Visibility Representations of Four-Connected Plane Graphs with Near Optimal Heights

Chieh-Yu Chen ${ }^{1}$, Ya-Fei Hung ${ }^{2}$, and Hsueh-I Lu ${ }^{1,2, \star}$
${ }^{1}$ Department of Computer Science and Information Engineering National Taiwan University
${ }^{2}$ Graduate Institute of Networking and Multimedia National Taiwan University
1 Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC
f94922054@ntu.edu.tw, r94944014@ntu.edu.tw, hil@csie.ntu.edu.tw

Abstract

A visibility representation of a graph G is to represent the nodes of G with non-overlapping horizontal line segments such that the line segments representing any two distinct adjacent nodes are vertically visible to each other. If G is a plane graph, i.e., a planar graph equipped with a planar embedding, a visibility representation of G has the additional requirement of reflecting the given planar embedding of G. For the case that G is an n-node four-connected plane graph, we give an $O(n)$-time algorithm to produce a visibility representation of G with height at most $\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil$. To ensure that the first-order term of the upper bound is optimal, we also show an n-node four-connected plane graph G, for infinite number of n, whose visibility representations require heights at least $\frac{n}{2}$.

1 Introduction

Unless clearly specified otherwise, all graphs in the present article are simple, i.e., having no self-loops and multiple edges. A visibility representation of a planar graph represents the nodes of the graph by non-overlapping horizontal line segments such that, for any nodes u and v adjacent in the graph, the line segments representing u and v are vertically visible to each other. Observe that if G_{1} is a subgraph of G_{2} on the save node set, then any visibility representation of G_{2} is also a visibility representation of G_{1}. Therefore, we may assume without loss of generality that the input graph is maximally planar. Let G be an n-node plane triangulation, i.e., a maximally planar graph equipped with a planar embedding. A visibility representation of G has an additional requirement of reflecting the given planar embedding of G. Figure 1(b), for instance, is a visibility representation of the four-connected plane graph shown in Fig. 1(a). Under the conventional restriction of placing the endpoints of horizontal line segments on the integral grid points, any visibility representation of G requires width no more than $3 n-7$ and height no more than $n-1$. Otten and van Wijk [7] gave the first known algorithm for constructing a visibility representation for any G. Rosenstiehl and Tarjan [8] and Tamassia

[^0]

Fig. 1. (a) A four-connected plane triangulation G. (b) A visibility representation of G.
and Tollis [9] independently gave algorithms to compute a visibility representation of G with height at most $2 n-5$. Their work initiated a decade of competition on minimizing the width and height of the output visibility representation. All these algorithms run in linear time. In particular, the results of Fan, Lin, Lu, and Yen [2] and Zhang and He [16] are optimal in that the upper bounds differ from the best known lower bounds by very small constants.

The present article focuses on four-connected plane G. The $O(n)$-time algorithm of Kant and He [5] provides the optimal upper bound $n-1$ on the width. The best previously known upper bound on the height, ensured by the $O(n)$-time algorithm of Zhang and He [12], is $\left\lceil\frac{3 n}{4}\right\rceil$. In the present article, we obtain the following result with an improved upper bound on the required height.

Theorem 1. For any n-node four-connected plane graph G, it takes $O(n)$ time to construct a visibility representation of G with height at most $\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil$.
Table 1 compares our upper bound with previous results. All algorithms shown in Table 1 run in $O(n)$ time. Our algorithm follows the approach of Zhang and He [10, 1517], originating from Rosenstiehl and Tarjan [8] and Tamassia and Tollis [9], that reduces the problem of computing a visibility representation for G with small height to finding an appropriate $s t$-ordering of G. To find such an $s t$-ordering of G, we resort to three linear-time obtainable node orderings:

- four-canonical orderings of four-connected plane graphs (Kant and He [5]),
- consistent orderings of ladder graphs (Zhang and He [15-17]), and
- post-orderings of canonical ordering spanning trees (He, Kao, and Lu [3]).

