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Abstract

We study an abstract optimization problem arising from biomolecular sequence analysis. For a sAqfence
pairs(a;, w;) fori =1,...,n andw; > 0, asegmentA (i, j) is a consecutive subsequenceiaftarting with index
i and ending with index. Thewidthof A(i, j) isw(, j) = Zigkgjwk, and thedensityis (Zigkgjak)/w(i, J).
The maximum-density segmeairbblem take#\ and two valuet andU as input and asks for a segmentfofvith
the largest possible density among those of width at leastd at most). WhenU is unbounded, we provide a
relatively simple,O (n)-time algorithm, improving upon thé@ (n log L)-time algorithm by Lin, Jiang and Chao.
We then extend this result, providing an(n)-time algorithm for the case when bdtrandU are specified.
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1. Introduction

Non-uniformity of nucleotide composition within genomic sequences was first revealed through ther-
mal melting and gradient centrifugation experimgd®,27] The GC content of the DNA sequences in
all organisms varies from 25% to 75%. GC-ratios have the greatest variations among bacteria’'s DNA
sequences, while the typical GC-ratios of mammalian genomes are between 45% and 50%. The GC
content of human DNA varies widely throughout the genome, ranging between 30% and 60%. Despite
intensive research effort in the past two decades, the underlying causes of the observed heterogeneity
remain contestef3-5,9,10,12,13,20,37,39Researcherf30,36] observed that the compositional het-
erogeneity is highly correlated to the GC content of the genomic sequences. Other investigations showed
that gene lengtf8], gene density41], patterns of codon usad@4], distribution of different classes of
repetitive element§8,35], number of isochoref3], lengths of isochoref30], and recombination rate
within chromosomegL4] are all correlated with GC content. More research related to GC-rich segments
can be found ij17,19,22,24,28,29,32,38,48hd the references therein.

Although GC-rich segments of DNA sequences are important in gene recognition and comparative
genomics, only a few algorithms for identifying GC-rich segments appear in the literature. A widely used
approach measures the GC-content statistics for fixed-length winddwis,30,31] Due to the fixed
length of these windows, the approaches are simple and efficient yet likely to miss GC-rich segments that
do not precisely align with a window. Huafigll] proposed an algorithm to accommodate windows with
variable lengths. Specifically, by assignirg points to each AT-pair and2 p points to each GC-pair,
wherepis a number with & p <1, Huang gave a linear-time algorithm for computing a segment of length
no less tham whose score is maximized. However, as observed by Huang, this approach tends to output
segments that are significantly longer than the given

In this paper, we study the following abstraction of the problem Ale¢ a sequence of paig;, w;)
fori = 1,...,n andw; > 0. A segmentA(i, j) is a consecutive subsequence/foktarting with
index i and ending with inde). The width of A(i, j) is w(i, j) = Zigkg/ wyg, and thedensityis
Q- <k<ja)/w(i, j).LetL andU be positive values with < U. Themaximum-density segmemobblem
takesA, L, andU as input and asks for a segmentfolvith the largest possible density among those of
width at leasL and at most. This generalizes a previously studied model, which we ternutfifierm
model, in whichw; = 1 for alli. All of the previous work discussed in this section involves the uniform
model. We introduce the generalized model as it might be used to compress a séqokmet numbers
to reduce its sequence length and thus its density-analysis time in practice or theory.

In its most basic form, the sequen&eorresponds to the given DNA sequence, whgre- 1 if the
corresponding nucleotide in the DNA sequence is G or C;aand 0 otherwise. In the work of Huang,
sequence entries took on valuegpaind 1— p for some real numberQp <1. More generally, we can
look for regions where a given set of patterns occur very often. In such applicatjoosyld be the
relative frequency with which the corresponding DNA character appears in the given patterns. Further
natural applications of this problem can be designed for sophisticated sequence analyses such as mismatc
density[33], ungapped local alignmenjs], and annotated multiple sequence alignm¢3gs.

Nekrutendo and Lji30], and Rice et al31] employed algorithms for the case whére= U. This case
is trivially solvable inO (n) time using a sliding window of the appropriate width. More generally, when
L # U, this yields a trivialO (n(U — L + 1)) algorithm. Huand21] studied the case whef¢ = n,

i.e., there is effectively no upper bound on the width of the desired segment. He observed that an optimal
segment exists with width at mosL.2- 1. Therefore, this case is equivalent to the case Witk 2L — 1
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and thus can be solved M (nL) time. Recently, Lin et al[26] gave anO (n log L)-time algorithm for
this case based on the introduction of right-skew partitions of a sequence.

