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Abstract

Floor-planning is a fundamental step in VLSI chip design. Based upon the concept oforderly
spanning trees, we present a simpleO(n)-time algorithm to construct a floor-plan for anyn-node
plane triangulation. In comparison with previous floor-planning algorithms in the literature
solution is not only simpler in the algorithm itself, but also produces floor-plans which require
module types. An equally important aspect of our new algorithm lies in its ability to fit the fl
plan area in a rectangle of size(n − 1) × �(2n + 1)/3�. Lower bounds on the worst-case area
floor-planning any plane triangulation are also provided in the paper.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

In VLSI chip design,floor-planning [17,22] refers to the process of, given a graph wh
nodes (respectively, edges) representing functional entities (respectively, interconne
partitioning a rectangular chip area into a set of nonoverlapping rectilinear poly
modules (each of which describes a functional entity) in such a way that the mo
of adjacent nodes share a common boundary. For example, Fig. 1(b) is a floor-plan
graph in Fig. 1(a).

✩ An early version of this work was presented at 9th International Symposium on Graph Drawing, V
Austria, September 2001.
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Fig. 1. (a) A plane triangulationG, where an orderly spanning treeT of G rooted at node 1 is drawn in dark. Th
node labels show the counterclockwise preordering of the nodes inT . (b) A floor-plan ofG.

Fig. 2. Four types of modules required by He’s floor-planning algorithm [10]: (a) I-module, (b) L-mo
(c) T-module, and (d) Z-module. Our algorithm does not need Z-modules.

Early stage of thefloor-planning research focused on usingrectangular modules as
the underlying building blocks. A floor-plan using only rectangles to represent nod
called arectangular dual. It was shown in [14–16] that a plane triangulationG admits
a rectangular dual if and only ifG has four exterior nodes, andG has noseparating
triangles. (A separating triangle, which is also known as complex triangle [22,23],
cycle of three edges enclosing some nodes in its interior.) As for floor-planning ge
plane graphs, Yeap and Sarrafzadeh [23] showed that rectilinear modules with at m
concave corners are sufficient and necessary.

In a subsequent study of floor-planning, He [10] measured the complexity of a m
in terms of the number of its constituent rectangles, as opposed to the number of c
corners. A module that is a union ofk or fewer disjoint rectangles is called ak-rectangular
module. Since any rectilinear module with at most two concave corners can be const
by three rectangular modules, the result of Yeap and Sarrafzadeh [23] implies the fea
of floor-planning plane graphs using 3-rectangular modules. He [10] presented a
time algorithm to construct a floor-plan of a plane triangulation using only 2-rectan
modules. He’s floor-planning algorithms consists of three phases: The first phase u
thecanonical ordering [7,12,13] to assign nodes on separating triangles. The second
involves the so-calledvertex expansion operation to break all separating triangles. The th
phase adapts rectangular-dual algorithms [1,2,9,13] to finalize the drawing of the
plan. Figure 2 depicts the shapes of the 2-rectangular modules required by He’s alg
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For convenience, these four shapes are referred to asI-module, L-module, T-module, and
Z-module throughout the rest of this paper.

In this paper, we provide a “simpler” linear-time algorithm that computes “comp
floor-plans for plane triangulations. The “compactness” of the output floor-plans
important advantage of our algorithm. Although previous work [10,23] reveals no
information, one can verify that a floor-plan using onlyO(1)-rectangular modules ma
require areaΩ(n) × Ω(n). The output of our algorithm for ann-node plane triangulatio
has area no more than(n−1)×�(2n + 1)/3�, which can be shown to be almost worst-ca
optimal. What “simplicity” means is two-fold:

• First, as opposed to the multiple-phase approach of [10,23], our algorithm is
upon a recent development oforderly spanning trees [4], which provides an extensio
of canonical ordering [7,12,13] to plane graphs not required to be triconnected
an extension forrealizer [19,20] to plane graphs not required to be triangula
Our approach bypasses the somewhat complicated rectangular-dual phase
from the two applications of orderly spanning trees reported in [4] (namely, suc
encodings for planar graphs with efficient query support [5,11,18] and 2-visib
drawings for planar graphs [8]), our investigation here finds another intere
application of orderly spanning trees. (A similar concept calledordered stratification
and its application in constructing 2-visibility drawing were independently studie
Bonichon et al. [3].)

