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Abstract. Given a sequence A of numbers and two positive integers �
and k, we study the problem to find k disjoint segments of A, each has
length at least �, such that their sum of densities is maximized. We give
the first known polynomial-time algorithm for the problem: For general
k, our algorithm runs in O(n�k) time. For the special case with k = 2
(respectively, k = 3), we also show how to solve the problem in O(n)
(respectively, O(n + �2)) time.

1 Introduction

Let A = 〈a1, a2, . . . , an〉 be the input sequence of n numbers. Let Ai,j denote
the consecutive subsequence 〈ai, ai+1, . . . , aj〉 of A. The length of Ai,j , denoted
|Ai,j |, is j − i + 1. The density of Ai,j , denoted d(Ai,j) is ai+ai+1+···+aj

j−i+1 of Ai,j .
Observe that with an O(n)-time preprocessing to compute all O(n) prefix sums
a1 + a2 + · · ·+ aj of A, the density of any segment Ai,j can be obtained in O(1)
time.

Two segments Ai,j and Ai′,j′ of A are disjoint if i ≤ j < i′ ≤ j′ or i′ ≤
j′ < i ≤ j. Two segments of A overlap if they are not disjoint. Motivated by
the locating GC-rich regions [9, 14, 15, 16], CpG islands [3, 5, 11, 18] in a genomic
sequence and annotating multiple sequence alignments [17], Lin, Huang, Jiang
and Chao [13] formulated and gave an O(n log k)-time heuristic algorithm for the
problem of identifying k disjoint segments of A with maximum sum of densities.
Specifically, given two additional positive integers k and �, the problem is to find
k disjoint segments of A, each has length at least �, such that the sum of their
densities is maximized. We present the first known polynomial-time algorithm
to solve the problem. Our algorithm runs in O(n�k) time for general k. We also
show that the special case with k = 2 (respectively, k = 3) can be solved in O(n)
(respectively, O(n + �2)) time.

� The corresponding author. Address: 1 Roosevelt Road, Section 4, Taipei 106, Taiwan,
R.O.C. Webpage: www.csie.ntu.edu.tw/∼hil/.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 845–850, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



846 Y.H. Chen, H.-I. Lu, and C.Y. Tang

Related work. When k = 1, the problem studied in the present paper becomes
the extensively studied maximimum-density segment problem [2, 6, 9, 10, 12]. The
problem for general k is also closely related to the GTile with bounded number
of tiles problem [1], which is a natural extension of the maximum-sum segment
problem studied in [12, 4].

The rest of this paper is organized as follows. Section 2 describes our O(n�k)-
time algorithm for general k. Section 3 shows how to solve the case with k = 2
in O(n) time. Section 4 shows how to solve the case with k = 3 in O(n + �2)
time. Section 5 concludes the paper with open questions.

2 Our Algorithm for General k

For a set U of segments, let D(U) =
∑

S∈U d(S). A set of segments is feasible to
our problem if it consists of k disjoint segments of A, each has length at least �.
A set U∗ of segments is optimal if U∗ is feasible and D(U∗) ≥ D(U) holds for
any feasible set U .

Lemma 1. There exists an optimal set U∗ of segments such each segment in
U∗ has length less than 2�.

Proof. Suppose that U∗ contains a segment Ai,j with |Ai,j | ≥ 2�. Then, both
U∗ ∪ {Ai,i+�−1} − {Ai,j} and U∗ ∪ {Ai+�,j} − {Ai,j}. Moreover, one of them
has to be optimal, since max(d(Ai,i+�−1), d(Ai+�,j)) ≥ d(Ai,j). We then use the
new optimal set to replace the original U∗. The lemma is proved by continuing
this process until each segment in the resulting optimal set U∗ has length less
than 2�.

According to Lemma 1, it suffices to focus on segments with lengths at least �
and less than 2�. Let ρ be the number of such segments in A. Clearly, ρ = O(n�).
Define G to be a graph on these ρ segments such that two nodes in G are adjacent
if and only if their corresponding segments overlap in A. Observe that G is an
interval graph. Let the weight of each node be the density of its corresponding
segment. Then, the problem to compute an optimal set U∗ of segments becomes
the problem to identify a maximum weight independent set of G that has size
k. To the best of our knowledge, no such an algorithm is known, although the
version without restriction on the size has been studied in the literature [8, 7].

Our algorithm for identifying an optimal U∗ is via the standard technique of
dynamic programming as shown below. For each j = 1, 2, . . . , n, let Aj consist
of the segments Ai,j of A with 1 ≤ i ≤ j ≤ n and � ≤ |Ai,j | < 2�. For each
j = 1, 2, . . . , n, let U∗

j,t denote a set of t disjoint segments of A1,j , each has length
at least � and less than 2�, such that D(U∗

j,t) is maximized. Note that U∗ = U∗
n,k.