In this paper, we present af\(n)-time algorithm solving the maximum-density segment problem.
Our techniques exploit the structure of locally optimal segments to improve upan(théog L)-time
algorithm of Lin et al.[26], while also extending the results to arbitrary valuedJoind to the non-
uniform model. The remainder of this paper is organized as follows. Seztidgroduces some notation
and definitions. In Sectio8, we carefully review the previous work of Lin, Jiang and Chao, in which they
introduce the concept of right-skew partitions. Our main results are presented in Seitisira simple,

O (n)-time algorithm for the special case whedds unbounded, and then an(n)-time algorithm for
general values df andU.

Other related works include algorithms for the problem of computing a segfment ., a;) with a
maximum sunm; + - - - +a; as opposed to a maximum density. Benf@ygave anO (n)-time algorithm
for the case wheré& = 0 andU = n. Within the same linear time complexity, Huaff]] solved the
case with arbitrary. yet unboundedl. More recently, Lin et al[26] solved the case with arbitratyand
U.

2. Notation and preliminaries

We considelA to be a sequence ofobjects, where each object is represented by a pair of two real
numberga;, w;) fori = 1,...,nandw; > 0. If w; = 1 for all i, we denote this as theniformmodel.
Fori<j, we letA(i, j) denote that segment éfwhich begins at indexand ends with indekx We let
w(i, j) denote thevidth of A(i, j), defined asuv(i, j) = Zigkgj wy. We letu(i, j) denote thadensity
of A(iQ, j), defined as

wi. =1 > a / wi, ).

i<k<j

We note that the prefix sums of the input sequence can be precomputea)iriime. With these, the
values ofw(i, j) andu(i, j) can be computed i® (1) time for any(i, j) using the following formulas:

wi, )= Y we— Y w

1<k< 1<k<i—1
wi. N= > a—- > /w(z‘,n.
1<k<j 1<k<i-1

The maximum-density segment problem is to find a segmént;) of maximum density, subject to
L<w(i, j)<U. Without loss of generality, we assume that< U for all i, as items with larger width
could not be used in a solution.

For a given index, we let L; denote the minimum index such thati, L;) > L if such an index
exists, and we let/; denote the maximum index such thati, U;) <U. A direct consequence of these
definitions is that segmemt (i, j) has width satisfying. <w(i, j)<U if and only if L; is well defined
andL; <j<U;. Recalling thaw; > 0 for alli, another consequence of these definitions is the following
lemma.
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1 j<n

2 for i «— n downto 1 do
3 while (w(i, j) > U) do
4 jej—1

5 end while

6 Ui—j

7 end for

Fig. 1. Algorithm for precomputing/; for all i.

Lemma 1. Forindicesi < j, U; <U;, and if bothL; and L ; are well defined thei,; <L ;.

Proof. SinceA(J, U;) is contained inA(i, U;), the fact thatw(i, U;) <U implies thatw(j, U;) <U.
ThusU; must be at leadl/;, by definition. Similarly, if bothZ; andL ; are well defined, thed(j, L)
is contained iMA(i, L ;). The fact thatw(j, L;) > L implies thatw(i, L ;) > L and soL; must be at most
L ; by definition. O

This monotonicity allows for the full set af; andU; values to be precomputed @ (n) time by a
simple sweep-line technique. The precomputation otthealues is shown in FidL; a similar technique
can be used for computing; values. It is not difficult to verify the correctness and efficiency of these
computations.

3. Right-skew segments

For the uniform model, Lin et a]26] defined segmem (i, k) to beright-skewif and only if u(i, j) <
w(j + 1, k) forall i<j < k. A partition of a sequenca into segmentsA1A,... A,, was termed a
decreasingly right-skew partitioifiit is the case that each; is right-skew, and thai(A,) > u(A,) for
anyx < y. Based on these definitions, they proved the following lemma.

Lemma 2. Every sequence A has a unique decreasingly right-skew patrtition

We denote this unique partition d@3RSP(A). Within the proof of the above lemma, the authors
implicitly demonstrated the following fact.

Lemma 3. If segmentA(x, y) is not right-skewthen DRSP(A(x, y)) is precisely equal to the union
of A(x,k)and DRSP(A(k + 1, y)) whereA(x, k) is the longest possible right-skew segment beginning
with index x

Because of this structural property, the decreasingly right-skew partitions of all suffixe€lot)
can be simultaneously represented by keepirigta-skew pointer p[i], for each Xi<n. The pointer
is such thatA (i, p[i]) is the first right-skew segment @RS P (A(i, n)). They implicitly used dynamic
programming to construct all such right-skew pointergifn) time.

In order to find a maximum-density segment of width at légashey searched independently for the
“good partner” of each indexThe good partner ofis the index’ that maximizes(i, i") while satisfying
w(i,i")> L. In order to find each good partner, they made use of versions of the following three lemmas.
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Lemma 4 (Atomiq. Let B, C and D be sequences witliB) < u(C) <u(D). Thenu(BC) < u(BC D).

