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6 Abstract

7 One of the biggest challenges in future application development is device heterogeneity. In the future, we expect to see a rich

8 variety of computing devices that can run applications. These devices have different capabilities in processors, memory, networking,

9 screen sizes, input methods, and software libraries. We also expect that future users are likely to own many types of devices. De-

10 pending on users� changing situations and environments, they may choose to switch from one type of device to another that brings
11 the best combination of application functionality and device mobility (size, weight, etc.). Based on this scenario, we have designed

12 and implemented a seamless application framework called the Roam system that can both assist developers to build multi-platform

13 applications that can run on heterogeneous devices and allow a user to move/migrate a running application among heterogeneous

14 devices in an effortless manner. The Roam system is based on partitioning of an application into components and it automatically

15 selects the most appropriate adaptation strategy at the component level for a target platform. To evaluate our system, we have

16 created several multi-platform Roam applications including a Chess game, a Connect4 game, and a shopping aid application. We

17 also provide measurements on application performance and describe our experience with application development in the Roam

18 system. Our experience shows that it is relatively easy to port existing applications to the Roam system and runtime application

19 migration latency is within a few seconds and acceptable to most non-real-time applications.

20 � 2003 Elsevier Science Inc. All rights reserved.
21

22 1. Introduction

23 The era of PC-dominated applications is about to

24 end. Now-a-days, we see widespread use of mobile de-
25 vices that have sufficient computing and networking

26 capabilities to run a variety of feature-rich applications.

27 They come in a variety of form factors, including smart

28 pagers, cell phones, PDAs (Pocket PCs), handheld PCs,

29 car navigation systems, and notebook PCs. An average

30 person may already own multiple such devices. It is

31 expected that in the near future, the number of such

32 devices will far exceed the number of desktop PCs. As a
33 consequence we expect that the predominant software

34 platform will shift from PCs to mobile devices. This

35 creates a challenge for developers to build applications

36 that can run on different mobile device platforms. To

37 address this challenge, we believe that there is a need to

38provide an application framework for building multi-

39platform mobile applications.

40We also expect a mobile user may choose to switch

41from one type of device to another type of device, in the
42middle of using an application, in order to access nec-

43essary application functionality or to become more

44mobile, based on changing situations, environments, or

45needs. For example, a user starts planning a vacation

46online using a desktop computer in his/her office. In the

47middle of planning, he/she receives an urgent call and

48must leave the office for a meeting at a remote site. The

49user would like to continue planning the trip on the bus
50or during break time between meetings. Given the need

51for mobility, he/she switches to a lightweight, mobile

52device (PDA or cell phone) away from the office. Based

53on this scenario, we believe that when mobile users

54switch devices, there is a need to allow them to move any

55running application effortlessly between devices.

56Based on these two needs, developers will be required

57to write seamless applications. We define a seamless
58application to be an application that can run on heter-

59ogeneous devices and migrate at runtime among heter-

*Corresponding author.

E-mail addresses: haochu@docomolabs-usa.com (H.-h. Chu),

csyus@docomolabs-usa.com (H. Song), wong@docomolabs-usa.com

(C. Wong), kurakake@docomolabs-usa.com (S. Kurakake), katag-

iri@docomolabs-usa.com (M. Katagiri).

0164-1212/03/$ - see front matter � 2003 Elsevier Science Inc. All rights reserved.
doi:10.1016/S0164-1212(03)00052-9

The Journal of Systems and Software xxx (2003) xxx–xxx

www.elsevier.com/locate/jss

JSS 7451 No. of Pages 18, DTD=4.3.1

7 March 2003 Disk used SPS-N, Chennai
ARTICLE IN PRESS

mail to: haochu@docomolabs-usa.com


UNCORRECTED
PROOF

60 ogeneous devices. There has been an abundance of re-

61 search in the area of mobile agents that allow applica-

62 tions to move from one host to another at runtime with

63 little or no loss of execution states (Aramira, 1999;

64 Acharya et al., 1997; Banavar et al., 2000; F€uunfrocken,
65 1998; Gray et al., 1997; Lange and Oshima, 1998; Mil-
66 ojicicc et al., 1998; Mitsubishi Electric ITA Horizon

67 Systems Laboratory, 1998; ObjectSpace, xxxx; Peine

68 and Stolpmann, 1997; Strasser et al., 1996; White et al.,

69 1997). These systems are mostly built on top of the Java

70 virtual machine (JVM), which provides the advantage of

71 a common runtime environment. However, these sys-

72 tems make an important assumption of device homoge-

73 neity. For example, the underlying hosts/devices must be
74 PC or PC-like devices with enough hardware/software

75 (HW/SW) capabilities to run the standard JVM. Given

76 this device homogeneity assumption and Java�s ‘‘Write
77 Once, Run Anywhere’’ programming model, it is rela-

78 tively straightforward to realize runtime application

79 migration among similar devices. However, device ho-

80 mogeneity is not a realistic assumption in today�s mobile
81 computing environment where there exists a wide range
82 of mobile devices and information appliances with dif-

83 ferent HW/SW capabilities. For an example, a cell

84 phone or a PDA in comparison to a desktop computer

85 has a slower processing speed, less memory, little or no

86 permanent storage, slower and unreliable network con-

87 nectivity, smaller screen size, and limited input capa-

88 bilities. To address device heterogeneity, Java introduces

89 mutually incompatible Java 2 Micro Edition (J2ME)
90 profiles and configurations for different classes of mobile

91 devices. As a result, Java�s ‘‘Run Anywhere’’ ideal does
92 not apply to the device heterogeneous environment.

93 1.1. Challenges

94 The focus of the Roam system is to address the device

95 heterogeneity problem in runtime application migration.
96 Fig. 1 shows different aspects of this problem that a Java

97 application developer may face when developing a

98 seamless application.

99 • Incompatible Java virtual machine configurations and

100 profiles: Java provides incompatible virtual machine

101 (VM) configurations and profiles for different classes

102 of mobile device. These VM configurations and pro-

103 files support different subsets of APIs that application

104 developers can use to build applications. A device

105 with more capable HW (e.g., more memory and fas-
106 ter processors) can typically support a VM with a

107 more extensive Java class library. If an application

108 uses APIs provided by a Java profile or configuration

109 of a more capable platform, this application may not

110 be able to run on less capable platforms that do not

111 support these APIs.

