′ + 1, i′)��(i, i′),
thus proving the claim that�(j, j ′)��(i, i′). �

Our high level approach is thus to find good partners for each left endpoint, considering those indices
in decreasing order. However, rather than finding the true good partner for eachi, our algorithm considers
only matching indices which are less than or equal to all previously found good partners, in accordance
with Lemma7. With the use of sweep-line data structures, we can replace theO(log L)-time binary
searches used by Lin et al.[26] with sequential searches that run with anamortizedtime ofO(1).

4.1. Maximum-density segment with width at least L

We begin by considering the special case of finding a segment with the maximum possible density
among those of width at leastL, but not subject to any explicit upper bound. We first develop a sweep-
line data structure which helps manage the search for good partners, then use such a data structure to
implement anO(n)-time algorithm for this setting.

4.1.1. The L-Matchdata structure
Given a range[x, y] specified upon initialization, the data structure developed in this section is designed

to answer queries of the following type. For left indexi, the goal is to return amatching right indexi′ such
that�(i, i′) is maximized, subject to the constraints thati′ ∈ [x, y] and thatw(i, i′)�L. Yet, in order to
achieve improved efficiency, the searches are limited in the following two ways:

(1) The structure can be used to find matches for many different left indices, however those indices must
be queried in decreasing order.

(2) When asked to find the match for a left index, the structure only finds the true good partner in the
case that the good partner has index less than or equal to all previously returned indices.

Our data structure augments the right-skew pointers for a given interval with additional information
used to speed up searches for good partners. The structure contains the following state information,
relative to given parameters 1�x�y�n:

• A (static) array,p[k] for x + 1�k�y, whereA(k, p[k]) is theleftmostsegment ofDRSP(A(k, y)).
• A sorted list,S[k], for eachx + 1�k�y, containing all indicesj for whichp[j ] = k.
• Two indices� andu (for “lower” and “upper”), whose values are non-increasing as the algorithm
progresses.

• A variable,b (for “bridge”), which is maintained so thatA(b, p[b]) is the segment ofDRSP(A(�, y))

which contains indexu.

The data structure is initialized with procedureL-Match-Initialize (x, y), given in Fig.3. An
example of an initialized structure is given in Fig.4. Lines 1–8 ofL-Match-Initialize set the
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Fig. 3. TheL-Match-Initialize operation, which sets the data structure’s state information:S[ ], p[ ], �, u, b.

p[i]

2 4 5 3 8 11 12 10

6 7 9 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 4 1 5 4 5 4 3 4 1 4 2 5 3

S[i]

ai

2 7 4 6 6 7 9 9 14 11 13 13 14

Fig. 4. Example of data structure afterL-Match-Initialize (1,14), whenwi = 1 for all i.

valuesp[k] as was done in the algorithm of Lin et al.[26]. Therefore, we state the following lemma,
proven in that paper.

Lemma 8. After a call toL-Match-Initialize (x, y), for all x + 1�k�y, p[k] is set such that
A(k, p[k]) is the leftmost segment ofDRSP(A(k, y)).

We also prove the following nesting property of decreasingly right-skew partitions.

Lemma 9. Consider two segmentsA(x1, y) andA(x2, y) with a common right endpoint. LetA(k, k′)
be a segment ofDRSP(A(x1, y)) and letA(m,m′) be a segment ofDRSP(A(x2, y)). It cannot be the
case thatk < m�k′ < m′.

Proof. We assume for contradiction thatk < m�k′ < m′, and consider the following three non-
empty segments,A(k,m − 1), A(m, k′) andA(k′ + 1,m′). SinceA(k, k′) is right-skew, it must be that
�(k,m − 1)��(m, k′). SinceA(m,m′) is right-skew, it must be that�(m, k′)��(k′ + 1,m′). In this
case, it must be that the combined segmentA(k,m′) is right-skew (this fact can be explicitly proven by
application of Lin et al.’s Lemma 4[26]).
SinceA(k, k′) is a segment ofDRSP(A(x1, y)), a repeated application of Lemma3 assures that

A(k, k′) is the leftmost segment ofDRSP(A(k, y)) and thatA(k, k′) is the longest possible right-skew
segment of those starting with indexk.Yet the existence of the longer, right-skew segmentA(k,m′) forms
a contradiction. �
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Fig. 5. TheL-Match-Find (i) operation. Recall thatS[ ],p[ ], �, u, bandxare maintained as state information for theL-Match
data structure.