Lemma 5 (Bitonic). Let B be a sequence and IBXRSP(C) = C1C2---C,, for sequence C which
immediately follows BLet k be the greatest indexe [0, m] that maximizesu(BC1C>---C;). Then
w(BC1C2---Ci) > w(BC1C2--- C;41) ifand only ifi > k.

Lemma 6. Given a sequence,Bet C denote the shortest segment of B realizing the maximum density
for those segments of width at leasfllhen the width of C is at mo&. — 1.

Without any upper bound on the desired segment length, the consequence of these lemmas is an
O (log L)-time algorithm for finding a good partner for arbitrary indegince only segments of width
or greater are of interest, the segmaiit, L;) must be included. If considering the possible inclusion of
further elements, Lemméassures that if part of a right-skew segment increases the density, including
that entire segment is just as helpful (in the application of that len@mapresents part of a right-skew
segmentCD). Therefore, the good partner formust beL; or else the right endpoint of one of the
right-skew segments fro® RSP (A(L; + 1, n)). Lemma5 shows that the inclusion of each successive
right-skew segment leads to a bitonic sequence of densities, thus binary search can be used to locate
the good partner. Finally, Lemnfassures that at moktright-skew segments need be considered for
inclusion, and thus the binary search for a givems inO (log L) time. The resultis a® (n log L)-time
algorithm for arbitrankL, with U = n.

Though presented in terms of the uniform model, the definition of a right-skew segment involves
only the densities of segments and so it applies equally to our more general model. L8rtmas
main valid in the general model. A variant of Lemracan be achieved with the additional restric-
tion thatw; >1 for all i, and thus theirO (n log L)-time algorithm applies subject to this additional
restriction.

4. Improved algorithms

Our techniques are built upon the use of decreasingly right-skew partitions, as reviewed in Section
Our improvements are based upon the following observation. An exact good partner for annedex
not be found if it can be determined that such a partner would result in density no greater than that of a
segment already considered. In particular, we make use of the following key lemma.

Lemma 7. For a given j assumeA(j, j') is a maximum-density segment of those starting with index j
havingL <w(j, j/) <U, and ending with index in a given range, y]. Fora giveni < j,assumei(i, i’)

is a maximum-density segment of those starting with indesvingL <w(i, i") <U and ending in range
[x,y]. If i’ > j/, thenu(j, j") > u(i, i’).

Proof. A typical such configuration is shown in Fi§. By assumption, both indice$ and j’ lie
within the ranggx, y]. SinceL<w(j, j') < w(j,i") < w(i,i")<U, the optimality ofA(;, j') guar-
antees thau(j, j")>u(j, i’). This implies thatu(j, j)>u(j, i) >u(j’ + 1,i'). SinceL<w(j, j') <
w(i, j') < w(i,i")<U, the optimality ofA(i, i’) guarantees that(i, i") > u(i, j/), which in turn implies
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Fig. 2. Segments in proof of LemnTa

u(j +1,i"Y>u@, i"y>u(, j'). Combining these inequalitieg(j, j ) >u(j, i) >u(j +1,i)>pu(, i),
thus proving the claim that(j, j)>u(i,i"). O

Our high level approach is thus to find good partners for each left endpoint, considering those indices
in decreasing order. However, rather than finding the true good partner for, @aclalgorithm considers
only matching indices which are less than or equal to all previously found good partners, in accordance
with Lemma7. With the use of sweep-line data structures, we can replac®thay L)-time binary
searches used by Lin et 6] with sequential searches that run withamnortizedtime of O (1).

4.1. Maximum-density segment with width at least L

We begin by considering the special case of finding a segment with the maximum possible density
among those of width at leakt but not subject to any explicit upper bound. We first develop a sweep-
line data structure which helps manage the search for good partners, then use such a data structure t
implement an0 (n)-time algorithm for this setting.

4.1.1. The EMatchdata structure

Given arangéx, y] specified upon initialization, the data structure developed in this section is designed
to answer queries of the following type. For left indethe goal is to return a matching right indésuch
thatu(i, i’) is maximized, subject to the constraints that [x, y] and thatw(i, i) > L. Yet, in order to
achieve improved efficiency, the searches are limited in the following two ways:

(1) The structure can be used to find matches for many different left indices, however those indices must
be queried in decreasing order.

(2) When asked to find the match for a left index, the structure only finds the true good partner in the
case that the good partner has index less than or equal to all previously returned indices.

Our data structure augments the right-skew pointers for a given interval with additional information
used to speed up searches for good partners. The structure contains the following state information,
relative to given parametersly <y <n:

e A (static) array,p[k] for x + 1<k <y, whereA(k, p[k]) is theleftmostsegment oD RSP (A(k, y)).

e A sorted list,S[k], for eachx + 1<k <y, containing all indiceg for which p[j] = k.

e Two indices? andu (for “lower” and “upper”), whose values are non-increasing as the algorithm
progresses.

e Avariable,b (for “bridge”), which is maintained so that(b, p[b]) is the segment adD RSP (A (L, y))
which contains indexi.