112• Execution state migration: In a runtime application

113migration from a source device to a target device,

114the execution state of an application needs to be cap-

115tured on the source device, transferred to a target de-

116vice and restored. The application execution state

117includes heap, stack, network sockets, file I/O state,

118and other state information. Device heterogeneity

119brings an additional challenge in execution state mi-
120gration. Given the incompatible configurations and

121profiles on different device platforms, application de-

122velopers may choose to create multiple device-depen-

123dent implementations (M-DD) for an application

124component (e.g., one implementation for each spe-

125cific device platform), or they can use an automated

126tool that can transform an application component

127into code that can be run on each platform. This
128means that, if an application has two different imple-

129mentations (either hand-coded or transformed) on

130two different platforms, the captured runtime execu-

131tion state on the source device may not correspond

132to the different implementation on the target device.

133• User interface: Different platforms have different dis-

134play sizes and input methods. A DoCoMo 503i cell

135phone has an approximately 120� 130 pixel display
136and a small numeric keypad; a Compaq iPaq Pock-

137etPC has a 320� 240 pixel display and a stylus; and
138an average notebook PC has a 1024� 768 pixel dis-
139play, a keyboard and a pointing device. Display size

140can change the presentation and layout of the GUI

141components. A large display (e.g., desktop PC) can

142accommodate big GUI components, and many

143GUI components can be presented at once in the
144same window or page. On the other hand, a small dis-

145play can only accommodate highly compact GUI

146components, and only a few GUI components can

147be displayed at once. In addition, the constraints of

148the devices� display sizes and input methods can affect

Fig. 1. Challenges for application migration in heterogeneous device

environment.
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149 the range of tasks that are appropriate on each plat-

150 form. For example, a notebook PC or a Blackberry

151 pager with a keyboard is suitable for performing

152 tasks that involve text entry. On the other hand, a cell

153 phone with only a numeric keypad is prohibitively

154 difficult to use for tasks involving text entry.

155 1.2. General approach

156 To address the challenges described in the previous

157 section, the Roam system provides a seamless applica-

158 tion framework for developers to build resource-aware

159 seamless applications. By resource-aware, we mean that

160 applications are aware of the underlying device capa-
161 bilities (Java VM configuration and profile, display size,

162 input method, memory, network, etc.), which may

163 change when they migrate between devices. In order to

164 migrate applications between devices with different ca-

165 pabilities, adaptation is needed. The Roam system uti-

166 lizes the following three adaptation strategies:

167 • Dynamic instantiation: An application is divided into

168 M-DD components that perform the same function,

169 but each component is implemented/re-implemented

170 for different platforms. At migration time or runtime,
171 the set of components that best fit the target device

172 capabilities is selected for instantiation. For example,

173 the Java VM configuration and profile supported on

174 the target device is considered as a part of the target

175 device capabilities in the Roam system. A developer

176 can provide two device-dependent implementations

177 of the same component, one for cell phones that sup-

178 port the J2ME DoCoMo Java (DoJa) profile, and an-
179 other for notebook PCs that support the Java 2

180 Standard Edition (J2SE) VM. When an application

181 is started on or migrated to a cell phone, the Roam

182 system dynamically instantiates the cell phone imple-

183 mentation.

184 • Offloading computation: The Roam system allows ap-

185 plications to make use of distributed computing re-

186 sources to run software components that are
187 beyond the target device capabilities. These compo-

188 nents may require a more capable Java VM, or have

189 certain CPU, memory, or network requirements, such

190 that it is necessary to dispatch them to remote servers

191 that can better support these requirements. Consider

192 an application that has a component implemented to

193 run only on the J2SE VM. When this application is

194started on or migrated to a cell phone, the Roam sys-

195tem finds a remote server capable of running the J2SE

196VM and offloads that software component to that re-

197mote server.

198• Transformation: The Roam system allows device-in-

199dependent components to be transformed at runtime
200to fit the target device capabilities. It provides a de-

201vice-independent GUI toolkit that a developer can

202use to build user interface (UI) components. At mi-

203gration time or runtime, these device-independent

204UI components are transformed to run on the target

205device.

206The Roam system is a framework to assist developers

207in building applications that can adapt to heterogeneous

208devices. At design time, a developer must make the de-

209cision on how to partition an application into separate
210components, and for each component, whether to pro-

211vide multiple device-dependent implementations (M-

212DD), a single device-dependent implementation (S-DD),

213or a single device-independent presentation (S-DI). At

214runtime or migration time, the Roam system applies the

215most appropriate adaptation strategy, shown in Table 1,

216based on the developer�s design decision and the target
217device capabilities.
218We believe that some adaptation strategies are better

219suited for certain types of application components. For

220some UI components, we believe that transformation

221adaptation may be the most appropriate, given that

222most UI components cannot be offloaded to a remote

223server for execution. However, device-independent UI

224authoring sometimes does not result in high-quality in-

225terfaces. In these cases, M-DD UI components are de-
226veloped, and dynamic instantiation adaptation is

227preferred. This decision is up to the UI developer. For

228application logic components, we believe that S-DD

229implementation, using offloading computation adapta-

230tion is often most suitable, because most application

231logic components can be offloaded to remote servers for

232execution.

233In order to suspend and resume the execution of
234mobile applications across heterogeneous devices, the

235Roam system must be able to capture execution state on

236the source device, serialize and transfer it to the target

237device, and then restore it. Because M-DD components

238may be dynamically instantiated, and the implementa-

239tion of each is different, execution state must be cap-

240tured using a device-independent state representation,

Table 1

Summary of adaptation strategies

Adaptation strategies Application components Intended for

Dynamic instantiation Multiple device-dependent implementations (M-DD) Customized, high-quality UI components

Offloading computation Single device-dependent implementation (S-DD) Application logic components

Transformation Single device-independent presentation (S-DI) UI components
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241 and converted into representations specific to each

242 component implementation using execution state trans-

243 formation. The Roam system requires developers to

244 provide execution state transformation logic for M-DD

245 components. There is no need for a developer to provide

246 execution state transformations for S-DI or S-DD
247 components that have a single implementation. When

248 Roam system applies transformation adaptation to an

249 S-DI component, it automatically generates the corre-

250 sponding execution state transformation.

251 Another important requirement is Security. Proper

252 security policy must be enforced to ensure that only

253 authorized applications are allowed to migrate from one

254 device to another.