Corollary 10. For indices k and m, it cannot be thatk < m�p[k] < p[m].
Proof. A direct result of Lemmas8–9. �

Lemma 11. If b is the minimum value satisfying��b�u�p[b], thenA(b, p[b]) is the segment of
DRSP(A(�, y)) which contains index u.

Proof. By Lemma8, A(b, p[b]) is the leftmost segment ofDRSP(A(b, y)), and asb�u�p[b],
A(p, p[b]) contains indexu.
By repeated application of Lemma3, DRSP(A(�, y)) equalsA(�, p[�]), A(p[�] + 1, p[p[�] + 1]),

and so on, until reaching right endpointy. We claim thatA(b, p[b])must be part of that partition. If not,
there must be some otherA(m,p[m]) withm < b�p[m]. By Lemma9, it must be thatp[m]�p[b], yet
thenm < b�u�p[b]�p[m]. Such anmviolates the assumed minimality ofb. �

The data structure’s query routine,L-Match-Find , is introduced in Fig.5.

Lemma 12.Whenever line7 of L-Match-Find() is evaluated, b is the minimum value satisfying
��b�u�p[b], if such a value exists.
Proof. We show this by induction over time. When initialized,� = b = u = p[b] = y, and thus
b is the only satisfying value. The only time this invariant can be broken is when the value of� or u
changes.� is changed only when decremented at line 2 ofL-Match-Find . The only possible violation
of the invariant would be if the new index� satisfies��u�p[�]. This is exactly the condition handled by
lines 3–4.
Second,u is modified only at line 8 ofL-Match-Find . Immediately before this line is executed,

the invariant holds. At this point, we claim thatp[k]�b − 1 for any values ofk such that��k < b. For
k < b, Corollary10 implies that eitherp[k] < b or p[k]�p[b]. If it were the case thatp[k]�p[b]�u

this would violate the minimality ofb assumed at line 7. Therefore, it must be thatp[k]�b − 1 for all
��k�b − 1. Asu is reset tob − 1, the only possible values for the new bridgeb are those indicesj with
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p[j ] = u. The setS[u] considered at line 10 ofL-Match-Find ensures thatb is the minimum such
j��. �

Lemma 13. AssumeL-Match-Find (i) is calledwith a value i less than that of all previous invocations
and such thatLi < y. Let r be the most recently returned value fromL-Match-Find () or y if this is
the first such call. LetA(i, i′) be the widest maximum-density segment of those starting with i, having
width at least L, and ending in[x, y]. ThenL-Match-Find (i) returns the valuemin(i′, r).

Proof. All segments which start withi, having width at leastL and ending in[x, y]must include interval
A(i,max(x, Li)). The loop starting at line 1 ensures that variable� = 1+ max(x, Li) upon the loop’s
exit. As discussed in Section3, the optimal suchi′ must either be�−1 or else among the right endpoints
of DRSP(A(�, y)).
Sinceu is only set withinL-Match-Find , it must be thatu = r upon entering the procedure.

By Lemmas11–12, A(b, p[b]) is the right-skew segment containing indexu in DRSP(A(�, y)). If
�(i, b− 1) ≤ �(i, p[b]), Lemma5assures that the good partner must have index at leastp[b]�u. In this
case, the while loop of line 7 is never entered, and the procedure returnsr = min(i′, r).
In any other case, a true good partner fori is less than or equal tor, and is found by the while loop of

line 7, in accordance with Lemmas4–5 and11–12. �

Corollary 14. If L-Match-Find (i) fails to return i′, as defined in the statement of Lemma13, it
must be the case that for somej > i, a previous call toL-Match-Find (j) returns aj ′ such that
�(j, j ′)��(i, i′).