The data structure is initialized with proceduréMatch-Initialize (x,y), given in Fig.3. An
example of an initialized structure is given in Fig.Lines 1-8 ofL-Match-Initialize set the
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procedure L-Match-Initialize(z,y) assumes 1 <z <y <n
for i < y downto =z + 1 do
pli] —i
while ((pli] <y) and (u(i, pli]) < u(pli] + 1, plpli] + 1]))) do
pli] < plpli] +1]
end while
Insert i at beginning of S[p[¢]]
end for
—yiue—y by

W~ O W N

<o

Fig. 3. TheL-Match-Initialize operation, which sets the data structure’s state informasiph:p[ 1, £, u, b.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A ANA A AR

4 4 1 4 2 5 3
6 9 14 11 13 13 14

a 1

4 3
pli] 7 9

15 5
7 4 6
4 5 3 8 11 12 10

St 13 14

Fig. 4. Example of data structure afteiMatch-Initialize (1, 14), whenw; = 1 for alli.

valuesp[k] as was done in the algorithm of Lin et §26]. Therefore, we state the following lemma,
proven in that paper.

Lemma 8. After a call toL-Match-Initialize (x,y), for all x + 1<k<y, p[k] is set such that
A(k, p[k]) is the leftmost segment DRS P (A (k, y)).

We also prove the following nesting property of decreasingly right-skew partitions.

Lemma 9. Consider two segmeni$(x1, y) and A(x2, y) with a common right endpointet A(k, k')
be a segment dDRSP(A(x1, y)) and letA(m, m’) be a segment dDRS P (A(x2, y)). It cannot be the
case thatt < m<k’ < m'.

Proof. We assume for contradiction that < m <k’ < m’, and consider the following three non-
empty segmentsA(k, m — 1), A(m, k') andA(k' + 1, m’). SinceA(k, k') is right-skew, it must be that
wk,m — 1)<u(m, k). Since A(m, m’) is right-skew, it must be thai(m, k') <u(k’ + 1, m’). In this
case, it must be that the combined segméfit, m’) is right-skew (this fact can be explicitly proven by
application of Lin et al.’'s Lemma [26]).

Since A(k, k') is a segment oDRSP(A(x1, y)), a repeated application of Lemn3aassures that
A(k, k') is the leftmost segment @RS P (A(k, y)) and thatA (k, k') is the longest possible right-skew
segment of those starting with indexYet the existence of the longer, right-skew segmaitt m’) forms
a contradiction. O
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procedure L-Match-Find(7)

1 while (¢ > 1+ max(z, L;)) do // decrease ¢
2 L— (-1
3 if (p[{] > u) then
4 bt
5 end if
6 end while
7 while (u > ¢) and (u(i,b— 1) > u(i, p[b])) do // bitonic search
8 uw—b—1
9 if (u > ¢) then
10 b < minimum j € S[u| such that j > ¢,
11 removing all k > b from S[u]
12 end if
13 end while
14 return u

Fig. 5. TheL-Match-Find (i) operation. Recall th&[ 1, p[ ], £, u, bandx are maintained as state information for thi#atch
data structure.

Corollary 10. Forindices k and mit cannot be thak < m < p[k] < p[m].

Proof. A direct result of Lemmag8-9. O

Lemma 11. If b is the minimum value satisfying<b<u < p[b], then A(b, p[b]) is the segment of
DRSP(A(L, y)) which contains index.u

Proof. By Lemmas8, A(b, p[b]) is the leftmost segment adDRSP(A(b, y)), and asb<u < p[b],
A(p, p[b]) contains index.

By repeated application of Lemn®& DRSP (AL, y)) equalsA(e, p[£]), A(p[€] + 1, p[p[€] + 1)),
and so on, until reaching right endpointWe claim thatA (b, p[b]) must be part of that patrtition. If not,
there must be some oth&im, p[m]) withm < b< p[m]. By Lemma9, it must be thap[m]> p[b], yet
thenm < b<u< p[b]< p[m]. Such aqmviolates the assumed minimality bf O

The data structure’s query routineMatch-Find , is introduced in Fig5.

Lemma 12. Whenever ling’ of L-Match-Find() is evaluatedb is the minimum value satisfying
L<b<u< p[b], if such a value exists

Proof. We show this by induction over time. When initializetdl= » = u = p[b] = y, and thus
b is the only satisfying value. The only time this invariant can be broken is when the valueraf
changest is changed only when decremented at line R-dfiatch-Find . The only possible violation
of the invariant would be if the new indésatisfied <u < p[¢]. This is exactly the condition handled by
lines 3-4.