Our result is near optimal in that we can construct an n-node four-connected plane graph, for infinite number of n, whose visibility representations require heights at least $\left\lceil\frac{n}{2}\right\rceil$. That is, the first-order term of our upper bound is optimal.

The remainder of the paper is organized as follows. Section 2 gives the preliminaries. Section 3 describes and analyzes our algorithm. Section 4 ensures that the first-order term of our upper bound on height is optimal. Section 5 concludes the paper.

Table 1. Previous upper bounds and our result for any n-node plane graph G

	general G		four-connected G	
	width	height	width	height
Otten and van Wijk [7]	$3 n-7$	$n-1$		
Rosenstiehl and Tarjan [8], Tamassia and Tollis [9]	$2 n-5$			
Kant [4]	$\left\lfloor\frac{3 n-6}{2}\right\rfloor$			
Kant and He [5]			$n-1$	
Lin, Lu, and Sun [6]	$\left\lfloor\frac{22 n-24}{15}\right\rfloor$			
Zhang and He [10]		$\left\lceil\frac{15 n}{16}\right\rceil$		
Zhang and He [14]		$\left\lfloor\frac{5 n}{6}\right\rfloor$		
Zhang and He [11,13]	$\left\lfloor\frac{13 n-24}{9}\right\rfloor$			
Zhang and He [12]				$\left\lceil\frac{3 n}{4}\right\rceil$
Zhang and He [15, 17]	$\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$	$\frac{2 n}{3}+2\left\lceil\sqrt{\frac{n}{2}}\right\rceil$		
Zhang and He [16]		$\frac{2 n}{3}+O(1)$		
Fan, Lin, Lu, and Yen [2]	$\left\lfloor\frac{4 n}{3}\right\rfloor-2$			
This paper				$\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil$

2 Preliminaries

2.1 Ordering and st-Ordering

Let G be an n-node plane graph. An ordering of G is a one-to-one mapping σ from the nodes of G to $\{1,2, \ldots, n\}$. A path of G is σ-increasing if $\sigma(u)<\sigma(v)$ holds for any nodes u and v such that u precedes v in the path. Let length (G, σ) denote the maximum of the lengths of all σ-increasing paths in G. For instance, if G and σ are as shown in Fig. 1(a), then one can verify that $(1,2,5,6,8)$ is a σ-increasing path with maximum length. Therefore, length $(G, \sigma)=4$.

Let s and t be two distinct external nodes of G. An st-ordering [1] of G is an ordering σ of G such that

- $\sigma(s)=1, \sigma(t)=n$, and
- each node v of G other than s and t has neighbors u and w in G with $\sigma(u)<$ $\sigma(v)<\sigma(w)$.

An example is shown in Fig. 1(a): the node labels form an st-ordering for the graph.
The following lemma reduces the problem of minimizing the height of visibility representation of G to that of finding an st-ordering σ of G with minimum length (G, σ).

Lemma 1 (See [2,8-10, 15, 17]). If G admits an st-ordering σ for two distinct external nodes s and t of G, then it takes $O(n)$ time to obtain a visibility representation of G with height exactly length (G, σ).

For instance, if G and σ are as shown in Fig. 1(a), then a visibility representation for G with height at most length $(G, \sigma)=4$, as shown in Fig. 1(b), can be found in linear time.

2.2 Four-Canonical Ordering

Let G be an n-node four-connected plane triangulation. Let v_{1}, v_{2}, and v_{n} be the external nodes of G in counterclockwise order. Since G is a four-connected plane triangulation, G has exactly one internal node adjacent to both v_{2} and v_{n}. Let v_{n-1} be the internal node adjacent to v_{2} and v_{n} in G. A four-canonical ordering [5] of G is an ordering ϕ in G such that

- $\phi\left(v_{1}\right)=1, \phi\left(v_{2}\right)=2, \phi\left(v_{n-1}\right)=n-1, \phi\left(v_{n}\right)=n$, and
- each node v of G other than v_{1}, v_{2}, v_{n-1} and v_{n} has neighbors u, u^{\prime}, w and w^{\prime} in G with $\phi\left(u^{\prime}\right)<\phi(u)<\phi(v)<\phi(w)<\phi\left(w^{\prime}\right)$.
An example is shown in Fig. 2(a): the node labels form a four-canonical ordering of the four-connected plane triangulation.