Proof. By Lemma13, the returned value is min(i′, r). For the first call,r = y and so the returned value
must bei′�y. If r < i′, we consider the largest indexj > i for which the returned value,j ′, is strictly
less thani′. WhenL-Match-Find (j) was invoked, the respective value ofumust have been greater
than or equal toi′. Therefore,A(j, j ′)must truly be themaximum-density segment, of those starting with
j, of width at leastL, and ending in[x, y]. We can thus apply Lemma7, with U unbounded, concluding
that�(j, j ′)��(i, i′). �

Lemma 15. The L-Match data structure supports its operations with amortized running times ofO(y −
x + 1) for L-Match-Initialize (x, y), andO(1) for L-Match-Find (i).

Proof. With the exception of lines 2, 7 and 9, the initialization procedure is simply a restatement of
the algorithm given by Lin et al.[26] for constructing the right-skew pointers. AnO(y − x + 1)-time
worst-case bound was proven by those authors.
In analyzing the cost ofL-Match-Find , anO(1) cost accounts for first evaluation of the loop

condition at lines 1 and 7, as well as the return statement at line 14. The additional costs incurred during
iterations of either of the while loops will be amortized against theO(y − x +1) cost of the initialization
process. First, we claim that the loop of lines 1–6 ofL-Match-Find iterates at mosty − x + 1 times.
This is so because variable� is initialized to valuey at line 9 ofL-Match-Initialize , remains at
leastx + 1 due to the condition at line 1, and modified only when decremented at line 2 during each
iteration. Second, we claim that the loop of lines 7–13 iterates at mosty−x+1 times. This is so because



M.H. Goldwasser et al. / Journal of Computer and System Sciences 70 (2005) 128–144 137

Fig. 6. Algorithm for finding maximum-density segment with width at leastL.

variableu is initialized to valuey at line 9 ofL-Match-Initialize , modified only at line 8. By
Lemma12, x < ��b�u�p[b], and so this line results in a strict decrease in the value ofu yetu remains
at leastx. The only operations in either loop which cannot be bounded byO(1) in the worst case are
those of lines 10–11. BecauseS[u] is sorted by construction, the cost of these operations is proportional
to one plus the number of removals.As eachk is inserted into listS[u] for a distinct value ofu, the overall
number of removals is bounded byO(y − x + 1). �

4.1.2. AnO(n)-time algorithm
In Fig. 6, we present a linear-time algorithm for the maximum-density segment problem subject only

to a lower bound,L, on the segment width. The algorithm makes use of a singleL-Match data structure,
for the range[1, n].

Theorem 16. Given a sequenceA, the algorithmMaximumDensitySegmentL identifies amaximum-
density segment of those with width at least L.

Proof. First, we note thatw(k, g[k])�L for all k�i0, as a result of Lemma13, and thus the segment
returned by line 11 is indeed of adequate width. To complete the proof, leti denote the greatest index
which begins such a maximum-density segment and(i, i′) the widest such optimal segment beginning at
i. We show thatg[i] = i′. AsLi must be well defined, we consider the pass of the loop starting at line 4
for such ani. If Li = n, then this is the only feasible right index fori andg[i] = i′ = n. Alternatively,
if L-Match-Find is invoked, Corollary14 assures that ifg[i] �= i′, then we previously considered a
segmentA(j, g[j ]) with j > i such that�(j, g[j ])��(i, i′). This contradicts the assumption thati is the
greatest index beginning such an optimal segment of width at leastL. Therefore,g[i] = i′ and such a
segment is returned by the procedure.�

Theorem 17. The algorithmMaximumDensitySegmentL runs inO(n) time, given a sequence A of
length n.

Proof. Line 1 runs inO(n) time as per discussion in Section2, line 2 inO(n) as per Lemma15, and
there are at mostn calls toL-Match-Find at line 8, running in combinedO(n) time as per Lemma15.