Secondyu is modified only at line 8 of.-Match-Find . Immediately before this line is executed,
the invariant holds. At this point, we claim thafk]<b — 1 for any values ok such that <k < b. For
k < b, Corollary10implies that eithep[k] < b or p[k]> p[b]. If it were the case thgb[k]> p[b]>u
this would violate the minimality ob assumed at line 7. Therefore, it must be thgt]<b — 1 for all
L<k<b—1.Asuisresettad — 1, the only possible values for the new bridgare those indicejswith
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plj1 = u. The setS[u] considered at line 10 df-Match-Find  ensures thdb is the minimum such
j>t. O

Lemma 13. Assumé-Match-Find (i) is called with a value i less than that of all previous invocations
and such thafl; < y. Let r be the most recently returned value fratnMatch-Find () or y if this is
the first such callLet A(i, i) be the widest maximum-density segment of those starting wigtving
width at least L.and ending ifx, y]. ThenL-Match-Find (i) returns the valuenin(i’, r).

Proof. All segments which start with having width at leadt and ending inx, y] mustinclude interval
A(i, max(x, L;)). The loop starting at line 1 ensures that variable 1 + max(x, L;) upon the loop’s
exit. As discussed in Secti®) the optimal suck’ must either b& — 1 or else among the right endpoints
of DRSP(A(L, y)).

Sinceu is only set withinL-Match-Find , it must be thatt = r upon entering the procedure.
By Lemmasl11-12, A(b, p[b]) is the right-skew segment containing indeXxn DRSP(A(L, y)). If
u(i, b—1) < u(i, p[b]), Lemmab assures that the good partner must have index atpéakt u. In this
case, the while loop of line 7 is never entered, and the procedure retermsin(’, r).

In any other case, a true good partnerif@r less than or equal tg and is found by the while loop of
line 7, in accordance with Lemmds5 and11-12. O

Corollary 14. If L-Match-Find (i) fails to returni’, as defined in the statement of Lemd® it
must be the case that for sonje> i, a previous call toL-Match-Find () returns aj’ such that

u(j, jH =z ud, i).

Proof. By Lemmal3, the returned value is miit, r). For the first cally = y and so the returned value
must bei’ <y. If r < i’, we consider the largest indgx> i for which the returned valug/, is strictly
less than’. WhenL-Match-Find  (j) was invoked, the respective valuewfust have been greater
than or equal t@’. Therefore A(j, j') must truly be the maximum-density segment, of those starting with
j, of width at leastL., and ending irix, y]. We can thus apply Lemma with U unbounded, concluding
thatu(j, j)>u,i"). O

Lemma 15. The L-Match data structure supports its operations with amortized running timéx of-
x + 1) for L-Match-Initialize (x, y),and O (1) for L-Match-Find  (@).

Proof. With the exception of lines 2, 7 and 9, the initialization procedure is simply a restatement of
the algorithm given by Lin et a[26] for constructing the right-skew pointers. Al(y — x + 1)-time
worst-case bound was proven by those authors.

In analyzing the cost oE-Match-Find , an O(1) cost accounts for first evaluation of the loop
condition at lines 1 and 7, as well as the return statement at line 14. The additional costs incurred during
iterations of either of the while loops will be amortized against@{e — x + 1) cost of the initialization
process. First, we claim that the loop of lines 1-@&.éflatch-Find  iterates at most — x + 1 times.

This is so because variablds initialized to valuey at line 9 ofL-Match-Initialize , remains at
leastx + 1 due to the condition at line 1, and modified only when decremented at line 2 during each
iteration. Second, we claim that the loop of lines 7-13 iterates at ynest-+ 1 times. This is so because
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procedure MaximumDensitySegmentL(A, L)

1 calculate values, L;, as discussed in Section 2
2 call L-Match-Initialize(1l,n) to create data structure
3 ip +— maximum index such that L;, is well-defined
4 for i «— iy downto 1 do
5 if (L; = n) then // only one feasible right index
6 gli] —n
7 else
8 g[i] — L-Match-Find()
9 end if
10 end for
11 return (k, g[k]) which maximizes u(k, g[k]) for 1 < k <ig

Fig. 6. Algorithm for finding maximum-density segment with width at ldast

variableu is initialized to valuey at line 9 of L-Match-Initialize , modified only at line 8. By
Lemmal2, x < £<b<u< p[b], and so this line results in a strict decrease in the valuweyefu remains

at leastx. The only operations in either loop which cannot be boundedj) in the worst case are
those of lines 10-11. Becau$g:] is sorted by construction, the cost of these operations is proportional
to one plus the number of removals. As e&ahinserted into lisS[u] for a distinct value ofi, the overall
number of removals is bounded Iy — x +1). O

4.1.2. AnO(n)-time algorithm

In Fig. 6, we present a linear-time algorithm for the maximum-density segment problem subject only
to a lower boundl., on the segment width. The algorithm makes use of a singiatch data structure,
for the rangd 1, n].