• Second, the floor-plan design of our algorithm is “simpler” (in comparison with [
in its own right, in the sense that I-modules, L-modules, and T-modules suffice. (R
that Z-modules are needed by He’s algorithm [10].) Our result is worst-case op
since there is a plane triangulation that does not admit any floor-plan consisting o
I-modules and L-modules [21, Fig. 4].

The remainder of this paper is organized as follows. Section 2 reviews the defi
and property of orderly spanning tree for plane graph. Section 3 presents our linea
floor-planning algorithm as well as its correctness proof. Section 4 provides a lower
for the required area for floor-planning plane triangulations. Section 5 concludes the

2. Orderly spanning tree

A plane graph is a planar graph equipped with a fixed planar embedding.
embedding of a plane graph divides the plane into a number of connected region
of which is called aface. The unbounded face ofG is called theexterior face, whereas
the remaining faces areinterior faces. G is a plane triangulation if G has at least thre
nodes and the boundary of each face, including the exterior face, ofG is a triangle. Let
T be a rooted spanning tree of a plane graphG. Two nodes areunrelated in T if they are
distinct and neither of them is an ancestor of the other inT . An edge ofG is unrelated with
respect toT if its endpoints are unrelated inT . Let v1, v2, . . . , vn be the counterclockwis
preordering of the nodes inT . A nodevi is orderly in G with respect toT if the neighbors
of vi in G form the following four blocks in counterclockwise order aroundvi :
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B1(vi): the parent ofvi ,
B2(vi): the unrelated neighborsvj of vi with j < i,
B3(vi): the children ofvi , and
B4(vi): the unrelated neighborsvj of vi with j > i,

where each block could be empty.T is an orderly spanning tree of G if v1 is on the
boundary ofG’s exterior face, and eachvi,1 � i � n, is orderly in G with respect
to T . It is not difficult to see that ifG is a plane triangulation, thenB2(vi) (respectively,
B4(vi)) is nonempty for eachi = 3,4, . . . , n (respectively,i = 2,3, . . . , n − 1). For each
i = 2,3, . . . , n, let p(i) be the index of the parent ofvi in T . Let w(i) denote the numbe
of leaves in the subtree ofT rooted atvi . Let �(i) andr(i) be the functions such thatv�(i)

(respectively,vr(i)) is the last (respectively, first) neighbor ofvi in B2(vi) (respectively,
B4(vi)) in counterclockwise order aroundvi . For example, in the example shown
Fig. 1(a), one can easily verify that node 3 is indeed orderly with respect toT , where
B1(3) = {1}, B2(3) = {2}, B3(3) = {4,5}, B4(3) = {6,9}, p(3) = 1, w(3) = 2, �(3) = 2,
andr(3) = 9. WhenG is a plane triangulation, it is known [4] that for each edge(vi , vj ) of
G − T with i < j , at least one ofi = �(j) andj = r(i) holds. To be more specific, ifi = 2
andj = n, then both 2= �(n) andn = r(2) hold; otherwise, precisely one ofi = �(j) and
j = r(i) holds.

The concept of orderly spanning tree for plane graphs [4] extends that ofcanonical
ordering [7,12,13] for plane graphs not required to be triconnected and that ofrealizer [6,
19,20] for plane graphs not required to be triangulated. Specifically, whenG is a plane
triangulation,

(i) if T is an orderly spanning tree ofG, then the counterclockwise preordering of t
nodes ofT is always a canonical ordering ofG, and

(ii) if (T1, T2, Tn) is a realizer ofG, whereTi is rooted atvi for eachi = 1,2, n, then each
Ti plus both external edges ofG incident tovi is an orderly spanning tree ofG.