�
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Fig. 7. TheU-Match-Initialize operation, which sets the data structure’s state information:q[ ], u.

4.2. Maximum-density segment with width at least L and at most U

In the previous section, we considered the problem with the width subject to a lower bound,L, but
no explicit upper bound. In this section, we consider the addition of an explicit upper bound,U, on the
width, presenting anO(n)-time algorithm for this setting.
This algorithm is based upon a generalization of the techniques in Section4.1, however those tech-

niques cannot be directly applied. TheL-Match data structure enforced a lower bound on the width
of considered segments, but no upper bound. At first glance, the sweeping of variableu in that struc-
ture may appear similar to placing an explicit upper bound on the width of the segments considered.
The bridge segmentA(b, p[b]) is used in performing the bitonic search, however that bridge is a seg-
ment ofDRSP(A(Li + 1, n)). If the right endpoint of the bridge is strictly greater thanUi , the bridge
cannot be considered atomically. To properly apply Lemmas4 and5, we must consider segments of
DRSP(A(Li + 1, Ui)) as opposed toDRSP(A(Li + 1, n)).
Unable to develop a data structure which simultaneously enforces both an upper and lower bound on

the segment width, our solution for the general setting is two-fold. We develop a second data structure,
analogous though not strictly symmetrical to theL-Match, which locates good partners subject to an
upper bound on the width yet no explicit lower bound. Then, rather than build each data structure over
the entire range,[1, n], we break the range into many “blocks” and maintain both types of data structures
independently for each block. The blocks are designed so that a good partner for a given index need only
be identified from two adjacent blocks.

4.2.1. The U-Match data structure
We develop another sweep-line data structure,U-Match, used to locate segments beginning withi,

ending in[x, y] and subject to anupperbound on the resulting segment width (but with no explicit
lower bound). For a giveni, the decomposition of interest isDRSP(A(x + 1, Ui)). As x + 1 is fixed
yetUi decreases withi, we choose to represent the decreasingly right-skew partitions for allprefixesof
A(x +1, y), rather than allsuffixesas with theL-Match structure.We assign valuesq[k] for x +1�k�y

such thatA(q[k], k) is therightmostsegment ofDRSP(A(x + 1, k)).
There exists a clear symmetry between theL-Match andU-Match structures, though the symmetry is

not perfect as the concept of right-skew segments, used in both structures, is oriented. In fact theU-Match
structure is considerably simpler, with the only state information being the arrayq[ ] and a non-increasing
indexu. The initialization routine for this new structure is presented in Fig.7.An example of an initialized
structure is given in Fig.8. The redesign of the initialization routine relies on a simple duality when
compared with the corresponding routine of Section4.1.1. One can easily verify that an execution of this
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q[i]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 4 1 5 4 5 4 3 4 1 4 2 5 3i

2 3 3 3 3 3 8 8 10 10 12 10 10

a

Fig. 8. Example of data structure afterU-Match-Initialize (1,14), with wi = 1 for all i.

Fig. 9.U-Match-Find (i) operation. Recall thatq[ ],uandxaremaintained as state information for theU-Match data structure.

routine on a segmentA(x, y) sets the values of arrayq[ ] precisely as the original version would set the
values of arrayp[ ] if run on a reversed and negated copy ofA(x, y). Based on this relationship, we claim
the following dual of Lemma8without further proof.

Lemma 18. After a call toU-Match-Initialize (x, y), the segmentA(q[k], k) is the rightmost
segment ofDRSP(A(x + 1, k)), for all x + 1�k�y.

The data structure’s query routine,U-Match-Find , is introduced in Fig.9.

Lemma 19. AssumeU-Match-Find (i) is calledwith a value i less than that of all previous invocations
and such thatx�Ui �y. Let r be the most recently returned value fromU-Match-Find () or y if this
is the first such call. LetA(i, ir ) be the widest maximum-density segment of those starting with i, having
width at most U, and ending withir ∈ [x, r]. ThenU-Match-Find (i) returns the valueir .