255 1.3. Organization

256 We organize the remainder of the paper as follows:

257 Section 2 presents the design of the Roam system, Sec-

258 tion 3 describes its implementation, APIs and a sample

259 application, Section 4 presents related work, and Section

260 5 draws conclusions.

261 2. Design

262 The Roam system architecture is shown in Fig. 2. A

263 Roamlet is an application that runs in the Roam system.

264 A Roamlet can migrate between any two connected

265 devices that have the Roam system running. The ar-
266 chitecture contains three main components: Roam

267 Agent, Roamlet, and HTTP Server. Roam agents must

268 be installed and executed on both the source and target

269 devices before a Roamlet can run, and before any

270 Roamlet migration can occur. The flow for a Roamlet

271 migration from a PC device to a PDA device is described

272 as follows:

273 1. The Roam agent on the source device first negotiates

274 with the Roam agent on the target device. The nego-

275 tiation involves exchanges of the target device capa-
276 bilities, the device capabilities needed by each

277 application component, and the code base URL

278 where the Roamlet component byte code can be

279 downloaded from. Based on the exchanged informa-

280 tion, the Roam agent decides the appropriate adapta-

281 tion strategy for each component.

2822. The Roam agent on the target device downloads the

283necessary Roamlet class byte code from the HTTP

284server for all application components that will be in-

285stantiated on the target device.

2863. The Roamlet on the source device serializes its execu-

287tion state and sends it to the Roam agent on the tar-
288get device. The Roam agent may perform execution

289state transformation if an application component is

290transformed or dynamically instantiated.

2914. The Roam agent instantiates the Roamlet on the tar-

292get device.

293Roamlets are based on a component-based program-

294ming model: they are built as components that can be

295distributed across multiple devices, and can be com-

296posed together into a working application through well-

297defined interfaces. Fig. 3 shows an example of a
298Roamlet partitioned into three components: a GUI

299component with device-independent representation (S-

300DI), a second GUI component with two device-depen-

301dent implementations on PC and PDA (M-DD), and an

302application logic component with a PC implementation

303(S-DD). The component-based programming model al-

304lows the Roam system to apply a different adaptation

305strategy on different application component, such as
306offloading an S-DD component to a remote device,

307dynamically instantiating an M-DD component of a

308different implementation, and transforming an S-DI

309component without affecting other components in a

310Roamlet. This requires each component to invoke pro-

311cedure calls of any other components regardless of

312whether they are running on remote or local hosts. In

313our current Roam system, the component-based pro-
314gramming model is built on top of Java Remote Method

315Invocation (RMI).

316Roamlets and Roam agents use resource specifica-

317tions to describe the device requirements for each com-

318ponent implementation, and the capabilities of a host

319device, respectively. At migration or load time, the

320Roam agent can compare the device requirements from

321the application components with the target device ca-
322pabilities and decide the best adaptation strategy for

323each application component. Note that components in a

324Roamlet may have different device requirements, so a

325Roamlet is required to provide a separate set of device

326requirements for each component implementation. The

327current Roam system supports specification of a limited

328set of device capabilities, including Java VM configu-

329ration or profile, display size and input method, as
330shown in Table 2. For example, device capabilities for a

331PC are {J2SE VM, 1024� 780 pixels, keyboard and
332mouse}. The device requirements for the PDA imple-

333mentation of the GUI component shown in Fig. 3 can

334be {Personal Java VM, 320� 240 pixels, stylus}, and the
335PC implementation of the GUI component can be

336{J2SE VM, 1024� 780 pixels, keyboard and mouse}.

HTTP Server

Roamlet Classes

PDA (Target Device)

RoamAgent

PC (Source Device)

Roamlet

RoamAgent

Roamlet

(2) Code Downloading

(1) Negotiation

(3) Sending
Serialized State

(4) Instantiation

Fig. 2. Roam system architecture.
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337 Since the scalable GUI (SGUI) component has a device-

338 independent representation, its device requirements can

339 contain a range of capabilities.

340 2.1. Dynamic instantiation

341 In dynamic instantiation, a developer provides M-

342 DD implementations for a Roamlet component. The
343 rule for selecting the most suitable device-dependent

344 implementation is that the component implementation

345 that best matches (but not exceeds) the target device

346 capability is selected. An example of a Roamlet mi-

347 grating from a PC to a PDA is shown in Fig. 3(a). The

348 Roam agent finds that the PDA implementation of the

349 second GUI component exactly matches the target de-

350 vice (PDA) capability and instantiates it.
351 Using dynamic instantiation, Roamlet developers can

352 program different Roamlet behaviors in separate code

353 segments. At migration time the Roam system loads

354 only the code segment that exhibits a behavior suited for

355 the target device capability. Note that dynamic instan-

356 tiation is different from programming different behav-

357 iors in the same code segment, which is not always

358 desirable in Java. For this approach to work, the
359 Roamlet has to be programmed to run on the least ca-

360 pable device (the lowest-common denominator approach)

361because the code segment that runs on different VM

362configurations and devices can only assume the most

363primitive API libraries provided by the least capable

364VM and devices. This is obviously undesirable for ap-

365plication programmers who would like to take advan-

366tage of rich class libraries provided by more capable

367devices.

368The Connect4 Roamlet is a multi-platform game that
369we implemented to illustrate dynamic instantiation ad-

370aptation. Its GUI component provides M-DD presen-

371tations, one matching the PDA device capability and

372one matching the PC device capability. When Connect4

373is instantiated on the PC, its PC presentation is selected

374for instantiation (Fig. 4(a)). When the user later mi-

375grates the Connect4 game to a PDA, its PDA presen-

376tation is selected for instantiation (Fig. 4(b)). The PDA
377presentation is a scaled down version of the PC pre-

378sentation with some features and buttons removed to fit

379the smaller PDA display size (such as ‘‘undo’’ and ‘‘new

380game’’).