Our floor-planning algorithm is based upon the following lemma.

Lemma 1 (see [4]).Given an n-node plane triangulation G, an orderly spanning tree T of
G with at most �(2n + 1)/3� leaves is obtainable in O(n) time.

3. Our floor-planning algorithm

A floor-plan F of G is a partition of a rectangle inton nonoverlapping rectangula
modulesr1, r2, . . . , rn such thatvi andvj are adjacent inG if and only if the boundarie
of ri andrj share at least one nondegenerated line segment. Thesize of F is the area of the
rectangle being partitioned byF with the convention that the corners of all modules
placed on integral grid points. For example, the size of the floor-plan shown in Fig. 1
9× 8. This section proves the following main theorem of the paper.
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Theorem 1. Given an n-node plane triangulation G with n � 3, a floor-plan F of G can
be constructed in O(n) time such that

(1) F consists of I-modules, L-modules, and T-modules only, and
(2) the size of F is bounded by (n − 1) × �(2n + 1)/3�.

Let T be an orderly spanning tree ofG, wherev1, v2, . . . , vn is the counterclockwis
preordering ofT . Our floor-planning algorithm is described as follows. Although the
two steps of our algorithm follow how Chiang et al. [4] obtained their 2-visibility draw
of G with respect toT , we list them this way to make the presentation of our algori
more self-contained.

Algorithm FloorPlan(G,T).
Step 1. Produce a (vertical) visibility drawing ofT as follows: For eachi = 1,2, . . . , n,

if vi is a leaf ofT , then drawvi as a unit square; otherwise, drawvi as a 1×w(i) rectangle.
Place each node beneath its parent such that the children of each node is placed in t
order as inT .

Step 2. Turn the above visibility drawing ofT into a 2-visibility drawing ofG by
stretching the nodes downward in the least necessary amount such thatvi and vj are
horizontally visible to each other if and only if(vi , vj ) is an unrelated edge ofG with
respect toT . Specifically, for eachi = 3,4, . . . , n, theith iteration of this step ensures th
horizontal visibility betweenvi and each node inB2(vi).

Step 3. First, grow a horizontal branch forvn from boundary ofvn visible tov2 such that
the left boundary of the horizontal branch touchesv2. Second, for eachi = 3,4, . . . , n− 1,
grow horizontal branches forvi from the boundaries ofvi visible tov�(i) andvr(i) such that
the left (respectively, right) boundary of the horizontal branch touchesv�(i) (respectively,
vr(i)). Furthermore, when extending the boundary ofvi , we also extend the boundaries
the descendants ofvi to maintain the property that the bottom boundary of each inte
node ofT is completely occupied by the top boundaries of its children. Note that s
former extended modules might be covered by latter extending.

Step 4. For eachi = n−1, n−2, . . . ,3, if vi has a horizontal branch with height grea
than one, then reduce the height of the thick branch down to one.

Pictures of intermediate steps are shown to illustrate how our algorithm obtain
floor-plan in Fig. 1(b) for the plane graphG with respect to the orderly spanning tr
T shown in Fig. 1(a). Figure 3 shows how Step 1 obtains the visibility drawing foT .
Figure 4 shows how Step 2 obtains the resulting 2-visibility drawing forG. Observe tha
the resulting drawing satisfies the property that the bottom boundary of each interna
of T is completely occupied by the top boundaries of its children. Figure 5 illustrates
Step 3 obtains the resulting drawing forG. Note that when the horizontal branch of nod
is extended to the right by one unit to touch the left boundary of node 9, the right bou
of node 5 is also extended to the right by the same amount. To see the necessity of
one can verify that the module for node 10 in Fig. 5(d) has a thick horizontal br
The height of this thick branch can be reduced by moving down the top boundary
thick branch that is adjacent to the bottom boundary of node 11. The resulting floo
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Fig. 3. Step 1: visibility drawing ofT .