Proof. Combining the constraints thatw(i, ir )�U and thatir ∈ [x, r], it must be thatir � min(Ui, r).
When entering the procedure, the variableu has valuer. The loop starting at line 1 ensures that variable
u = min(Ui, r) upon the loop’s exit. The discussion in Section3assures that the optimalir ∈ [x, u]must
either bex or else among the right endpoints ofDRSP(A(x + 1, u)). Based on Lemma18, A(q[u], u)
is the rightmost segment ofDRSP(A(x + 1, u)) and so the loop condition at line 4 ofU-Match-Find
is a direct application of Lemma5. �

Corollary 20. LetA(i, i′) be the widest maximum-density segment of those starting with i, having width
at most U, and ending withi ∈ [x, y]. In the statement of Lemma19, A(i, ir ) was defined similarly,
however withir ∈ [x, r] rather than[x, y]. If ir �= i′, it must be the case that for somej > i, a previous
call toU-Match-Find (j) returns aj ′ such that�(j, j ′)��(i, i′).
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Proof. Sincei′ is the optimal such match in the range[x, y], it would so be the optimal such match over
the range[x, r] so long asr�i′. If r < i′, we consider the largest indexj > i for which the returned
value,j ′, is strictly less thani′. WhenU-Match-Find (j) was invoked, the previously returned value
was at leasti′. So the segmentA(j, j ′) must be the maximum density segment, starting withj, having
width at mostU, and ending in the range[x, i′]. We can thus apply Lemma7 constrained to the range
[x, i′], concluding that�(j, j ′)��(i, i′). �

Lemma 21. The U-Match data structure supports its operations with amortized running times ofO(y −
x + 1) for U-Match-Initialize (x, y), and O(1) for U-Match-Find (i), so long asUi �x

for all i .

Proof. The initialization procedure has anO(y − x + 1)-time worst-case bound, as was the case for the
similar routine in Section4.1.1.
To account for the cost ofU-Match-Find , we note thatu is initialized to valuey at line 7 of

U-Match-Initialize . It is only modified by lines 2 and 5 of the routine, and we claim that both
lines strictly decrease the value. This is obvious for line 2; for line 5 it follows sinceq[u]�u in accordance
with Lemma18. We also claim thatu is never set less thanx. Within the loop of lines 1–3, this is due to
the assumption thatUi �x. For the loop of lines 4–7, it is true becauseq[u]�x + 1 in accordance with
Lemma18. Therefore, these loops execute at mostO(y − x + 1) times combined and this cost can be
amortized against the initialization cost. AnO(1) amortized cost per call can account for checking the
initial test condition before entering either loop.�

4.2.2. AnO(n)-time algorithm
In this section, we present a linear-time algorithm for the maximum-density segment problem subject

to both a lower boundL and an upper boundU on the segment width, withL < U . Our strategy is
as follows. We preprocess the original sequence by breaking it into smaller, disjoint blocks, maintain-
ing anL-Match andU-Match data structure for each such block. Leti0 be the maximum index such
thatLi0 is defined. We partition the range[L1, Ui0] into a collection of disjoint blocks based upon the
following recursive definition. We let block[x1, y1] = [L1, U1]. Then, so long asyc−1 �= Ui0, we add
a block [xc, yc] to the collection, wherexc = yc−1 + 1 andyc = Ui , wherei is the minimum index
such thatLi �xc or i0 if no such index exists. These blocks can be constructed inO(n) time, by the
ConstructBlocks algorithm, shown in Fig.10. The boundaries are defined precisely to guarantee
the following lemma.

