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Abstract. A visibility representation of a graph G is to represent the nodes of G
with non-overlapping horizontal line segments such that the line segments repre-
senting any two distinct adjacent nodes are vertically visible to each other. If G is
a plane graph, i.e., a planar graph equipped with a planar embedding, a visibility
representation of G has the additional requirement of reflecting the given planar
embedding of G. For the case that G is an n-node four-connected plane graph,
we give an O(n)-time algorithm to produce a visibility representation of G with

height at most
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉
. To ensure that the first-order term of the up-

per bound is optimal, we also show an n-node four-connected plane graph G, for
infinite number of n, whose visibility representations require heights at least n

2 .

1 Introduction

Unless clearly specified otherwise, all graphs in the present article are simple, i.e., hav-
ing no self-loops and multiple edges. A visibility representation of a planar graph rep-
resents the nodes of the graph by non-overlapping horizontal line segments such that,
for any nodes u and v adjacent in the graph, the line segments representing u and v are
vertically visible to each other. Observe that if G1 is a subgraph of G2 on the save node
set, then any visibility representation of G2 is also a visibility representation of G1.
Therefore, we may assume without loss of generality that the input graph is maximally
planar. Let G be an n-node plane triangulation, i.e., a maximally planar graph equipped
with a planar embedding. A visibility representation of G has an additional requirement
of reflecting the given planar embedding of G. Figure 1(b), for instance, is a visibility
representation of the four-connected plane graph shown in Fig. 1(a). Under the conven-
tional restriction of placing the endpoints of horizontal line segments on the integral grid
points, any visibility representation of G requires width no more than 3n−7 and height
no more than n − 1. Otten and van Wijk [7] gave the first known algorithm for con-
structing a visibility representation for any G. Rosenstiehl and Tarjan [8] and Tamassia
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Fig. 1. (a) A four-connected plane triangulation G. (b) A visibility representation of G.

and Tollis [9] independently gave algorithms to compute a visibility representation of G
with height at most 2n−5. Their work initiated a decade of competition on minimizing
the width and height of the output visibility representation. All these algorithms run in
linear time. In particular, the results of Fan, Lin, Lu, and Yen [2] and Zhang and He [16]
are optimal in that the upper bounds differ from the best known lower bounds by very
small constants.

The present article focuses on four-connected plane G. The O(n)-time algorithm
of Kant and He [5] provides the optimal upper bound n − 1 on the width. The best
previously known upper bound on the height, ensured by the O(n)-time algorithm of
Zhang and He [12], is

⌈3n
4

⌉
. In the present article, we obtain the following result with

an improved upper bound on the required height.

Theorem 1. For any n-node four-connected plane graph G, it takes O(n) time to con-

struct a visibility representation of G with height at most
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉
.

Table 1 compares our upper bound with previous results. All algorithms shown in Ta-
ble 1 run in O(n) time. Our algorithm follows the approach of Zhang and He [10, 15–
17], originating from Rosenstiehl and Tarjan [8] and Tamassia and Tollis [9], that re-
duces the problem of computing a visibility representation for G with small height to
finding an appropriate st-ordering of G. To find such an st-ordering of G, we resort to
three linear-time obtainable node orderings:

– four-canonical orderings of four-connected plane graphs (Kant and He [5]),
– consistent orderings of ladder graphs (Zhang and He [15–17]), and
– post-orderings of canonical ordering spanning trees (He, Kao, and Lu [3]).

Our result is near optimal in that we can construct an n-node four-connected plane
graph, for infinite number of n, whose visibility representations require heights at least⌈

n
2

⌉
. That is, the first-order term of our upper bound is optimal.