Theorem 16. Given a sequence e algorithmMaximumDensitySegmentL  identifies a maximum-
density segment of those with width at least L

Proof. First, we note thatv(k, g[k]) > L for all k <ip, as a result of Lemmé&3, and thus the segment
returned by line 11 is indeed of adequate width. To complete the proofdiriote the greatest index
which begins such a maximum-density segment@nd) the widest such optimal segment beginning at

i. We show thag[i] = i’. As L; must be well defined, we consider the pass of the loop starting at line 4
for such an. If L; = n, then this is the only feasible right index foandg[i] = i’ = n. Alternatively,

if L-Match-Find is invoked, Corollaryl4 assures that if[i] # i’, then we previously considered a
segmentA(j, g[j]) with j > i such thau(j, g[j]) > u(, i’). This contradicts the assumption that the
greatest index beginning such an optimal segment of width at ledstereforeg[i] = i’ and such a
segment is returned by the procedurél

Theorem 17. The algorithmMaximumDensitySegmentL  runs in O (n) time, given a sequence A of
length n

Proof. Line 1 runsinO(n) time as per discussion in Secti@nline 2 in O(n) as per Lemmdb, and
there are at mostcalls toL-Match-Find  atline 8, running in combine@ (n) time as per Lemmab5.
O
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procedure U-Match-Initialize(x, y) assumes 1 <a <y <n
1 fori«—ax+1toydo
2 qi] —i
3 while ((g[i] > x) and (p(qlgé] — 1], q[i] — 1) < p(g[il,4))) do
4 qli] < qlald] = 1]
) end while
6 end for
7 U —y
Fig. 7. TheU-Match-Initialize operation, which sets the data structure’s state informagiphu.

4.2. Maximum-density segment with width at least L and at most U

In the previous section, we considered the problem with the width subject to a lower hgund,
no explicit upper bound. In this section, we consider the addition of an explicit upper bdund,the
width, presenting ai® (n)-time algorithm for this setting.

This algorithm is based upon a generalization of the techniques in Sécfionowever those tech-
niques cannot be directly applied. TheMatch data structure enforced a lower bound on the width
of considered segments, but no upper bound. At first glance, the sweeping of variakleat struc-
ture may appear similar to placing an explicit upper bound on the width of the segments considered.
The bridge segmem (b, p[b]) is used in performing the bitonic search, however that bridge is a seg-
ment of DRSP(A(L; + 1, n)). If the right endpoint of the bridge is strictly greater thign the bridge
cannot be considered atomically. To properly apply Lemehasid 5, we must consider segments of
DRSP(A(L; + 1, U;)) as opposed t® RSP (A(L; + 1, n)).

Unable to develop a data structure which simultaneously enforces both an upper and lower bound on
the segment width, our solution for the general setting is two-fold. We develop a second data structure,
analogous though not strictly symmetrical to thdatch, which locates good partners subject to an
upper bound on the width yet no explicit lower bound. Then, rather than build each data structure over
the entire rangd1, n], we break the range into many “blocks” and maintain both types of data structures
independently for each block. The blocks are designed so that a good partner for a given index need only
be identified from two adjacent blocks.

4.2.1. The U-Match data structure

We develop another sweep-line data structéMatch, used to locate segments beginning wijth
ending in[x, y] and subject to ampperbound on the resulting segment width (but with no explicit
lower bound). For a given the decomposition of interest BRSP(A(x + 1, U;)). As x + 1 is fixed
yet U; decreases with we choose to represent the decreasingly right-skew partitions fpredikesof
A(x +1, y), rather than albuffixesas with theL-Match structure. We assign valugigk] for x + 1<k <y
such thatA (¢[k], k) is therightmostsegment oD RSP (A(x + 1, k)).

There exists a clear symmetry betweenlthiglatch andU-Match structures, though the symmetry is
not perfect as the concept of right-skew segments, used in both structures, is oriented. Infedictton
structure is considerably simpler, with the only state information being the@iriand a non-increasing
indexu. The initialization routine for this new structure is presented in Fign example of an initialized
structure is given in Fig8. The redesign of the initialization routine relies on a simple duality when
compared with the corresponding routine of Sectidhl One can easily verify that an execution of this
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1 2 3 45 6 7 8 9 10 11 12 13 14

NV RVaPaR
4 4 5 4 3 4 1 4 2 5 3
2 3 3 3 8 8 10 10 12 10 10

a; 1 15
qlil 3 3
Fig. 8. Example of data structure aftdrMatch-Initialize (1, 14, with w; = 1 for alli.

procedure U-Match-Find(i)

1 while (u > U;) do // decrease u

2 ue—u—1

3 end while

4 while (u > z) and (u(7, g[u] — 1) > p(i,u)) do // bitonic search
5 u— qlu] — 1

6 end while

7 return u

Fig. 9.U-Match-Find (i) operation. Recall that[ ], uandx are maintained as state information for hélatch data structure.

routine on a segment(x, y) sets the values of arrayf ] precisely as the original version would set the
values of array[ ] if run on a reversed and negated copyidk, y). Based on this relationship, we claim
the following dual of Lemma without further proof.