381Dynamic instantiation creates a challenging situa-

382tion, where a Roamlet is instantiated with a different

383implementation on the source device from that on the

384target device, as shown in Fig. 3(a). The execution state
385of the PC GUI component on the source device does not

386correspond to the PDA GUI component instantiated on

Table 2

Specification for device capabilities

Types of Java VM Display sizes Input methods

PC device capability J2SE 1024� 780 Mouse and keyboard

Pocket PC device capability PersonalJava 320� 240 Stylus and virtual keyboard

Cell phone device capability J2ME/DoJa profile 100� 100 Keypad

Application Logic
Component (S-DD)

PC
Implementation

PDA
Implementation

GUI Component
(M-DD)

PC
Implementation

The Source Device (PC) The Target Device (PDA)

(a) Dynamic Instantiation

PC
Implementation

PDA
Implementation

Application Migration

PC
Implementation

Computing Server

PC
Implementation

(b) Offloading ComputationScalable GUI
Component (S-DI)

PDA
Presentation

Device-Independent
Representation

PC
Presentation

(c) Transformation

Roamlet Component-Based
Programming Model

PC
Implementation

PDA
Implementation

GUI Component
(M-DD)

PC
Implementation

PC
Implementation

PDA
Implementation

PC
Implementation

PC
Implementation

Scalable GUI
Component (S-DI)

PDA
Presentation

Device-Independent
Representation

PC
Presentation

Fig. 3. Roamlet component-based programming model and different adaptation strategies for Roamlet components.
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387 the target device. For example, the PC GUI component

388 might use radio buttons to present a choice, while the

389 PDA GUI component might use a drop-down list in-

390 stead. In order to migrate the execution state of the PC
391 GUI component to the PDA GUI component, execu-

392 tion state must be transformed before it can be restored

393 on the target device (e.g., mapping the value of the radio

394 button to the drop-down list). This state transformation

395 logic is provided by developers.

396 2.2. Offloading computation

397 Offloading computation allows a Roamlet to delegate

398 the execution of computation- and memory-intensive

399 components to any remote server that has the device

400 capabilities to run them. Offloading computation is in-

401 tended for an application component that has a S-DD

402 implementation. Fig. 3(b) shows offloading computation

403 for an S-DD application logic component. After the

404 Roam agent finds that the application logic component
405 requires a PC-equivalent device, which exceeds the PDA

406 host�s capabilities, it attempts to find a computing server
407 (PC) where it can offload this application logic compo-

408 nent. Both the Roamlet users and the Roam agent can

409 specify a list of servers that can accept offloadable

410 components. When a server is found, the Roam agent

411 directs the application logic component to be migrated

412 to that server. A Roam agent can apply offloading
413 computation to an M-DD component if none of its

414 device-dependent implementations can run on the target

415 device. For example, if an M-DD component has two

416 implementations on PC and PDA and the target device

417 is a cell phone, dynamic instantiation will fail. In this

418 case, the Roam agent will find the most capable server

419 on the list, and offload an appropriate M-DD compo-

420 nent to it. The precedence rule for applying different
421 adaptation strategies is that a Roam agent first applies

422dynamic instantiation adaptation to an application

423component. If the dynamic instantiation adaptation

424fails, it will apply offloading computation adaptation.

425The Connect4 game in Fig. 4 contains a S-DD ap-

426plication logic component that is offloadable. The ap-

427plication logic component keeps track of the state of the
428game and implements an artificial intelligence (AI) en-

429gine that computes the computer�s next move. Since the
430AI could be computationally- and memory-intensive, it

431requires a device with a fast processor and sufficient

432memory. When the Connect4 game is running on the

433PC, the application logic component is instantiated lo-

434cally. When the Connect4 game is migrated to the PDA,

435the application logic component is offloaded to a com-
436puting server.

437Not all components in a Roamlet are offloadable.

438The Roam system allows a Roamlet to specify its

439components as either non-offloadable or offloadable

440components. Non-offloadable components are required

441to run on the target device. For example, GUI compo-

442nents and security-sensitive components are rarely off-

443loaded. If the target device does not have the capability
444to run the non-offloadable components, the application

445migration simply fails and an error is presented to the

446user. A Roamlet can also specify components as reverse-

447offloadable or non-reverse-offloadable. Consider the same

448example in Fig. 3(b). At a later time, the user wants to

449migrate the Roamlet back to the PC from the PDA. If

450the application logic component is reverse-offloadable, it

451will be pulled back from the computing server to the
452target PC device; otherwise, the application logic com-

453ponent will stay on the computing server. It is a trade-off

454between paying a one-time transfer cost of migrating the

455application logic component (in the case of reverse-off

456loadable) vs. the continuous cost of communicating with

457that remote component in a Roamlet (in the case of non-

458reverse-offloadable).

4592.3. Transformation

460Transformation is a runtime UI generation process

461from a device-independent representation constructed

462by developers at design time to device-dependent pre-

463sentations. Fig. 3(c) shows transformation of a device-

464independent UI component into a PDA presentation

465when the Roamlet migrates to a PDA. To build a de-
466vice-independent representation and to generate device-

467dependent presentations, we provide a device-indepen-

468dent GUI library and a runtime transformation tool,

469which we called the SGUI toolkit.

470The design of the SGUI toolkit is shown in Fig. 5. It

471contains three modules: SGUI library, transformation

472manager, and render manager. The process flow goes as

473follows. At design time, UI designers use widgets pro-
474vided by the SGUI library to construct device inde-

475pendent UI presentations. At runtime, the

Fig. 4. Screenshots of M-DD presentations of Connect4 Roamlet: one

presentation for PC and one presentation for PDA.
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477 dent representation into a device-dependent presenta-

478 tion that satisfies the target device constraints (display

479 size and the available input methods). The render

480 manager displays the device- presentation on the target

481 device.

482 2.3.1. Shop hunter application

483 ‘‘Shop hunter’’ is a hypothetical multi-platform ap-
484 plication that helps a user to buy items anytime, any-

485 where. We will use the shop hunter application to

486 illustrate transformation adaptation supported by the

487 SGUI toolkit. The shop hunter application allows a user

488 to input new shopping items, to view a list of shopping

489 items, and to search for directions to nearby stores with

490the cheapest prices. We have prototyped a device-inde-

491pendent representation of the shop hunter UI using our

492SGUI toolkit, and applied transformation to generate

493device-specific presentations for notebook PCs, PDAs,

494and cell phones which are shown in Fig. 6.

495The first noticeable difference between different de-
496vice-specific presentations is how the device�s display-
497able screen size changes the layout and pagination. The

498notebook PC presentation fits on one page, the PDA

499presentation is laid out on three different pages, and the

500cell phone presentation is broken up into six pages. The

501second noticeable difference between the screenshots is

502that the ‘‘sort’’ UI components are different between the

503notebook/Pocket PC presentation and the cell phone
504presentation. The notebook and Pocket PC presenta-

505tions use a radio button group and the cell phone pre-

506sentation uses a more compact drop-down list. The third

507noticeable difference is that the UI components corre-

508sponding to ‘‘add shopping item’’ is missing on the cell

509phone presentation, because this task involves text en-

510tries and is therefore inconvenient on a cell phone.