Fig. 4. Step 2: obtaining a 2-visibility drawing ofG from the visibility drawing ofT by ensuring the horizonta
visibility betweenvi and each node inB2(vi ) for (a) nodes 3 and 4, (b) node 5, (c) nodes 6–8, (d) nod
(e) node 10, and (f) nodes 11 and 12.

consists of only I-modules, L-modules, and T-modules. Moreover, each horizontal b
of the L-modules and T-modules has height exactly one.

Lemma 2. The following statements hold for our algorithm FLOORPLAN .

(1) The algorithm can be implemented to run in O(n) time.
(2) The output is a floor-plan of G of size no more than (n − 1) × w(v1).
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Fig. 5. Step 3: growing the horizontal branches for (a) node 12, (b) node 3, (c) nodes 4 and 5, and (d) nod

(3) The resulting floor-plan consists of I-modules, L-modules, and T-modules, where the
height of each horizontal branch of L-modules and T-modules is one.

Proof. Statement (1). One can verify that our algorithm is implementable to run in l
time as follows.

Step 1. Sincew(v1),w(v2), . . . ,w(vn) can be computed fromT in O(n) time, the
described (vertical) visibility drawing ofT can easily be computed inO(n) time.

Step 2. Note that we have to ensure thatvi andvj are horizontally visible to each other
and only ifvj ∈ B2(vi) at the end of the stretch-down iteration forvi . Therefore, when the
boundaries ofvi and the nodes inB2(vi) are stretched down, the boundaries of some o
nodes might require being stretched down as well. For example, when we obtain Fi
from Fig. 4(b) by stretching down the boundary of node 6 to ensure that nodes 6 an
horizontally visible to each other, we also have to increase the heights of nodes 2 an
one. Thus, a naive implementation of this step may requireΩ(n2) time. However, this step
can be implemented by directly computing the positiony(i) of the bottom boundary ofvi

for eachi = 1,2, . . . , n and the positiony(i, j) of the bottom boundary of each unrelat
edge(vi , vj ) with i < j according to the following recurrence relation:

y(i) =
{

1 if i = 1;
max

{
y
(
�(i), i

)
, y

(
i, r(i)

)}
otherwise;
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y(i, j) = 1+ max
{
y�(i, j), yr(i, j)

}
,

where y�(i, j) and yr(i, j) are defined as follows. Letvj ′ be the neighbor ofvi that
immediately succeedsvj in counterclockwise order aroundvi . Let vi′ be the neighbo
of vj that immediately precedesvi in counterclockwise order aroundvj . By i < j , one
can easily see that eitheri ′ = p(j) or vi′ ∈ B2(vj ) holds. Similarly, eitherj ′ = p(i) or
vj ′ ∈ B4(vi) holds. Let

y�(i, j) =
{

y(j ′) if j ′ = p(i);
y(i, j ′) otherwise; yr(i, j) =

{
y(i ′) if i ′ = p(j);
y(i ′, j) otherwise.

Clearly, the bottom positionsy(i) of all nodesvi can be obtained inO(n) time by dynamic
programming. Since the top position ofvi is simply y(p(i)), the resulting 2-visibility
drawing ofG can be obtained inO(n) time.