Lemma 18. After a call to U-Match-Initialize (x,y), the segmenti(¢[k], k) is the rightmost
segment oDRSP(A(x + 1, k)), forall x + 1<k<y.

The data structure’s query routing;Match-Find , is introduced in Fig9.

Lemma 19. AssuméJ-Match-Find (i) is called with a value i less than that of all previous invocations
and such thak <U; <y. Let r be the most recently returned value fraivMatch-Find () or y if this

is the first such callLet A(i, i,-) be the widest maximum-density segment of those starting,Wiling
width at most Uand ending with, € [x, r]. ThenU-Match-Find (i) returns the valué, .

Proof. Combining the constraints that(i, i,) <U and that, € [x, r], it must be thai, < min(U;, r).
When entering the procedure, the variableas value. The loop starting at line 1 ensures that variable
u = min(U;, r) upon the loop’s exit. The discussion in Sect®assures that the optimal € [x, u] must
either bex or else among the right endpoints BRS P (A(x + 1, u)). Based on Lemma8, A(g[u], u)

is the rightmost segment @RS P (A(x + 1, u)) and so the loop condition at line 4 BtMatch-Find

is a direct application of Lemmia O

Corollary 20. LetA(i,i") be the widest maximum-density segment of those starting,\wéking width
at most U and ending withi € [x, y]. In the statement of Lemni®, A(, i) was defined similarly
however with, € [x, r] rather than[x, y]. If i, # i/, it must be the case that for some- i, a previous
call to U-Match-Find (/) returns aj’ such thatu(j, j') > u(i, i’).
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Proof. Sincei’ is the optimal such match in the ranjge y], it would so be the optimal such match over
the rangdx, r] so long as >i’. If r < i’, we consider the largest indgx> i for which the returned
value, j’, is strictly less thar’. WhenU-Match-Find () was invoked, the previously returned value
was at least’. So the segmem (j, j') must be the maximum density segment, starting yvithaving
width at mostU, and ending in the rande, i']. We can thus apply Lemmaconstrained to the range
[x,i'], concluding tha(j, j)>u(,i"). O

Lemma 21. The UMatch data structure supports its operations with amortized running timéex of-
x + 1) for U-Match-Initialize (x,y), and O(1) for U-Match-Find (i), so long asU; >x
foralli.

Proof. The initialization procedure has @h(y — x + 1)-time worst-case bound, as was the case for the
similar routine in Sectiod.1.1

To account for the cost df)-Match-Find , we note thau is initialized to valuey at line 7 of
U-Match-Initialize . It is only modified by lines 2 and 5 of the routine, and we claim that both
lines strictly decrease the value. This is obvious for line 2; for line 5 it follows sjfek< « in accordance
with Lemmal8. We also claim thati is never set less than Within the loop of lines 1-3, this is due to
the assumption thdf; >x. For the loop of lines 47, it is true becauge] > x + 1 in accordance with
Lemmal8. Therefore, these loops execute at m@sy — x + 1) times combined and this cost can be
amortized against the initialization cost. A1) amortized cost per call can account for checking the
initial test condition before entering either loopd

4.2.2. AnO(n)-time algorithm

In this section, we present a linear-time algorithm for the maximum-density segment problem subject
to both a lower bound. and an upper bound on the segment width, witlh. < U. Our strategy is
as follows. We preprocess the original sequence by breaking it into smaller, disjoint blocks, maintain-
ing anL-Match andU-Match data structure for each such block. kgbe the maximum index such
that L;, is defined. We partition the rangé 1, U;,] into a collection of disjoint blocks based upon the
following recursive definition. We let blocke1, y1] = [L1, U1]. Then, so long as.—1 # U,,, we add
a block[x., y.] to the collection, where, = y._1 + 1 andy. = U;, wherei is the minimum index
such thatL; >x. or ig if no such index exists. These blocks can be constructed(in) time, by the
ConstructBlocks algorithm, shown in Figl0. The boundaries are defined precisely to guarantee
the following lemma.

Lemma 22. For a given range[L;, U;], let [x, y] be the block containing,;. Then it is either the case
thatU; = y or thatU; is contained in the adjacent blodk’, y'].

Proof. Let h be the minimum index such tha, lies in block[x, y]. As h<i, Lemmal implies that
U;>U, = y. If U; > y then there must exist an adjacent bldek y’], since the blocks continue until
reachingU,, >U;.