The remainder of the paper is organized as follows. Section 2 gives the preliminaries.
Section 3 describes and analyzes our algorithm. Section 4 ensures that the first-order
term of our upper bound on height is optimal. Section 5 concludes the paper.
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Table 1. Previous upper bounds and our result for any n-node plane graph G

general G four-connected G

width height width height

Otten and van Wijk [7] 3n − 7 n − 1

Rosenstiehl and Tarjan [8],
Tamassia and Tollis [9]

2n − 5

Kant [4]
⌊ 3n−6

2

⌋

Kant and He [5] n − 1

Lin, Lu, and Sun [6]
⌊ 22n−24

15

⌋

Zhang and He [10]
⌈ 15n

16

⌉

Zhang and He [14]
⌊ 5n

6

⌋

Zhang and He [11, 13]
⌊ 13n−24

9

⌋

Zhang and He [12]
⌈ 3n

4

⌉

Zhang and He [15, 17] 4n
3 + 2 �

√
n� 2n

3 + 2
⌈√

n
2

⌉

Zhang and He [16] 2n
3 + O(1)

Fan, Lin, Lu, and Yen [2]
⌊ 4n

3

⌋
− 2

This paper
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉

2 Preliminaries

2.1 Ordering and st-Ordering

Let G be an n-node plane graph. An ordering of G is a one-to-one mapping σ from the
nodes of G to {1, 2, . . . , n}. A path of G is σ-increasing if σ(u) < σ(v) holds for any
nodes u and v such that u precedes v in the path. Let length(G, σ) denote the maximum
of the lengths of all σ-increasing paths in G. For instance, if G and σ are as shown in
Fig. 1(a), then one can verify that (1, 2, 5, 6, 8) is a σ-increasing path with maximum
length. Therefore, length(G, σ) = 4.

Let s and t be two distinct external nodes of G. An st-ordering [1] of G is an ordering
σ of G such that

– σ(s) = 1, σ(t) = n, and
– each node v of G other than s and t has neighbors u and w in G with σ(u) <

σ(v) < σ(w).

An example is shown in Fig. 1(a): the node labels form an st-ordering for the graph.
The following lemma reduces the problem of minimizing the height of visibility rep-

resentation of G to that of finding an st-ordering σ of G with minimum length(G, σ).
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Lemma 1 (See [2, 8–10, 15, 17]). If G admits an st-ordering σ for two distinct external
nodes s and t of G, then it takes O(n) time to obtain a visibility representation of G
with height exactly length(G, σ).

For instance, if G and σ are as shown in Fig. 1(a), then a visibility representation for
G with height at most length(G, σ) = 4, as shown in Fig. 1(b), can be found in linear
time.

2.2 Four-Canonical Ordering

Let G be an n-node four-connected plane triangulation. Let v1, v2, and vn be the ex-
ternal nodes of G in counterclockwise order. Since G is a four-connected plane trian-
gulation, G has exactly one internal node adjacent to both v2 and vn. Let vn−1 be the
internal node adjacent to v2 and vn in G. A four-canonical ordering [5] of G is an
ordering φ in G such that

– φ(v1) = 1, φ(v2) = 2, φ(vn−1) = n − 1, φ(vn) = n, and
– each node v of G other than v1, v2, vn−1 and vn has neighbors u, u′, w and w′ in

G with φ(u′) < φ(u) < φ(v) < φ(w) < φ(w′).

An example is shown in Fig. 2(a): the node labels form a four-canonical ordering of the
four-connected plane triangulation.

Lemma 2 (Kant and He [5]). It takes O(n) time to compute a four-canonical ordering
for any n-node G.

2.3 Consistent Ordering of Ladder Graph

Let L be an
⌈

n
2

⌉
-node path. Let R be an

⌊
n
2

⌋
-node path. Let X consist of edges with

one endpoint in L and the other endpoint in R. Let (L, R, X) denote the n-node graph
L∪R∪X . We say that (L, R, X) is a ladder graph [15, 17] if L∪R∪X is outerplanar.
A ladder graph is shown in Fig. 3(a).