Lemma 2 (Kant and He [5]). It takes $O(n)$ time to compute a four-canonical ordering for any n-node G.

2.3 Consistent Ordering of Ladder Graph

Let L be an $\left\lceil\frac{n}{2}\right\rceil$-node path. Let R be an $\left\lfloor\frac{n}{2}\right\rfloor$-node path. Let X consist of edges with one endpoint in L and the other endpoint in R. Let (L, R, X) denote the n-node graph $L \cup R \cup X$. We say that (L, R, X) is a ladder graph [15, 17] if $L \cup R \cup X$ is outerplanar. A ladder graph is shown in Fig. 3(a).

An ordering σ of ladder graph (L, R, X) is consistent $[15,17]$ with respect to an outerplanar embedding \mathcal{E} of (L, R, X) if L (respectively, R) forms a σ-increasing path in clockwise (respectively, counterclockwise) order according to \mathcal{E}. See Fig. 3(a) for an example: The node labels form a consistent ordering of the ladder graph with respect to the displayed outerplanar embedding.

Lemma 3 (He and Zhang [15,17]). Let (L, R, X) be an n-node ladder graph. It takes $O(n)$ time to compute a consistent ordering σ of (L, R, X) with respect to any given outerplanar embedding of (L, R, X) such that length $((L, R, X), \sigma) \leq\left\lceil\frac{n}{2}\right\rceil+$ $2\left\lceil\sqrt{\frac{n}{2}}\right\rceil-1$.

For technical reason, we need a consistent ordering with additional properties, as stated in the next lemma, which is also illustrated by Fig. 3(a).

Lemma 4. Let (L, R, X) be an n-node ladder graph. It takes $O(n)$ time to compute a consistent ordering σ of (L, R, X) with respect to any given outerplanar embedding \mathcal{E} of (L, R, X) such that

Fig. 2. (a) A four-canonical ordering ϕ of the four-connected plane triangulation G. (b) G_{L} is the subgraph induced by the nodes v with $1 \leq \phi(v) \leq 4$ and G_{R} is the subgraph induced by the nodes v with $5 \leq \phi(v) \leq 8$. (c) The counterclockwise post-ordering ψ_{L} of T_{L} and the clockwise post-ordering ψ_{R} of T_{R}.

$$
\begin{aligned}
& \text { - } \sigma\left(\ell_{1}\right)=1, \sigma\left(r_{1}\right)=2 \text {, and } \\
& \text { - length }((L, R, X), \sigma) \leq\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil,
\end{aligned}
$$

where ℓ_{1} (respectively, r_{1}) is the first (respectively, last) node of L (respectively, R) in clockwise order around the external boundary of (L, R, X) with respect to \mathcal{E}.

Proof. Let $L^{\prime}=L \backslash\left\{\ell_{1}\right\}$. Let $R^{\prime}=R \backslash\left\{r_{1}\right\}$. Let $X^{\prime}=X \backslash\left\{\ell_{1}, r_{1}\right\}$. Clearly, ($L^{\prime}, R^{\prime}, X^{\prime}$) is a ladder graph of $n-2$ nodes. Let σ^{\prime} be the consistent ordering of ($L^{\prime}, R^{\prime}, X^{\prime}$) with respect to \mathcal{E} ensured by Lemma 3. We have

$$
\text { length }\left(\left(L^{\prime}, R^{\prime}, X^{\prime}\right), \sigma^{\prime}\right) \leq\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil-2
$$

Let σ be the ordering of (L, R, X) such that

Fig. 3. (a) A consistent ordering of a ladder graph (L, R, X) with respect to the displayed outerplanar embedding. (b) $H^{*}=L \cup R \cup X^{*}$, where $X^{*}=X \cup\left\{\left(v_{2}, v_{8}\right)\right\}$.