5112.3.2. SGUI library

512The SGUI library contains two modules: the virtual

513widget library and the SGUI events. The virtual widget

Scalable GUI
Library

Transformation
Manager

Render
Manager

Virtual Widget
Library

Scalable GUI
Events

Runtime ModulesDesign-Time Modules

Fig. 5. SGUI toolkit.

Fig. 6. Shop hunter application.

H. Chu et al. / The Journal of Systems and Software xxx (2003) xxx–xxx 7

JSS 7451 No. of Pages 18, DTD=4.3.1

7 March 2003 Disk used SPS-N, Chennai
ARTICLE IN PRESS



UNCORRECTED
PROOF

514 library contains a comprehensive set of UI widgets

515 similar to Java�s Swing library. It includes widgets such
516 as labels, buttons, menus, text fields, scroll bars, tables,

517 etc. The virtual widget library is implemented for each

518 Roam-supported device platform. Since the virtual

519 widget library is based on Swing, its APIs look very
520 similar to Swing APIs.

521 The SGUI events are abstractions of user interaction

522 events such as mouse, keypad, or stylus input. Since

523 different device platforms support different input meth-

524 ods, the SGUI library describes mappings between de-

525 vice-dependent events and abstract device-independent

526 events. This abstraction allows UI developers to handle

527 these events regardless of which platform a UI is run-
528 ning on. For example, an abstract action event associ-

529 ated with a button press can be generated from a mouse

530 click on a PC, a tap from stylus on a Pocket PC, or a

531 select-key press on a cell phone. The event is realized as

532 a device-dependent event at runtime, and then delivered

533 to the application.

534 For some applications, mapping between device-de-

535 pendent GUI events to device-independent events may
536 not always be possible due to platform constraints. For

537 example, an application may contain an interactive map

538 that can zoom in or out when a user clicks on a specific

539 point in the map image. On a PC, a mouse event can be

540 used to capture the specific location of the mouse click.

541 However, a cell phone lacks a pointing input method; as

542 a result, it is not possible to map an equivalent event on

543 a cell phone. To address the need for device-dependent
544 events, the SGUI library also retains a set of events for

545 device-dependent input methods. This allows a scalable

546 application to enhance its UI on a particular device

547 platform. Since device-dependent events are generated

548 only on some specific device platforms, they should not

549be used to implement any core features of UI that are

550expected to be available on any devices.

5512.3.3. Device-independent representation

552UI designers specify two kinds of information in the

553device-independent representation––task model and
554layout. Fig. 7 depicts the top portion of the device-in-

555dependent representation for the shop hunter applica-

556tion. The device-independent representation has a tree-

557like structure. The child nodes of the root node are task

558nodes representing different tasks. For the shop hunter

559application, there are three tasks: add shopping item,
560view items, and search item. A task node can have sub-
561task nodes, and so forth. The add shopping item task
562contains a scalable button called update list, and logical
563panel A. The button is a scalable UI component in-
564stantiated from the virtual widget library. A logical

565panel is a presentation unit that groups related child

566logical panels and scalable UI widgets. A spatial layout

567can be specified on the relative positions of widgets and

568panels contained in logical panels. For the add shopping
569item task node, UI designers would specify that logical
570panel A be placed at the top, and update list button at
571the bottom. Logical panel A contains six smaller logical
572panels A1 through A6 arranged in a 2� 3 grid.
573UI designers can specify task preferences on task

574nodes. The task preference tells which platforms with

575which input methods are suitable to display this task. In

576the shop hunter application, a UI designer would specify

577the Add Shopping Item task to be suitable for displaying
578on notebook PCs or PDAs with virtual keyboards, but

579not for cell phones. As a result, UI components corre-

580sponding to Add Shopping Item task will not be dis-

581played on cell phones as shown in Fig. 6.

582In addition to layout, UI designers can specify other

583layout properties on logical panels, such as layout pri-

Fig. 7. Device-independent representation for the top portion of shop hunter application.
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584 ority, split-ability and title. Layout priority decides the

585 order in which logical panels will be placed on pages.

586 Split-ability decides if descendant nodes of a logical

587 panel can be placed on separate pages. By default, all

588 logical panels are not splittable. Titles of logical panels

589 are used to create a navigation menu bar for moving
590 between pages. For example, in the Pocket PC presen-

591 tation of the shop hunter application of Fig. 6, the

592 navigation menu bar Page Selection contains the titles of
593 logical panels as menus.

594 Integration of the layout structure and the task model

595 in the device-independent representation tree poses a

596 limitation that the task model hierarchy must not con-

597 flict with the layout structure hierarchy. It is not possible
598 to specify a task that places its widgets in the same

599 logical panel as widgets from another task. For example,

600 the view items task cannot place a widget under Logical
601 Panel A1 because it is also under Add Shopping Item
602 task. To address this limitation, we are looking into

603 separating the task model from the layout structure into

604 two presentation trees similar to Eisenstein et al. (2001).

605 Note that UI designers must construct device-inde-
606 pendent representations for both static and dynamic

607 content. In the following sections, we explain how the

608 transformation manager transforms a device-indepen-

609 dent representation into a device-specific presentation.

610 2.3.4. Transformation manager

611 The design of the transformation manager is shown

612 in Fig. 8. It contains three sub-modules: task manager,
613 layout algorithm and widget transformation. The first

614 step in transformation manager involves the task man-

615 ager. Its job is to choose the appropriate tasks for the

616 target device platform, and to remove widgets belonging

617 to tasks not appropriate for the target device platform.

618 For example, if UI designers specify that the Add
619 Shopping Item task in the shop hunter application is not
620 suitable for cell phones; widgets corresponding to the
621 Add Shopping Item task are removed by the task man-

622 ager and not displayed on the cell phone presentation.

623 The second step in the transformation manager in-

624 volves the layout algorithm working with widget trans-

625 formation. Its job is to paginate the presentation into

626 separate pages according to the layout specified by UI

627 designers and also to meet the constraint that a page

628 cannot exceed the target device�s displayable screen size.