Step 3. On the one hand, a naive implementation of this step may requireΩ(n2) time,
since growing the horizontal branches for a node may cause boundary extension
descendants. On the other hand, although in theith iteration we are supposed to extend
boundary of some descendantsvj of vi , we do not need to actually extend the bounda
of vj until the beginning of thej th iteration. Note that how far should the boundary
vj be extended can be determined directly from the boundary ofvp(j) in thej th iteration.
Clearly, the above “lazy” strategy reduces the time complexity of this step toO(n). Since
the unrelated edge(vi , vj ) of G−T with i < j and(vi , vj ) �= (v2, vn) satisfies exactly on
equality of i = �(j) andj = r(i), the resulting drawing is a partition of a rectangle in
n rectilinear regions. (That is, there is no gap among modules in the rectangle.) To
that the resulting drawing is indeed a floor-plan ofG, it suffices to show that growing
horizontal branch ofvi to reach the boundary ofvj does not result in new adjacency amo
these rectilinear modules. Supposevk is a node whose bottom boundary touches the
boundary of the horizontal branch ofvi . Assume for a contradiction thatvk is not adjacen
to vi in G. Since the resulting drawing of the previous step is a 2-visibility drawing oG,
a nodevk′ has to lie betweenvi andvk preventing their horizontal visibility to each othe
It follows that there is a face ofG containing at least four nodesvi, vj , vk, vk′ , contradicting
the fact thatG is triangulated.

Step 4. SinceT is an orderly spanning tree ofG andG is a plane triangulation, on
can see that ifvi grows a horizontal branch to reachvj , then there must be a unique no
vk whose bottom boundary touches the top boundary of that horizontal branch ofvi . It is
also not difficult to verify that both(vi, vk) and(vj , vk) are unrelated edgesG with respect
to T . Thus, in the resulting drawing of the previous step, the left and right boundariesvk

have to touchvi andvj . Therefore, the height of that horizontal branch ofvi can be reduce
to one by moving downward the bottom boundary ofvk , which is also the top boundar
of that horizontal branch, without changing the adjacency ofvk to other nodes in the floor
plan. Clearly, each height-reducing operation takesO(1) time by adapting lazy strategy, s
this step runs inO(n) time. Since the for-loop of this step proceeds fromi = n − 1 down
to 3, each horizontal branch has height exactly one at the end of this step.

Statement (2). Since Steps 3 and 4 do not affect the adjacency among the rec
modules, it suffices to ensure that the 2-visibility drawing obtained in Step 2 has s
more than(n − 1) × w(v1). By the definition of Steps 1 and 2, it is straightforward to
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that the width of the resulting drawing is preciselyw(v1). It remains to show thaty(2, n),
which is exactly the height of the resulting 2-visibility drawing, is no more thann − 1 as
follows. Assume for a contradiction thaty(2, n) � n. It follows that there is a sequence
unrelated edges(vs1, vt1), (vs2, vt2), . . . , (vsn, vtn ) with

2 = sn � sn−1 � sn−2 � · · · � s1 < t1 � t2 � · · · � tn = n

such that at least one ofsi �= si+1 and ti �= ti+1 holds for eachi = 1,2, . . . , n − 1.
It follows that the set{s1, s2, . . . , sn, t1, t2, . . . , tn} contains at leastn distinct integers
thereby, contradicting the assumption 2� si, ti � n.

Statement (3). By the definition of Step 3, one can easily verify that the resulting
plan consists of I-modules, L-modules, and T-modules. By the height-reducing ope
performed on the horizontal branches in Step 4, the statement is proved.✷

We are ready to prove the main theorem as follows.

Proof for Theorem 1. Straightforward by Lemmas 1 and 2.✷

4. Lower bounds on the worst-case area of floor-plan

This section shows the near optimality of the output of our algorithm.

Lemma 3. For each n � 3, there is an n-node plane triangulation graph Gn such that any
hn × wn floor-plan of Gn satisfies min{hn,wn} � �(2n + 1)/3� and hn + wn � �4n/3�.