- $\sigma\left(\ell_{1}\right)=1, \sigma\left(r_{1}\right)=2$, and
- $\sigma(u)=\sigma^{\prime}(u)+2$ holds for each node u other than ℓ_{1} and r_{1}.

One can easily verify that the lemma holds.

3 Our Algorithm

Let G be the input n-node four-connected plane triangulation. According to Lemma 1, it suffices to describe our algorithm for computing an st-ordering σ for G in the following four steps.

3.1 Step 1

Let ϕ be a four-canonical ordering of G ensured by Lemma 2 .

- Let G_{L} be the subgraph of G induced by the nodes v with $1 \leq \phi(v) \leq\left\lceil\frac{n}{2}\right\rceil$.
- Let G_{R} be the subgraph of G induced by the nodes v with $\left\lceil\frac{n}{2}\right\rceil<\phi(v) \leq n$.

Figure 2(b) illustrates this step, which runs in $O(n)$ time. Observe that each edge of G not in $G_{L} \cup G_{R}$ has one endpoint on the external boundary of G_{L} and the other endpoint on the external boundary of G_{R}.

3.2 Step 2

For each $i=1,2, \ldots, n$, let v_{i} denote the node of G with $\phi\left(v_{i}\right)=i$. It follows from the definition of ϕ that v_{1}, v_{2}, and v_{n} are the external nodes of G.

- For each $i=2,3, \ldots,\left\lceil\frac{n}{2}\right\rceil$, let $\pi(i)$ be the index j with $j<i$ such that v_{j} is the first neighbor of v_{i} in G_{L} in counterclockwise order around v_{i}. Let T_{L} be the spanning tree of G_{L} rooted at v_{1} such that each $v_{\pi(i)}$ is the parent of v_{i} in T_{L}. Let ψ_{L} be the counterclockwise post-ordering of T_{L}.
- For each $i=\left\lceil\frac{n}{2}\right\rceil+1,\left\lceil\frac{n}{2}\right\rceil+2, \ldots, n-1$, let $\pi(i)$ be the index j with $j>i$ such that v_{j} is the first neighbor of v_{i} in G_{R} in clockwise order around v_{i}. Let T_{R} be the spanning tree of G_{R} rooted at v_{n} such that each $v_{\pi(i)}$ is the parent of v_{i} in T_{R}. Let ψ_{R} be the clockwise post-ordering of T_{R}.

Figure 2(c) illustrates this step, which runs in $O(n)$ time. As a matter of fact, T_{L} is the canonical ordering spanning tree of G_{L} with respect to ϕ, as defined by He, Kao, and Lu [3].

Lemma 5. $\psi_{L}\left(v_{2}\right)=1, \psi_{L}\left(v_{1}\right)=\left\lceil\frac{n}{2}\right\rceil, \psi_{R}\left(v_{n-1}\right)=1$, and $\psi_{R}\left(v_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. Since ϕ is a four-canonical ordering of G, if $\left(v_{2}, v_{i}\right)$ with $i \geq 3$ is an edge of G_{L}, then v_{i} has to have a neighbor v_{k} with $2 \neq k<i$ in G_{L}. Observe that v_{2} is the node immediately succeeding v_{1} in counterclockwise order around the external boundary of G_{L}. One can verify that v_{2} cannot be the first neighbor of v_{i} in G_{L} in counterclockwise order around v_{i}. That is, we have $\pi(i) \neq 2$. Since v_{2} cannot be the parent of v_{i} in T_{L}, v_{2} has to be a leaf of T_{L}. By the relative position between v_{2} and v_{1}, it is clear that v_{2} is the first node in the counterclockwise post-ordering of T_{L}, i.e., $\psi_{L}\left(v_{2}\right)=1$.