One can easily compute all U∗
j,1 with 1 ≤ j ≤ n in O(n�) time. For technical

reason, if j < t�, then let U∗
j,t = ∅ and D(U∗

j,t) = −∞. To compute all O(nk)
entries of U∗

j,t in O(n�k) time, we use the following straightforward procedure
for each t > 1 and j ≥ t�.

Let U∗
j,t = {As,j} ∪ U∗

s−1,t−1, where s is an index i that maximizes
d(Ai,j)+D(U∗

i−1,t−1) over all indices i such that Ai,j is a segment in Aj .
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Since each Aj has size O(�), if those U∗
j,t−1 with j = 1, 2, . . . , n are available,

then all U∗
j,t with j = 1, 2, . . . , n can be computed in O(n�) time. One can then

obtain U∗ = U∗
n,t in O(n�k) time by iterating the above process for t = 2, 3, . . . , k.

Therefore, we have the following theorem.

Theorem 1. It takes O(n�k) time to find k disjoint segments of a length-n
sequence, each has length at least �, such that the sum of their densities is max-
imized.

3 Our Algorithm for k = 2

It turns out that the linear time algorithm of Chung and Lu [2] for the case
with k = 1 can be a useful subroutine to solve the case with k = 2 in linear
time. For each i = 1, 2, . . . , n, let Pi (respectively, Qi) be a maximum density
segment with length at least � for A1,i (respectively, Ai,n). Clearly, Pi and Qi+1

are disjoint segments of A for each i = 1, 2, . . . , n−1. Chung and Lu’s algorithm
has the nice feature that can process the input sequence in an online manner.
Therefore, all Pi and Qi with 1 ≤ i ≤ n can be computed by Chung and Lu’s
algorithm in O(n) time. The set {Pi, Qi+1} with maximum D({Pi, Qi+1}) is
clearly an optimal solution for the case with k = 2. Therefore, we have the
following theorem.

Theorem 2. It takes O(n) time to compute a pair of disjoint segments of a
length-n sequence, each has length at least �, such that the sum of their densities
is maximized.

4 Our Algorithm for k = 3

Suppose that So1, So2 and So3 form an optimal set of segments for the case with
k = 3. We first find a maximum-density segment SM = Ami,mj

in A. We also
compute maximum-density segments SL = Ali,lj in A1,mi−1 and SR = Ari,rj

in
Amj+1,n, respectively. Then we find the optimal two disjoint density segments
{SL1, SL2} in A1,mi−1 and {SR1, SR2} in Amj+1,n. Let {SM ′ , SM ′′} be the ele-
ment in

{{SL, SR}, {SL1, SL2}, {SR1, SR2}}
that has maximum sum of densities. Moreover, we find the maximum-density
segment SLL = Alli,llj in A1,li−1 and the maximum-density segment SRR =
Arri,rrj

in Arj+1,n. Furthermore, we find the maximum density segment SLLL

in A1,lli−1 and the maximum-density segment SRRR in Arrj+1,n. For brevity,
we use Sx ∼ Sy (respectively, Sx ↔ Sy) to denote that segments Sx and Sy

overlap (respectively, are disjoint). Let U be the set of segments which are in-
tersect to SM with length from � to 2�− 1. Finally, for each segment S in U , we
perform the following Algorithm 1 to find three disjoint segments {S1, S2, S3}
with {S1, S2, S3} ∩ S �= ∅.
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Algorithm 1:
1. For each segment Sv = Avi,vj

in U , let S2 = Sv. do
1.1. (Case 1: Sv ∼ ami

but Sv ↔ amj
): Find the maximum-density

segment SR′ in Avj+1,mj+2�−2. Then let S3 = SR′ .
If Sv ↔ SL then S1 = SL

else
If Sv ∼ SL but Sv ↔ SLL then find the maximum-density segment

SL′ in Ali−2�+2,vi−1 then let S1 be the maximum density segment
between SL′ and SLL.

else find the maximum-density segment SL′ in Alli−2�+2,vi−1 then let
S1 be the maximum density segment between SL′ and SLLL.

1.2. (Case 2: Sv ∼ amj
but Sv ↔ ami

): Find the maximum-density
segment SL′′ in Ami−2�+2,vi−1. Then let S1 = SL′′ .
If Sv ↔ SR then let S3 = SR

else
If Sv ∼ SR but Sv ↔ SRR then find the maximum-density segment

SR′′ in Avj+1,rj+2�−2 then let S3 be the maximum density segment
between SR′′ and SRR.

else find the maximum-density segment SR′′ in Avj+1,rrj+2�−2 then
let S3 be the maximum density segment between SR′′ and SRRR.