An ordering σ of ladder graph (L, R, X) is consistent [15, 17] with respect to an
outerplanar embedding E of (L, R, X) if L (respectively, R) forms a σ-increasing path
in clockwise (respectively, counterclockwise) order according to E . See Fig. 3(a) for an
example: The node labels form a consistent ordering of the ladder graph with respect to
the displayed outerplanar embedding.

Lemma 3 (He and Zhang [15, 17]). Let (L, R, X) be an n-node ladder graph. It
takes O(n) time to compute a consistent ordering σ of (L, R, X) with respect to any
given outerplanar embedding of (L, R, X) such that length((L, R, X), σ) ≤

⌈
n
2

⌉
+

2
⌈√

n
2

⌉
− 1.

For technical reason, we need a consistent ordering with additional properties, as stated
in the next lemma, which is also illustrated by Fig. 3(a).

Lemma 4. Let (L, R, X) be an n-node ladder graph. It takes O(n) time to compute a
consistent ordering σ of (L, R, X) with respect to any given outerplanar embedding E
of (L, R, X) such that



Visibility Representations of Four-Connected Plane Graphs 71

1

4

6

2

7

3

5

8

(a)

1

4

6

7

2

3

5

8

(b) (c)

1

2

3

4

12

3

4

GR TR

GL TL

Fig. 2. (a) A four-canonical ordering φ of the four-connected plane triangulation G. (b) GL is the
subgraph induced by the nodes v with 1 ≤ φ(v) ≤ 4 and GR is the subgraph induced by the
nodes v with 5 ≤ φ(v) ≤ 8. (c) The counterclockwise post-ordering ψL of TL and the clockwise
post-ordering ψR of TR.

– σ(�1) = 1, σ(r1) = 2, and

– length((L, R, X), σ) ≤
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉
,

where �1 (respectively, r1) is the first (respectively, last) node of L (respectively, R) in
clockwise order around the external boundary of (L, R, X) with respect to E .

Proof. Let L′ = L \ {�1}. Let R′ = R \ {r1}. Let X ′ = X \ {�1, r1}. Clearly,
(L′, R′, X ′) is a ladder graph of n − 2 nodes. Let σ′ be the consistent ordering of
(L′, R′, X ′) with respect to E ensured by Lemma 3. We have

length((L′, R′, X ′), σ′) ≤
⌈n

2

⌉
+ 2

⌈√
n − 2

2

⌉

− 2.

Let σ be the ordering of (L, R, X) such that
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Fig. 3. (a) A consistent ordering of a ladder graph (L, R, X) with respect to the displayed outer-
planar embedding. (b) H∗ = L ∪ R ∪ X∗, where X∗ = X ∪ {(v2, v8)}.

– σ(�1) = 1, σ(r1) = 2, and
– σ(u) = σ′(u) + 2 holds for each node u other than �1 and r1.

One can easily verify that the lemma holds.

3 Our Algorithm

Let G be the input n-node four-connected plane triangulation. According to Lemma 1, it
suffices to describe our algorithm for computing an st-ordering σ for G in the following
four steps.

3.1 Step 1

Let φ be a four-canonical ordering of G ensured by Lemma 2.

– Let GL be the subgraph of G induced by the nodes v with 1 ≤ φ(v) ≤
⌈

n
2

⌉
.

– Let GR be the subgraph of G induced by the nodes v with
⌈

n
2

⌉
< φ(v) ≤ n.

Figure 2(b) illustrates this step, which runs in O(n) time. Observe that each edge of G
not in GL∪GR has one endpoint on the external boundary of GL and the other endpoint
on the external boundary of GR.

3.2 Step 2

For each i = 1, 2, . . . , n, let vi denote the node of G with φ(vi) = i. It follows from
the definition of φ that v1, v2, and vn are the external nodes of G.