One can prove $\psi_{R}\left(v_{n-1}\right)=1$ analogously, where v_{n} (respectively, v_{n-1}, ψ_{R}, T_{R}, and G_{R}) plays the role of v_{1} (respectively, v_{2}, ψ_{L}, T_{L}, and G_{L}). Since v_{1} is the root of T_{L} and ψ_{L} is a post-ordering of T_{L}, we have $\psi_{L}\left(v_{1}\right)=\left\lceil\frac{n}{2}\right\rceil$. Since v_{n} is the root of T_{R} and ψ_{R} is a post-ordering of T_{R}, we have $\psi_{R}\left(v_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

3.3 Step 3

Let L, R, and X be defined as follows.

- Let L be the path $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{\lceil n / 2\rceil}\right)$, where ℓ_{i} is the node of G_{L} with $\psi_{L}\left(\ell_{i}\right)=i$.
- Let R be the path $\left(r_{1}, r_{2}, \ldots, r_{\lfloor n / 2\rfloor}\right)$, where r_{i} is the node of G_{R} with $\psi_{R}\left(r_{i}\right)=i$.
- Let $X=X^{*} \backslash\left\{\left(v_{2}, v_{n}\right)\right\}$, where X^{*} consists of the edges of G with one endpoint in L and the other endpoint in R.

Figure 3(a) illustrates Lemma 5 and this step, which runs in $O(n)$ time. Figure 3(b) shows the corresponding $L \cup R \cup X^{*}$.

Lemma 6. (L, R, X) is an n-node ladder graph.
Proof. Consider any edge $\left(\ell_{i}, r_{j}\right)$ of X. By definition of ϕ, ℓ_{i} has to be on the external boundary of G_{L} and r_{j} has to be on the external boundary of G_{R}. By definition of T_{L}, ℓ_{i} is either a leaf of T_{L} or on the rightmost path of T_{L}. By definition of ψ_{L}, if $\ell_{i_{1}}, \ell_{i_{2}}, \ldots, \ell_{i_{p}}$ with $i_{1}=1$ are the nodes on the external boundary of G_{L} in counterclockwise order, then $i_{1}<i_{2}<\cdots<i_{p}$. Similarly, by definition of T_{R}, r_{j} is either a leaf of T_{R} or on the leftmost path of T_{R}. By definition of ψ_{R}, if $r_{j_{1}}, r_{j_{2}}, \ldots, r_{j_{q}}$ with $j_{1}=1$ are the nodes on the external boundary of G_{R} in clockwise order, then $j_{1}<j_{2}<\cdots<j_{q}$. Since G is a plane graph and the edges of X do not cross one another in G, the edges of X do not cross one another in (L, R, X). Therefore, (L, R, X) is outerplanar.

3.4 Step 4

Let $H=(L, R, X)$. Lemma 6 ensures that H is an n-node ladder graph. Consider the outerplanar embedding \mathcal{E} of H such that

$$
\ell_{1}, \ell_{2}, \ldots, \ell_{\lceil n / 2\rceil}, r_{\lfloor n / 2\rfloor}, r_{\lfloor n / 2\rfloor-1}, \ldots, r_{1}
$$

are the nodes in clockwise order around the external boundary of H. Let the output σ of our algorithm be the consistent ordering of H with respect to \mathcal{E} ensured by Lemma 4. Figure 3(a) illustrates this step, which also runs in $O(n)$ time.
Lemma 7. The $O(n)$-time obtainable σ is an st-ordering of G with $\sigma\left(v_{2}\right)=1$ and $\max \left(\sigma\left(v_{1}\right), \sigma\left(v_{n}\right)\right)=n$.
Proof. We first show that ψ_{L} is an st-ordering of G_{L}. Let i be an index with $2 \leq$ $i<\left\lceil\frac{n}{2}\right\rceil$. Let k be the index such that ℓ_{k} is the parent of ℓ_{i} in T_{L}. Since ψ_{L} is a postordering of T_{L}, we know that ℓ_{k} is a neighbor of ℓ_{i} in G_{L} with $i<k$. Let j be the index such that ℓ_{j} is the neighbor of ℓ_{i} in G_{L} immediately succeeding ℓ_{k} in counterclockwise order around ℓ_{i}. Recall that ℓ_{k} is the first neighbor of ℓ_{i} in G_{L} with $\phi\left(\ell_{k}\right)<\phi\left(\ell_{i}\right)$ in counterclockwise order around ℓ_{i}. Since ϕ is a four-canonical ordering of G, we also have $\phi\left(\ell_{j}\right)<\phi\left(\ell_{i}\right)$. Since ψ_{L} is the counterclockwise post-ordering of T_{L}, we have $\psi\left(\ell_{j}\right)<\psi\left(\ell_{i}\right)$, i.e., $j<i$. Since ℓ_{j} and ℓ_{k} are two neighbors of ℓ_{i} in G_{L} with $j<i<k$, we know that ψ_{L} is an st-ordering of G_{L}. It can be proved analogously that ψ_{R} is an $s t$-ordering of G_{R}.