We show that/; <y'. If y = U, then this is trivially true. Otherwise, there existg avhich is the
minimum index such that ; lies in block[x’, y']. A typical such configuration is shown in Fityl. Since
i < j, Lemmal assures thall; <U; = y’, thereby proving the lemma.O]
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procedure ConstructBlocks(A, L, U)

1 calculate values L; and U; as discussed in Section 2
2 1+ 1; 49 «— maximum index such that L;, is well-defined
3 €T < Ll, Y — U, 1
4 Add block [z,y] to the collection
5 while (y < U;,) do
6 r—y+1
7 while (i < i) and (L; < ) do  // find min L; > x if exists
8 i—i+1
9 end while
10 y U
11 Add block [z,y] to the collection
12 end while

Fig. 10. Algorithm for constructing the collection of blocks.

Fig. 11. An example of a typical search ranf;, U;], that lies across two adjacent blocks, y] and[x’, y'].

For a given left index, a valid good partner must lie in the rande, U;]. Assuming that blockx, y]
containsL;, we search for a potential partner in the range, y] by querying thelL.-Match structure
for that block, and, ifU; > y, search for a potential partner in the rariget+ 1, U;] by querying the
U-Match structure for the adjacent block. Though we are not assured of finding the true good partner for
eachi, we again find the global optimum, in accordance with Len7im@ur complete algorithm is given
in Fig. 12

Theorem 23. Given a sequence A and parametérs: U, the MaximumDensitySegmentLU  algo-
rithm identifies a maximum-density segment of those with width at least L and at most U

Proof. For a givenk <ig, assume.;, lies in block[x, y]. Lemma22 assures us that eithéf, = y or
Uy lies within the adjacent block. Therefore, a good partner must lie in the f@nge] or possibly
[y + 1, Ugl.

We first note thal. <w(k, g[k]) <U for anyk <ip and thus that the segment returned by the algorithm
is of adequate width. For the valygé¢k] determined at line 13, the lower bound on the width is due to
Lemmal3and the upper bound singe< Uy. Similarly, if the adjacent block is queries, the lower bound
is due to the fact that; < y + 1 and the upper bound due to Lemdfa

To complete the proof, letdenote the greatest index which begins such a maximum-density segment
and(i, i") the widest such optimal segment beginning. &/e show thag[i] = i’. As L; must be well
defined, we consider the pass of the loop starting at line 9 for suck\amliscussed earlier, must lie in
therangdL;, y] or [y + 1, U;] where[x, y] is the block containingd.;. If i’ lies within rangdg L;, y], the
invocation ofL-Match-Find  at line 13 will returni’, or else, by Corollary4, we would have already
considered a segment(j, g[j]) with j > i such thatu(;j, g[j]) > u(i, i), contradicting the assumption
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procedure MaximumDensitySegmentLU(A, L,U)
1 calculate values L; and U; as discussed in Section 2
2 call ConstructBlocks(A, L, U)
3 foreach block [z, y] in collection
4 call L-Match-Initialize(x,y)
5 call U-Match-Initialize(x,y)
6 end foreach
7 1y + maximum index such that L;, is well-defined
8 [z, y] < rightmost block of collection

9 for ¢ < iy downto 1 do
10 if L; & [x,y] do
11 [z, y] < preceeding block in the collection
12 end if
13 g[i] < L-Match-Find(¢) invoked on block [z, y]
14 if U; >y do
15 alt «— U-Match-Find(¢) invoked on succeeding block [z, ']
16 if (p(i, alt) > p(i, gli])) then
17 g[i] — alt
18 end if
19 end if
20 end for
21 return (k, g[k]) which maximizes u(k, g[k]) for 1 <k < g

Fig. 12. Algorithm for finding maximum-density segment with width at léaahd at mosu.

thati is the greatest index beginning such an optimal segment of width atle@snilarly, if i’ lies in a
rangely + 1, U;], the invocation ofJ-Match-Find  at line 15 will returni’, in similar accordance with
Corollary20. Thereforeg[i] = i’ and such a segment is returned by the procedure.

Theorem 24. TheMaximumDensitySegmentLU algorithm runs inO(n) time, given a sequence A
of length n

Proof. Because the blocks are disjoint, the overall time in initializing and queryindtkatch and
U-Match data structures i@ (n), as per Lemmas5and21l. O

Note: The original extended abstract of this wgils], provides theD (n)-time algorithm for unbounded

U, and anO(n + n log(U — L + 1))-time algorithm for generdl, in both the uniform and weighted

cases. The& (n)-time algorithm of Sectiod.2.2was originally presented for theniformmodel, in an

earlier submission of the current article. In that case, the sequence is partitioned precisely into blocks of

cardinality(U — L 4 1). The application of this technique to the non-uniform case, namely in relying on

blocks of non-uniform cardinality as per Fif0, was first suggested to the authors by Greenf}
Independently, Chung and U8,7] present arO (n)-time algorithm for generdl, using techniques

which do not rely on the right-skew decomposition. Ki®] presents an algorithm based on a geometric

interpretation of the problem, claiming &») running time. Unfortunately, the analysis of the algorithm

appears fatally flawed (see footnote 1] of for further discussion).
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