– For each i = 2, 3, . . . ,
⌈

n
2

⌉
, let π(i) be the index j with j < i such that vj is the first

neighbor of vi in GL in counterclockwise order around vi. Let TL be the spanning
tree of GL rooted at v1 such that each vπ(i) is the parent of vi in TL. Let ψL be the
counterclockwise post-ordering of TL.
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– For each i =
⌈

n
2

⌉
+ 1,

⌈
n
2

⌉
+ 2, . . . , n − 1, let π(i) be the index j with j > i such

that vj is the first neighbor of vi in GR in clockwise order around vi. Let TR be the
spanning tree of GR rooted at vn such that each vπ(i) is the parent of vi in TR. Let
ψR be the clockwise post-ordering of TR.

Figure 2(c) illustrates this step, which runs in O(n) time. As a matter of fact, TL is the
canonical ordering spanning tree of GL with respect to φ, as defined by He, Kao, and
Lu [3].

Lemma 5. ψL(v2) = 1, ψL(v1) =
⌈

n
2

⌉
, ψR(vn−1) = 1, and ψR(vn) =

⌊
n
2

⌋
.

Proof. Since φ is a four-canonical ordering of G, if (v2, vi) with i ≥ 3 is an edge of
GL, then vi has to have a neighbor vk with 2 �= k < i in GL. Observe that v2 is the node
immediately succeeding v1 in counterclockwise order around the external boundary of
GL. One can verify that v2 cannot be the first neighbor of vi in GL in counterclockwise
order around vi. That is, we have π(i) �= 2. Since v2 cannot be the parent of vi in TL,
v2 has to be a leaf of TL. By the relative position between v2 and v1, it is clear that v2
is the first node in the counterclockwise post-ordering of TL, i.e., ψL(v2) = 1.

One can prove ψR(vn−1) = 1 analogously, where vn (respectively, vn−1, ψR, TR,
and GR) plays the role of v1 (respectively, v2, ψL, TL, and GL). Since v1 is the root of
TL and ψL is a post-ordering of TL, we have ψL(v1) =

⌈
n
2

⌉
. Since vn is the root of TR

and ψR is a post-ordering of TR, we have ψR(vn) =
⌊

n
2

⌋
.

3.3 Step 3

Let L, R, and X be defined as follows.

– Let L be the path
(
�1, �2, . . . , ��n/2�

)
, where �i is the node of GL with ψL(�i) = i.

– Let R be the path
(
r1, r2, . . . , r�n/2�

)
, where ri is the node of GR with ψR(ri) = i.

– Let X = X∗ \ {(v2, vn)}, where X∗ consists of the edges of G with one endpoint
in L and the other endpoint in R.

Figure 3(a) illustrates Lemma 5 and this step, which runs in O(n) time. Figure 3(b)
shows the corresponding L ∪ R ∪ X∗.

Lemma 6. (L, R, X) is an n-node ladder graph.

Proof. Consider any edge (�i, rj) of X . By definition of φ, �i has to be on the exter-
nal boundary of GL and rj has to be on the external boundary of GR. By definition
of TL, �i is either a leaf of TL or on the rightmost path of TL. By definition of ψL, if
�i1 , �i2 , . . . , �ip with i1 = 1 are the nodes on the external boundary of GL in counter-
clockwise order, then i1 < i2 < · · · < ip. Similarly, by definition of TR, rj is either
a leaf of TR or on the leftmost path of TR. By definition of ψR, if rj1 , rj2 , . . . , rjq

with j1 = 1 are the nodes on the external boundary of GR in clockwise order, then
j1 < j2 < · · · < jq . Since G is a plane graph and the edges of X do not cross one an-
other in G, the edges of X do not cross one another in (L, R, X). Therefore, (L, R, X)
is outerplanar.
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3.4 Step 4

Let H = (L, R, X). Lemma 6 ensures that H is an n-node ladder graph. Consider the
outerplanar embedding E of H such that

�1, �2, . . . , ��n/2�, r�n/2�, r�n/2�−1, . . . , r1

are the nodes in clockwise order around the external boundary of H . Let the output σ of
our algorithm be the consistent ordering of H with respect to E ensured by Lemma 4.
Figure 3(a) illustrates this step, which also runs in O(n) time.