Since σ is a consistent ordering of H with respect to \mathcal{E}, we know that $1 \leq i<j \leq$ $\left\lceil\frac{n}{2}\right\rceil$ implies $\sigma\left(\ell_{i}\right)<\sigma\left(\ell_{j}\right)$ and $1 \leq i<j \leq\left\lfloor\frac{n}{2}\right\rfloor$ implies $\sigma\left(r_{i}\right)<\sigma\left(r_{j}\right)$. We have the following observations.

- Since ψ_{L} is an st-ordering of G_{L}, for each $i=1, \ldots,\left\lceil\frac{n}{2}\right\rceil-1, \ell_{i}$ has a neighbor ℓ_{k} in G_{L} with $i<k$. Since G_{L} is a subgraph of G, ℓ_{k} is a neighbor of ℓ_{i} in G with $\sigma\left(\ell_{i}\right)<\sigma\left(\ell_{k}\right)$.
- Since ψ_{L} is an st-ordering of G_{L}, for each $i=2, \ldots,\left\lceil\frac{n}{2}\right\rceil, \ell_{i}$ has a neighbor ℓ_{j} in G_{L} with $j<i$. Since G_{L} is a subgraph of G, we know that ℓ_{j} is a neighbor of ℓ_{i} in G with $\sigma\left(\ell_{j}\right)<\sigma\left(\ell_{i}\right)$.
- Since ψ_{R} is an st-ordering of G_{R}, for each $i=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1, r_{i}$ has a neighbor r_{k} in G_{R} with $i<k$. Since G_{R} is a subgraph of G, we know that r_{k} is a neighbor of r_{i} in G with $\sigma\left(r_{i}\right)<\sigma\left(r_{k}\right)$.
- Since ψ_{R} is an st-ordering of G_{R}, for each $i=2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor, r_{i}$ has a neighbor r_{j} in G_{R} with $j<i$. Since G_{R} is a subgraph of G, we know that r_{j} is a neighbor of r_{i} in G with $\sigma\left(r_{j}\right)<\sigma\left(r_{i}\right)$.

According to the above observations, it suffices to ensure that edges $\left(\ell_{1}, r_{1}\right)$ and $\left(\ell_{\lceil n / 2\rceil}, r_{\lfloor n / 2\rfloor}\right)$ belong to G. By Lemma 5, $\ell_{1}=v_{2}, r_{1}=v_{n-1}, \ell_{\lceil n / 2\rceil}=v_{1}$, and $r_{\lfloor n / 2\rfloor}=v_{n}$. Since v_{1} and v_{n} are external nodes of the plane triangulation G, we know that $\left(\ell_{\lceil n / 2\rceil}, r_{\lfloor n / 2\rfloor}\right)=\left(v_{1}, v_{n}\right)$ is an edge of G. By definition of four-canonical ordering ϕ, we know that v_{n-1} is adjacent to v_{2}. Therefore, $\left(\ell_{1}, r_{1}\right)=\left(v_{2}, v_{n-1}\right)$ is an edge of G.
Figure 1(a) shows the resulting st-ordering σ of G computed by our algorithm.