6292.3.5. Layout algorithm

630We define two requirements for our layout algorithm.

631First, the generated presentation should have reasonably

632high quality without requiring significant device-specific

633customization from UI developers. One implication of

634high quality and the display size constraint is that the
635generated presentation must fit the target display with-

636out scrolling, because scrolling generally degrades us-

637ability. Second, the algorithm must be fast, so that it

638does not cause significant presentation generation delay.

639There have been many methods on how to layout wid-

640gets for different display sizes. Some of these methods,

641such as the one proposed by Masui (1994), are highly

642computationally complex. Some methods require too
643much information from developers: for example, Hu-

644manoid (Szekely et al., 1992) asks developers many

645layout-related questions before it can generate a final

646presentation. Among all proposed methods, TEX (Lin-

647ton, 1989) is the most promising method in formatting

648two dimensional box-like GUI widgets (Masui, 1994;

649Olsen et al., 2000). TEX allows each widget to report its

650desired size for positioning.
651Fortunately, Java has default layout managers that

652are similar to TEX. Java also allows UI developers to

653specify the desired location of each widget through a set

654of predefined layout constraints. In order to meet our

655first requirement, we propose to have only one set of

656layout specification from UI developer, and this set of

657layout specification is used to generate layouts for other

658platforms. The specification is the same as the Grid Bag
659Layout Constraint in Java. We recommend UI devel-

660opers to specify the layout according to the presentation

661on the largest device display, such as a presentation on a

662PC, for reasons detailed in Section 3.6. The layout al-

663gorithm will try to follow that specification as closely as

664possible when it is creating layouts for other platforms

665with smaller display sizes.

666The general strategy for the layout algorithm is to
667start from the lowest nodes in the device-independent

668representation tree, and then work its way up to the root

669node. When it encounters a non-splittable logical panel

670that cannot fit the display size using the specified grid

671bag layout, the layout algorithm applies flow layout. We

672choose flow layout because it is simple, and it involves

673minimum computation while maintaining a reasonable

674presentation (Vanderdonckt, 1995). Since using flow
675layout may not generate a high quality layout, it is only

676applied when the specified grid bag layout fails. If flow

677layout also fails on a non-splittable logical panel, the

678layout algorithm may apply widget transformation to

679find smaller alternative presentations. The detailed steps

680of the layout algorithm are described as follows:

6811. The algorithm starts by finding the lowest-level un-

682splittable node with the highest layout priority in the

683presentation tree as shown in Fig. 9. A lowest-level

Transformation
Manager

Task
Manager

Widget
Transformation

Layout
Algorithm

Fig. 8. Transformation manager design.
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684 unsplittable node is defined as a node whose child
685 nodes are all widgets (or leaf nodes), and the widgets

686 have to be placed on the same page. The goal is to try

687 to place widgets that are assigned higher layout prior-

688 ities to the first few pages, so that they are easier for

689 users to locate. Denote m as the chosen node.
690 2. A default style corresponding to the target device

691 platform is applied to the set of widgets under node

692 m. The style guide sets common properties of widgets
693 such as font size, spacing between components, etc.

694 The purpose of the style is to have a consistent look

695 across different widgets. The set of widgets under

696 node m are laid out on a page according to the grid
697 bag layout constraints specified by the UI developer.

698 The precise size of the page is then calculated.

699 3. If the size of page is bigger than the device display

700 size, the page is over-filled. We apply flow layout on
701 child nodes under m, and re-compute the page size.
702 If the page is still over-filled, we check if the node is

703 splittable or not. If the node is splittable, we allocate

704 a new page to place extra widgets that cannot fit on

705 the previous page. If the node is non-splittable, wid-

706 get transformation is applied to as many child nodes

707 under m as needed such that the flow layout can fit
708 them on one page. If widget transformation also fails,
709 the layout algorithm will leave some widgets out of

710 the page and notify its users. Details on widget trans-

711 formation are discussed in Section 2.3.7.

712 4. If the size of the page is smaller than the size of the

713 device screen size, the page is under-filled. This means

714 that the algorithm can accommodate additional wid-

715 gets from sibling nodes of node m. The algorithm pro-
716 ceeds to find the highest ancestor node of node m in the
717 presentation tree as shown in Fig. 9, such that using

718 that ancestor node can pack the maximum number

719 of widgets in a page without violating the display size.

720 Denote the parent node of node m as PARENT(m).
721 The algorithm tries to place the set of widgets under

722 PARENT(m) on a page. This is done by repeating step
723 2, i.e., applying the current style and the grid bag lay-

724 out specification to the widgets under PARENT(m). If

725the resulting page is still under-filled, it tries PAR-

726ENT(PARENT(m)), and so forth until the resulting
727page becomes full.

7285. If the page is full, a new page is allocated for placing

729remaining widgets. The algorithm first finds another

730lowest-level unsplittable node with the next highest
731task priority from the presentation tree that hasn�t
732been placed on any pages. This node becomes the

733new node m, and the algorithm goes to step 2.
7346. When all nodes are processed––that is, placed on a

735page––the algorithm terminates.

736For the shop hunter application in Fig. 6, the table

737showing the shopping list has different device-specific

738presentations on Pocket PCs and cell phones. For the

739cell phone presentation, the table is transformed into a

740selection list using item names as indices. The map im-
741age is scaled down on the Pocket PC presentation and

742on the cell phone presentation. Techniques involving

743scaling images and graphic objects (W3C, 2000) are

744outside the scope of this paper.

7452.3.6. Page navigation

746While the layout algorithm is automatically generat-

747ing a new layout, it is also constructing a simple navi-
748gation menu bar for moving between pages. If the

749application already has a menu bar, the algorithm will

750simply add a customizable menu named ‘‘Page Selec-

751tion’’ by default as the first menu from the left on the

752menu bar. If the application does not have any menu

753bar, a new one is created. On the Pocket PC, the menu

754bar always appears at the top of each page under the

755Page Selection menu bar as shown in Fig. 6. On the cell
756phone, the first page is always the top-level task navi-

757gation menu. For each generated page, a menu item is

758created and it will be automatically added as the item of

759the ‘‘Page Selection Menu.’’ The name for each menu

760item is from the title property of the occupying logical

761panel.

7622.3.7. Widget transformation

763Widget transformation is the transformation from

764one widget, either primitive or composite, to another

765that consumes less space in the graphical layout.