1.3. (Case 3: Sv ⊂ Sm): Find the maximum-density segments SL′′′ and
SR′′′ in Ami−2�+2,vi−1 and Avj+1,mj+2�−2. Let {S1, S3} = {SL′′′ , SR′′′}.

end for
2. Let {Sa, Sb, Sc} be the maximum total density segments in all these three

disjoint segments {S1, S2, S3}.

Finally, if
D({Sa, Sb, Sc}) ≤ D({SM , SM ′ , SM ′′}),

then let {So1, So2, So3} be {SM ′ , SM , SM ′′}; otherwise, let {So1, So2, So3} be
{Sa, Sb, Sc}. Though there are O(�2) iterations in Algorithm 1, we only need
O(�2) time in total. We can pre-process to find all SR′ in case 1, all SR′′′ in case
3, all SL′′ in case 2 and all SL′′′ in case 3 in O(�2) time. Because the lengths
of Ami−2�+2,vi−1 and Avj+1,mj+2�−2 are O(�) and the length of SM is at most
2�− 1. Also pre-process to find all SL′ in case 1 and all SR′′ in case 2 take O(�2)
time. As a result, the time complexity of Algorithm 1 is O(�2).

Theorem 3. It takes O(n + �2) time to compute three disjoint segments of a
length-n sequence, each has length at least �, such that the sum of their densities
is maximized.

Proof. Since the time complexity of Algorithm 1 is O(�2), our algorithm runs in
O(n + �2) time. It remains to prove the correctness of our algorithm. For any
three disjoint segments {S1, S2, S3} in A, we will show

D({So1, So2, So3}) ≥ D({S1, S2, S3}).
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For convenience, let S1 be the left segment, let S2 be the middle segment, and
let S3 be the right segment for the three disjoint segments {S1, S2, S3} in A.
First, if each of S1, S2 and S3 does not overlap with SM , then

D({SM , SM ′ , SM ′′}) ≥ D({S1, S2, S3}).

If only one segment of {S1, S2, S3} overlaps with SM , then

D({SM , SM ′ , SM ′′}) ≥ D({S1, S2, S3}).

Hence, the rest of the proof assumes that at least two segments of {S1, S2, S3}
overlaps with SM and

D({S1, S2, S3}) > D({SM ′ , SM , SM ′′}).

Without loss of generality, we may assume that segment S2 = Sv = Avi,vj

overlaps with SM . Then we consider the following three cases. Case 1: Sv ∼ ami

but Sv ↔ amj
, case 2: Sv ∼ amj

but Sv ↔ ami
, and case 3: Sv ⊂ Sm. We

prove the result for case 1 and case 3. The case 2 can be shown similar to case
1. For case 1, let SR′ is the maximum-density segment in Avj+1,mj+2�−2 and
S3 = SR′ . Because d(S1) ≤ d(SL) and d(S2) ≤ d(SM ), the segment S3 must be
a subsequence in Avj+1,mj+2�−2; otherwise, we have

D({SL, SM , SR}) ≥ D({S1, S2, S3}).

Hence, we only choose a best S1 in A1,vi−1. We consider the following three cases.
(1) if Sv ↔ SL, we only let S1 = SL because SL is the maximum-density segment
in A1,mi−1. (2) If Sv ∼ SL but Sv ↔ SLL. For S1, we only consider the segments
SLL and SL′ , where SL′ is a maximum-density segment in Ali−2�+2,vi−1. Because
S1 ∼ SL, segment S1 is either in A1,li−1 or in Ali−2�+2,vi−1. (3) Sv ∼ SL and SLL.
For S1, we only consider the segments SLLL and SL′ , where SL′ is a maximum-
density segment in Alli−2�+2,vi−1. Because S1 ∼ SLL, segment S1 is either in
A1,lli−1 or in Alli−2�+2,vi−1. For case 3, let SL′′′ is the maximum-density segment
in Ami−2�+2,vi−1 and SR′′′ is the maximum-density segment in Avj+1,mj+2�−2.
Because d(Sv) ≤ d(SM ), we only let {S1, S2, S3} = {SL′′′ , Sv, SR′′′}. Otherwise,
we have

D({SL, SM , SR}) ≥ D({S1, S2, S3}).

�

5 Conclusion

We have shown the first known polynomial-time algorithm to compute multi-
ple disjoint segments whose sum of densities is maximized. An immediate open
question is whether the problem can be solved in o(n�k) time. Also, it would be
interesting to see our techniques for k = 2, 3 to be generalized to the cases with
larger k.
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