Lemma 7. The O(n)-time obtainable σ is an st-ordering of G with σ(v2) = 1 and
max(σ(v1), σ(vn)) = n.

Proof. We first show that ψL is an st-ordering of GL. Let i be an index with 2 ≤
i <

⌈
n
2

⌉
. Let k be the index such that �k is the parent of �i in TL. Since ψL is a post-

ordering of TL, we know that �k is a neighbor of �i in GL with i < k. Let j be the index
such that �j is the neighbor of �i in GL immediately succeeding �k in counterclockwise
order around �i. Recall that �k is the first neighbor of �i in GL with φ(�k) < φ(�i)
in counterclockwise order around �i. Since φ is a four-canonical ordering of G, we
also have φ(�j) < φ(�i). Since ψL is the counterclockwise post-ordering of TL, we
have ψ(�j) < ψ(�i), i.e., j < i. Since �j and �k are two neighbors of �i in GL with
j < i < k, we know that ψL is an st-ordering of GL. It can be proved analogously that
ψR is an st-ordering of GR.

Since σ is a consistent ordering of H with respect to E , we know that 1 ≤ i < j ≤⌈
n
2

⌉
implies σ(�i) < σ(�j) and 1 ≤ i < j ≤

⌊
n
2

⌋
implies σ(ri) < σ(rj). We have the

following observations.

– Since ψL is an st-ordering of GL, for each i = 1, . . . ,
⌈

n
2

⌉
− 1, �i has a neighbor

�k in GL with i < k. Since GL is a subgraph of G, �k is a neighbor of �i in G with
σ(�i) < σ(�k).

– Since ψL is an st-ordering of GL, for each i = 2, . . . ,
⌈

n
2

⌉
, �i has a neighbor �j in

GL with j < i. Since GL is a subgraph of G, we know that �j is a neighbor of �i in
G with σ(�j) < σ(�i).

– Since ψR is an st-ordering of GR, for each i = 1, . . . ,
⌊

n
2

⌋
− 1, ri has a neighbor

rk in GR with i < k. Since GR is a subgraph of G, we know that rk is a neighbor
of ri in G with σ(ri) < σ(rk).

– Since ψR is an st-ordering of GR, for each i = 2, . . . ,
⌊

n
2

⌋
, ri has a neighbor rj in

GR with j < i. Since GR is a subgraph of G, we know that rj is a neighbor of ri

in G with σ(rj) < σ(ri).

According to the above observations, it suffices to ensure that edges (�1, r1) and
(��n/2�, r�n/2�) belong to G. By Lemma 5, �1 = v2, r1 = vn−1, ��n/2� = v1, and
r�n/2� = vn. Since v1 and vn are external nodes of the plane triangulation G, we know
that (��n/2�, r�n/2�) = (v1, vn) is an edge of G. By definition of four-canonical order-
ing φ, we know that vn−1 is adjacent to v2. Therefore, (�1, r1) = (v2, vn−1) is an edge
of G.

Figure 1(a) shows the resulting st-ordering σ of G computed by our algorithm.
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3.5 Proving Theorem 1

Proof. Note that v1, v2, and vn are the external nodes of G. By Lemmas 1 and 7, it
suffices to ensure

length(G, σ) ≤
⌈n

2

⌉
+ 2

⌈√
n − 2

2

⌉

. (1)

By Step 4 and Lemmas 4 and 6, we have

length(H, σ) ≤
⌈n

2

⌉
+ 2

⌈√
n − 2

2

⌉

. (2)