766Transformation is guided by transformation rules, simi-

767lar to rules in a rule-based system. Widget transforma-

768tion rules are selectively applied to yield a presentation

769which is optimally usable given display size constraints.

770For example, Fig. 10 shows the effect of a transforma-
771tion rule mapping a large, composite widget containing

772pairs of property labels and value textfields, into a

773smaller composite widget containing a property list box

774and a single value textfield. The transformed composite

775widget is smaller and remains easy to use.

parent(v)

highest
ancestor
node of vFull Page

new  v

v

splittable nodes
scalable UI  components

lowest-level
unsplittable nodes

Fig. 9. Layout algorithm.
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777 to determine which widgets to transform, and which

778 transformation rules to apply to them.

779 To determine the widgets that are more acceptable to

780 transform, developers specify which widgets are core––
781 representing important application functionality, and

782 which are optional––less important for use of the ap-

783 plication. These hints are provided for primitive widgets,

784 as well as those that are combined into composite wid-

785 gets. We prefer to transform optional widgets rather

786 than core widgets whenever possible, so that we degrade

787 usability as little as possible (Vanderdonckt, 1995); only

788 when there are no optional widgets, or when the layout
789 size reduction is insufficient to meet display size con-

790 straints, are core widgets transformed.

791 Determining the transformation rules to apply to the

792 widgets is more complex. There are four types of

793 transformation rule:

794 • One-to-one: transforms from a single primitive widget

795 to another single widget, e.g., a rule transforming a

796 list into a drop-down box.

797 • One-to-multiple: transforms from a single widget into

798 multiple widgets, e.g., a rule transforming a single ta-
799 ble into multiple lists or drop-down boxes.

800 • Multiple-to-one: transforms from multiple widgets of

801 the same type into a single widget, e.g., a rule trans-

802 forming a group of radio buttons or checkboxes into

803 a single drop-down list box, and a rule transforming a

804 group of one-line textfields into a single multi-line

805 textarea.

806 • Multiple-to-multiple: transforms from multiple wid-
807 gets of different types into other multiple widgets,

808 e.g., a rule transforming a group of label and textfield

809 pairs into a drop-down list box and a single textfield,

810 as shown in Fig. 10. Note that a multiple-to-multiple

811 rule is composed of a set of multiple-to-one rules, and

812 a set of classic relationships described in Vander-

813 donckt (1995).

814 Each of these classes of transformation rule has a

815 priority assigned to it, corresponding to the demon-

816 strated usability of widgets transformed by rules in the
817 class. That is, we prefer transformation rules that tend

818 to result in easier-to-use widgets over transformation

819 rules that tend to result in harder-to-use widgets. One-

820to-one rules are preferred first, then one-to-multiple,

821multiple-to-one, and finally multiple-to-multiple. Note

822that multiple-to-multiple rules can change the UI dras-

823tically, and degrade usability, compared to one-to-one

824rules. Conversely, note that one-to-one rules tend to

825offer less space savings than multiple-to-multiple rules.
826Our prioritization balances this tradeoff: we want as

827large––and consequently as usable––a UI as possible

828given display size constraints, but we accept smaller and

829less usable UIs as necessary.

830We limit the set of transformation rules that may be

831applied by eliminating rules whose original widgets re-

832quire input methods that are unsupported by the

833transformed widgets on the target device. For example,
834if the original UI contains a J2ME DoJa button that has

835an action triggered on a mouse-in event, any rules

836transforming that button to a softkey are not applicable,

837because softkeys do not support any equivalent to

838mouse-in events. The current SGUI toolkit provides a

839set of commonly used transformation rules. We also

840allow developers to add their own transformation rules.

8412.3.8. SGUI state and event transformation

842When an application is migrated from a device of one

843platform to another device of a different platform, the

844presentation on the target device may use a different set

845of widgets from the source device, so there is a need to

846map running state between the source presentation and

847the target presentation. This is done by state synchro-

848nization and restoration between the running state of a
849device-specific widget and its corresponding device-in-

850dependent widget. These two mechanisms are supported

851in the SGUI library to ensure that the device-indepen-

852dent representation always has the most recent widget

853state right before and right after any migration. Prior to

854any application migration, the running state of a device-

855specific widget is synchronized with its corresponding

856device-independent widget. After an application migra-
857tion, the running state of the device-independent widget

858is restored to the device-specific widget.

859Event transformation is also needed to support the

860same UI interaction across different device-dependent

861presentations. This is done by a bi-directional mapping

862mechanism between device-dependent events generated

863from device-dependent widgets and their corresponding

864device-independent events generated by a device-inde-
865pendent widget. This mapping mechanism is supported

866in our SGUI library.

8672.4. Security

868We assume that Roam agents have been installed

869securely and they are trusted entities. We also assume

870that a user would only migrate applications among his/
871her personal devices (not public and not shared) such as

872cell phones, PDAs, and home PCs. This means that a

Fig. 10. A multiple-to-multiple transformation.
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873 user should know when to expect an application mi-

874 gration on which device and from which device.

875 Based on these assumptions, we have applied an au-

876 thenticated encryption scheme (Rogaway et al., 2001)
877 that can provide both privacy and authentication. Pri-

878 vacy means that application execution state is encrypted

879 so that only the intended recipient with the correct

880 password can decrypt it. Authentication means that the

881 intended recipient can distinguish a legitimate applica-

882 tion migration sent by its user from a malicious appli-

883 cation migration sent by other users. Roam�s security
884 works as follows. At the start of the application mi-
885 gration, the Roam agent running on the source device

886 prompts the user for a password. This password is a

887 one-time password that is valid only for one application

888 migration. At the same time, it will also generate a one-

889 time number called a nonce. The only requirement for

890 the nonce is that it is a new number for each application

891 migration. The nonce can be generated from a random

892 number generator or a simple counter that increments
893 each time it is used. Based on the one-time password and

894 nonce, the application execution state is encrypted as

895 ciphertext. The ciphertext is sent together with the

896 cleartext nonce to the target device. On the target device,

897 the Roam agent asks the user for the same password

898 that was used to encrypt the ciphertext on the source

899 device. Based on the password and the nonce, the Roam

900 agent can decrypt the ciphertext to get the application
901 execution state. If the password used in decryption does

902 not match the password used in encryption, the au-

903 thenticated encryption algorithm returns ‘‘INVALID’’

904 to the Roam agent and the migration request is denied.