3.5 Proving Theorem 1

Proof. Note that v_{1}, v_{2}, and v_{n} are the external nodes of G. By Lemmas 1 and 7, it suffices to ensure

$$
\begin{equation*}
\text { length }(G, \sigma) \leq\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil \tag{1}
\end{equation*}
$$

By Step 4 and Lemmas 4 and 6, we have

$$
\begin{equation*}
\text { length }(H, \sigma) \leq\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil \tag{2}
\end{equation*}
$$

Let $H^{*}=L \cup R \cup X^{*}$. That is, $H^{*}=H \cup\left\{\left(v_{2}, v_{n}\right)\right\}$, as illustrated by Fig. 3(a) and 3(b). By definition of σ and Lemma 5, we have $\sigma\left(v_{2}\right)=1$ and $\sigma\left(v_{n}\right) \geq \max _{j} \sigma\left(r_{j}\right)$. Therefore, any σ-increasing path of H^{*} containing edge (v_{2}, v_{n}) contains exactly one node of R, i.e., v_{n}, and thus has length at most $\left\lceil\frac{n}{2}\right\rceil$. It follows from Inequality (2) that

$$
\begin{equation*}
\text { length }\left(H^{*}, \sigma\right) \leq\left\lceil\frac{n}{2}\right\rceil+2\left\lceil\sqrt{\frac{n-2}{2}}\right\rceil \tag{3}
\end{equation*}
$$

To prove Inequality (1), it remains to show that if P is a σ-increasing path of G, then there is a σ-increasing path Q of H^{*} such that the length of Q is no less than that of P. For each edge (u, v) of P with $\sigma(u)<\sigma(v)$, let $Q(u, v)$ be the σ-increasing path of H^{*} defined as follows.

- If $u=\ell_{i}$ and $v=r_{j}$, then let $Q(u, v)=(u, v)$, which is a σ-increasing path of X^{*}.
- If $u=r_{i}$ and $v=\ell_{j}$, then let $Q(u, v)=(u, v)$, which is a σ-increasing path of X^{*}.
- If $u=\ell_{i}$ and $v=\ell_{j}$, then by $\sigma\left(\ell_{i}\right)<\sigma\left(\ell_{j}\right)$ we know $\psi_{L}\left(\ell_{i}\right)<\psi_{L}\left(\ell_{j}\right)$ and thus $i<j$. Let $Q(u, v)=\left(\ell_{i}, \ell_{i+1}, \ldots, \ell_{j}\right)$. Since σ is a consistent ordering of H with respect to $\mathcal{E}, Q(u, v)$ is a σ-increasing path of L.
- If $u=r_{i}$ and $v=r_{j}$, then by $\sigma\left(r_{i}\right)<\sigma\left(r_{j}\right)$ we know $\psi_{R}\left(r_{i}\right)<\psi_{R}\left(r_{j}\right)$ and thus $i<j$. Let $Q(u, v)=\left(r_{i}, r_{i+1}, \ldots, r_{j}\right)$. Since σ is a consistent ordering of H with respect to $\mathcal{E}, Q(u, v)$ is a σ-increasing path of R.

Let Q be the union of $Q(u, v)$ for all edges (u, v) of P. Since each $Q(u, v)$ is a σ increasing path of H^{*}, so is Q. The length of Q is no less than that of P. That is, we have

$$
\begin{equation*}
\text { length }(G, \sigma) \leq \operatorname{length}\left(H^{*}, \sigma\right) \tag{4}
\end{equation*}
$$

Since Inequality (1) is immediate from Inequalities (3) and (4), the lemma is proved.

4 A Lower Bound

Let plane graph N_{k} be defined recursively as follows.

- Let N_{1} be the four-node internally triangulated plane graph with four external nodes.

(a)

(b)

Fig. 4. (a) A four-connected plane graph N_{k+1} and its relation with N_{k}. (b) A visibility representation D_{k+1} of N_{k+1} and its relation with D_{k}.

- Let N_{k+1} be obtained from N_{k} by adding four nodes and twelve edges in the way as shown in Fig. 4(a).