Proof. The lower-bound examples are constructed inductively: For eachn � 4, Gn is
obtained fromGn−3 by adding an external triangle and arbitrarily triangulating the f
between the external triangle ofGn and the external boundary ofGn−3. As for the base
cases, letGn be an arbitraryn-node plane triangulation for eachn = 3,4,5. Now we
show that the required inequalities hold for eachn � 3. As for the inductive basis, one ca
verify min{h3,w3} � 2, h3 + w3 � 4, min{h4,w4} � 3, h4 + w4 � 6, min{h5,w5} � 3,
andh5 + w5 � 7. Therefore the inequalities hold for the base cases. It remains to e
the induction step as follows.

min{hn,wn} � min{hn−3,wn−3} + 2 �
⌊

2(n − 3) + 1

3

⌋
+ 2 =

⌊
2n + 1

3

⌋
;

hn + wn � hn−3 + wn−3 + 4 �
⌈

4(n − 3)

3

⌉
+ 4 =

⌈
4n

3

⌉
. ✷

5. Conclusion

A linear-time algorithm for producing compact floor-plans for plane triangulations
been designed. Our algorithm is based upon a newly developed technique of o
spanning trees with bounded number of leaves [4]. In comparison with previous
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on floor-planning plane triangulations [10], our algorithm is simpler in the algorithm i
as well as in the resulting floor-plan in the sense that the Z-modules required by [
not needed in our design. Another important feature of our algorithm is the upper b
(n−1)×�(2n+ 1)/3� on the area of the output floor-plan. Previous work [10,23] does
provide any area bounds on their outputs. Investigating whether the(n−1)×�(2n+ 1)/3�
area is worst-case optimal is an interesting future research direction.

Acknowledgments

We thank the anonymous referees for their helpful comments, which signific
improve the presentation of the paper. We also thank Ho-Lin Chen for his comm
regarding an early version of this work.

References

[1] J. Bhasker, S. Sahni, A linear algorithm to check for the existence of a rectangular dual of a
triangulated graph, Networks 17 (1987) 307–317.

[2] J. Bhasker, S. Sahni, A linear algorithm to find a rectangular dual of a planar triangulated
Algorithmica 3 (1988) 247–278.

[3] N. Bonichon, B. Le Saëc, M. Mosbah, Orthogonal drawings based on the stratification of planar g
Technical Report RR-1246-00, Laboratoire Bordelais de Recherche en Informatique (LaBRI),
presented at the 6th International Conference on Graph Theory, Marseille, France, August 28–Se
1, 2000.

[4] Y.-T. Chiang, C.-C. Lin, H.-I Lu, Orderly spanning trees with applications to graph encoding and
drawing, in: Proceedings of the 12th Annual ACM–SIAM Symposium on Discrete Algorithms, Washin
DC, USA, 7–9 January, 2001, pp. 506–515.

[5] R.C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, H.-I Lu, Compact encodings of planar graphs via cano
ordering and multiple parentheses, in: K.G. Larsen, S. Skyum, G. Winskel (Eds.), Proceedings of t
International Colloquium on Automata, Languages, and Programming, Aalborg, Denmark, in: Lecture
in Comput. Sci., Vol. 1443, Springer-Verlag, 1998, pp. 118–129.

[6] H. de Fraysseix, P. Ossona de Mendez, P. Rosenstiehl, On triangle contact graphs, Combin.
Comput. 3 (1994) 233–246.

[7] H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid, Combinatorica 10 (1990)
[8] U. Fößmeier, G. Kant, M. Kaufmann, 2-visibility drawings of planar graphs, in: S. North (Ed.), Procee

of the 4th International Symposium on Graph Drawing, CA, USA, in: Lecture Notes in Comput.
Vol. 1190, Springer-Verlag, 1996, pp. 155–168.

[9] X. He, On finding the rectangular duals of planar triangular graphs, SIAM J. Comput. 22 (1993) 1218
[10] X. He, On floor-plan of plane graphs, SIAM J. Comput. 28 (6) (1999) 2150–2167.
[11] G. Jacobson, Space-efficient static trees and graphs, in: Proceedings of the 30th Annual Sympo

Foundations of Computer Science, Research Triangle Park, NC, 30 October–1 November, IEEE
pp. 549–554.

[12] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica 16 (1) (1996) 4–32.
[13] G. Kant, X. He, Regular edge labeling of 4-connected plane graphs and its applications in graph d

problems, Theoret. Comput. Sci. 172 (1–2) (1997) 175–193.
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