Let H∗ = L∪R∪X∗. That is, H∗ = H∪{(v2, vn)}, as illustrated by Fig. 3(a) and 3(b).
By definition of σ and Lemma 5, we have σ(v2) = 1 and σ(vn) ≥ maxj σ(rj). There-
fore, any σ-increasing path of H∗ containing edge (v2, vn) contains exactly one node
of R, i.e., vn, and thus has length at most

⌈
n
2

⌉
. It follows from Inequality (2) that

length(H∗, σ) ≤
⌈n

2

⌉
+ 2

⌈√
n − 2

2

⌉

. (3)

To prove Inequality (1), it remains to show that if P is a σ-increasing path of G, then
there is a σ-increasing path Q of H∗ such that the length of Q is no less than that of P .
For each edge (u, v) of P with σ(u) < σ(v), let Q(u, v) be the σ-increasing path of
H∗ defined as follows.

– If u = �i and v = rj , then let Q(u, v) = (u, v), which is a σ-increasing path
of X∗.

– If u = ri and v = �j , then let Q(u, v) = (u, v), which is a σ-increasing path
of X∗.

– If u = �i and v = �j , then by σ(�i) < σ(�j) we know ψL(�i) < ψL(�j) and thus
i < j. Let Q(u, v) = (�i, �i+1, . . . , �j). Since σ is a consistent ordering of H with
respect to E , Q(u, v) is a σ-increasing path of L.

– If u = ri and v = rj , then by σ(ri) < σ(rj) we know ψR(ri) < ψR(rj) and thus
i < j. Let Q(u, v) = (ri, ri+1, . . . , rj). Since σ is a consistent ordering of H with
respect to E , Q(u, v) is a σ-increasing path of R.

Let Q be the union of Q(u, v) for all edges (u, v) of P . Since each Q(u, v) is a σ-
increasing path of H∗, so is Q. The length of Q is no less than that of P . That is, we
have

length(G, σ) ≤ length(H∗, σ). (4)

Since Inequality (1) is immediate from Inequalities (3) and (4), the lemma is proved.

4 A Lower Bound

Let plane graph Nk be defined recursively as follows.

– Let N1 be the four-node internally triangulated plane graph with four external nodes.
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(b)

(a)

Dk

Nk+1

Nk

Dk+1

Fig. 4. (a) A four-connected plane graph Nk+1 and its relation with Nk . (b) A visibility represen-
tation Dk+1 of Nk+1 and its relation with Dk .

– Let Nk+1 be obtained from Nk by adding four nodes and twelve edges in the way
as shown in Fig. 4(a).

One can easily verify that each Nk with k ≥ 1 is indeed four-connected. The following
lemma ensures that the the upper bound provided by Theorem 1 has an optimal first-
order term.

Lemma 8. All visibility representations of Nk have heights at least 2k.

Proof. We prove the lemma by induction on k. The lemma holds trivially for k = 1. As-
sume for a contradiction that Nk+1 admits a visibility representation Dk+1 with height
no more than 2k + 1. Let Dk be obtained from Dk+1 by deleting all the horizontal
segments representing those four external nodes of Nk+1. Since Dk+1 has to reflect the
planar embedding of Nk+1, Dk is a visibility representation of Nk. Since the external
nodes of Nk are internal in Nk+1, the horizontal segments of Dk+1 representing the
external nodes of Nk+1 have to wrap Dk completely. That is, Dk+1 must have a hori-
zontal segment above Dk and a horizontal segment below Dk. Therefore, the height of
Dk+1 is at least two more than that of Dk. It follows that the height of Dk is at most
2k − 1, contradicting the inductive hypothesis. Since Nk+1 cannot admit a visibility
representation with height less than 2k + 2, the lemma is proved.
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5 Concluding Remarks

It would be of interest to close the Θ(
√

n) gap between the upper and lower bounds on
the required height for the visibility representation of any n-node four-connected plane
graph. We conjecture that the Θ(

√
n) term in our upper bound can be reduced to O(1).
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