One can easily verify that each N_{k} with $k \geq 1$ is indeed four-connected. The following lemma ensures that the the upper bound provided by Theorem 1 has an optimal firstorder term.

Lemma 8. All visibility representations of N_{k} have heights at least $2 k$.
Proof. We prove the lemma by induction on k. The lemma holds trivially for $k=1$. Assume for a contradiction that N_{k+1} admits a visibility representation D_{k+1} with height no more than $2 k+1$. Let D_{k} be obtained from D_{k+1} by deleting all the horizontal segments representing those four external nodes of N_{k+1}. Since D_{k+1} has to reflect the planar embedding of N_{k+1}, D_{k} is a visibility representation of N_{k}. Since the external nodes of N_{k} are internal in N_{k+1}, the horizontal segments of D_{k+1} representing the external nodes of N_{k+1} have to wrap D_{k} completely. That is, D_{k+1} must have a horizontal segment above D_{k} and a horizontal segment below D_{k}. Therefore, the height of D_{k+1} is at least two more than that of D_{k}. It follows that the height of D_{k} is at most $2 k-1$, contradicting the inductive hypothesis. Since N_{k+1} cannot admit a visibility representation with height less than $2 k+2$, the lemma is proved.

5 Concluding Remarks

It would be of interest to close the $\Theta(\sqrt{n})$ gap between the upper and lower bounds on the required height for the visibility representation of any n-node four-connected plane graph. We conjecture that the $\Theta(\sqrt{n})$ term in our upper bound can be reduced to $O(1)$.

References

1. Even, S., Tarjan, R.E.: Computing an st-numbering. Theoretical Computer Science 2(3), 339-344 (1976)
2. Fan, J.H., Lin, C.C., Lu, H.I., Yen, H.C.: Width-optimal visibility representations of plane graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 160-171. Springer, Heidelberg (2007)
3. He, X., Kao, M.Y., Lu, H.I.: Linear-time succinct encodings of planar graphs via canonical orderings. SIAM Journal on Discrete Mathematics 12(3), 317-325 (1999)
4. Kant, G.: A more compact visibility representation. International Journal Computational Geometry and Applications 7(3), 197-210 (1997)
5. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science 172, 175-193 (1997)
6. Lin, C.C., Lu, H.I., Sun, I.F.: Improved compact visibility representation of planar graph via Schnyder's realizer. SIAM Journal on Discrete Mathematics 18(1), 19-29 (2004)
7. Otten, R.H.J.M., van Wijk, J.G.: Graph representations in interactive layout design. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 914-918 (1978)
8. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete and Computational Geometry 1, 343-353 (1986)
9. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete and Computational Geometry 1, 321-341 (1986)
10. Zhang, H., He, X.: Compact visibility representation and straight-line grid embedding of plane graphs. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 493-504. Springer, Heidelberg (2003)
11. Zhang, H., He, X.: On visibility representation of plane graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 477-488. Springer, Heidelberg (2004)
12. Zhang, H., He, X.: Canonical ordering trees and their applications in graph drawing. Discrete and Computational Geometry 33, 321-344 (2005)
13. Zhang, H., He, X.: Improved visibility representation of plane graphs. Computational Geometry 30(1), 29-39 (2005)
14. Zhang, H., He, X.: New theoretical bounds of visibility representation of plane graphs. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 425-430. Springer, Heidelberg (2005)
15. Zhang, H., He, X.: Nearly optimal visibility representations of plane graphs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 407-418. Springer, Heidelberg (2006)
16. Zhang, H., He, X.: Optimal st-orientations for plane triangulations. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 296-305. Springer, Heidelberg (2007)
17. Zhang, H., He, X.: Nearly optimal visibility representations of plane triangulations. SIAM Journal on Discrete Mathematics (accepted upon minor revision) (2008)

[^0]: * Corresponding author. http://www.csie.ntu.edu.tw/~hil. This author also holds a joint appointment in the Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University. Research supported in part by NSC grant 96-2221-E-002-033.