Lemma 22. For a given range, [Li, Ui], let [x, y] be the block containingLi . Then it is either the case
thatUi = y or thatUi is contained in the adjacent block, [x′, y′].
Proof. Let h be the minimum index such thatLh lies in block[x, y]. As h�i, Lemma1 implies that
Ui �Uh = y. If Ui > y then there must exist an adjacent block[x′, y′], since the blocks continue until
reachingUm�Ui .
We show thatUi �y′. If y′ = Um, then this is trivially true. Otherwise, there exists aj, which is the

minimum index such thatLj lies in block[x′, y′]. A typical such configuration is shown in Fig.11. Since
i < j , Lemma1 assures thatUi �Uj = y′, thereby proving the lemma.�
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Fig. 10. Algorithm for constructing the collection of blocks.

y

iL i

L h L jUh Uj

x′ y′x

U

Fig. 11. An example of a typical search range,[Li,Ui ], that lies across two adjacent blocks,[x, y] and[x′, y′].

For a given left indexi, a valid good partner must lie in the range[Li, Ui]. Assuming that block[x, y]
containsLi , we search for a potential partner in the range[Li, y] by querying theL-Match structure
for that block, and, ifUi > y, search for a potential partner in the range[y + 1, Ui] by querying the
U-Match structure for the adjacent block. Though we are not assured of finding the true good partner for
eachi, we again find the global optimum, in accordance with Lemma7. Our complete algorithm is given
in Fig. 12.

Theorem 23. Given a sequence A and parametersL<U , theMaximumDensitySegmentLU algo-
rithm identifies a maximum-density segment of those with width at least L and at most U.

Proof. For a givenk�i0, assumeLk lies in block[x, y]. Lemma22 assures us that eitherUk = y or
Uk lies within the adjacent block. Therefore, a good partner must lie in the range[Lk, y] or possibly
[y + 1, Uk].
We first note thatL�w(k, g[k])�U for anyk�i0 and thus that the segment returned by the algorithm

is of adequate width. For the valueg[k] determined at line 13, the lower bound on the width is due to
Lemma13and the upper bound sincey�Uk. Similarly, if the adjacent block is queries, the lower bound
is due to the fact thatLk < y + 1 and the upper bound due to Lemma19.
To complete the proof, leti denote the greatest index which begins such a maximum-density segment

and(i, i′) the widest such optimal segment beginning ati. We show thatg[i] = i′. AsLi must be well
defined, we consider the pass of the loop starting at line 9 for such ani. As discussed earlier,i′ must lie in
the range[Li, y] or [y + 1, Ui] where[x, y] is the block containingLi . If i′ lies within range[Li, y], the
invocation ofL-Match-Find at line 13 will returni′, or else, by Corollary14, we would have already
considered a segmentA(j, g[j ]) with j > i such that�(j, g[j ])��(i, i′), contradicting the assumption
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Fig. 12. Algorithm for finding maximum-density segment with width at leastL and at mostU.

that i is the greatest index beginning such an optimal segment of width at leastL. Similarly, if i′ lies in a
range[y +1, Ui], the invocation ofU-Match-Find at line 15 will returni′, in similar accordance with
Corollary20. Thereforeg[i] = i′ and such a segment is returned by the procedure.�

Theorem 24. TheMaximumDensitySegmentLU algorithm runs inO(n) time, given a sequence A
of length n.

Proof. Because the blocks are disjoint, the overall time in initializing and querying theL-Match and
U-Match data structures isO(n), as per Lemmas15and21. �

Note: The original extended abstract of this work[15], provides theO(n)-time algorithm for unbounded
U, and anO(n + n log(U − L + 1))-time algorithm for generalU, in both the uniform and weighted
cases. TheO(n)-time algorithm of Section4.2.2was originally presented for theuniformmodel, in an
earlier submission of the current article. In that case, the sequence is partitioned precisely into blocks of
cardinality(U −L+ 1). The application of this technique to the non-uniform case, namely in relying on
blocks of non-uniform cardinality as per Fig.10, was first suggested to the authors by Greenberg[16].
Independently, Chung and Lu[6,7] present anO(n)-time algorithm for generalU, using techniques

which do not rely on the right-skew decomposition. Kim[25] presents an algorithm based on a geometric
interpretation of the problem, claiming anO(n) running time. Unfortunately, the analysis of the algorithm
appears fatally flawed (see footnote 1 of[7] for further discussion).
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