905 3. Implementation

906 We have implemented the Roam system using the

907 Java language and the Java language features: RMI,

908 Serialization, and Reflection. The Roam system cur-

909 rently runs on the PCs with JVM, and on Pocket PC

910 (PDA) devices with Personal Java VM. In the future, we

911 are planning to port the Roam system to other JVMs

912 with RMI and Serialization. The total code size of the

913 Roam system is approximately 15,000 lines, with 8500
914 lines in the SGUI toolkit.

915The Roam system provides a set of Roamlet APIs.

916The core class in the Roamlet APIs is called Roamlet,
917which all Roamlets must extend. The Roamlet APIs

918allow a Roamlet to migrate at runtime, to be instanti-
919ated dynamically, to offload computation, or to be

920transformed. We describe the essential Roam APIs here.

9213.1. Roamlet runtime migration API

922The runtime migration API is encapsulated in a class

923called Roamlet shown in Fig. 11. All Roamlets must

924extend the class Roamlet. A Roamlet calls the migrate( )
925method to be dispatched to a target device specified by

926the hostname parameter. The Roam agent calls the

927Roamlet�s onInitialization( ) method when it is first in-
928stantiated on a device. The Roam agent calls the

929Roamlet�s onRemoval( ) method before it is removed
930from the source device, and after it migrates successfully

931to a target device. The Roam agent calls the Roamlet�s
932onArrival( ) method when it arrives at the target device.
933A Roamlet calls the exit( ) method to remove itself from
934the Roam system. The instantiate( ) method is called to
935instantiate a Roamlet on a local host. After a Roamlet is
936instantiated on a device, the Roam agent creates a sep-

937arate thread to run it.

9383.2. Roamlet component description API

939A Roamlet can describe its components using the

940API shown in Fig. 12. A Roamlet calls addCompo-
941nentDesc( ) to add a component descriptor, Roamlet-
942ComponentDesc, for each of its components.

943RoamletComponentDesc describes the type of compo-
944nent (type, which can be M-DD, S-DD, or S-DI), the
945class name of this component, the class name of the

946component to be instantiated (classname), and a list of
947possible implementations for this component. Each

948implementation of a component is described in a sepa-

949rate ImplDesc, which contains the class name (class-
950name) of the implementation and the device requirement
951for this implementation (req).

Fig. 11. Roamlet runtime migration API.
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952 3.3. SGUI API

953 The SGUI library provides four packages (sgui,
954 sgui.event, sgui.dd.event, and sgui.ir) for UI developers.
955 The sgui package provides virtual widgets similar to

956 widgets available in the Swing library with prefix S, such
957 as SButton, SCheckbox, STextfield, SLabel, etc. The
958 sgui.event package provides device-independent events
959 with S prefix, such as SActionEvent. The sgui.dd.event
960 package provides device-specific events, such as
961 SMouseEvent. UI developers follow the Java 2 event
962 model to add SGUI event listeners and specify actions

963 upon the reception of SGUI events.

964 The sgui.ir package provides APIs for constructing a
965 device-independent representation. One of the core

966 classes is the LogicalPanelNode shown in Fig. 13. It has
967 an add( ) method to add virtual widget and logical
968 panels as its child nodes. A LogicalPanelNode can
969 specify a list of properties, such as layout constraint,

970 task preference, layout priority, whether it can be pag-

971 inated across multiple pages, and whether it represents

972 core or optional features.

973 3.4. Chess Roamlet

974 We have taken a Java-based Chess game that is freely
975 available on the Internet and rewritten it as a Roamlet.

976 The Chess game has two modes: multiplayer mode

977 where two users play against each other, and computer

978 mode where a user plays against AI. The mobile envi-

979 ronment is setup as in Fig. 14: a Pocket PC device

980running Personal Java VM, a notebook PC running a

981standard J2SE VM, and they are both connected by an
982802.11 wireless LAN. The user starts the Chess game in

983computer mode on the notebook PC and then migrates

984it to the Pocket PC. There is a third device, a desktop

985PC, acting as the remote server where the AI component

986can be offloaded to.

987The Chess Roamlet contains the following compo-

988nents:

989• An application logic component is implemented as an

990offloadable device-dependent component (S-DD). It

991runs an AI engine that calculates the computer�s next
992move by building a search tree, which is both compu-

993tationally and memory-intensive. It has a device re-

994quirement of a PC.

995• A GUI component is implemented as a non-offloada-

996ble device-independent component (S-DI) using the

997SGUI library. It draws a player board that holds

998both a chessboard and chat/message boxes where

999two players can send messages to each other.
1000• A second GUI component is implemented as a non-

1001offloadable device-dependent component with two

1002implementations (M-DD). These two implementa-

1003tions have two different sets of images showing chess

1004pieces, the set for the PC presentation has larger im-

1005ages than that of the Pocket PC presentation.

1006The Chess game in computer mode with PC presen-

1007tation is shown on the left side of Fig. 15. When the user

1008migrates the Chess game to the Pocket PC, the first (S-

Fig. 12. Roamlet component description API.

Fig. 13. Sample APIs for constructing device-independent representation.
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1009 DI) GUI component is transformed into the Pocket PC

1010 presentation shown on the right side of Fig. 15. Since the

1011 player board is too large for the Pocket PC�s display,
1012 SGUI layout algorithm paginates it into two pages. The

1013 first page shows the chessboard, and the second page

1014 shows chat and message boxes. A page navigation menu
1015 is added to the right of the menu bar for users to switch

1016 between two pages. The M-DD GUI component is in-

1017 stantiated with the Pocket PC presentation and it loads

1018 the smaller set of images for chess pieces. The applica-

1019 tion logic component is offloaded to the computing

1020 server.

1021 3.5. Experience on development effort and performance

1022 The Chess game was originally implemented to run

1023 on the PC using Java AWT GUI library. We have asked

1024 third party developers, who are new to Roamlet pro-

1025 gramming, to rewrite the Chess game as a Roamlet us-

1026 ing SGUI library. The experience from the third party

1027 developers have told us that most of the efforts in re-

1028 writing the Chess application fall into the following
1029 three categories: (1) modularizing an application into

1030 application logic components and GUI components,

1031and converting them into Roamlet components, (2)

1032porting GUI components to use the SGUI library, and

1033(3) adding multiple device-specific GUI components for

1034platforms that are not supported by the original Chess

1035application. Their experience also told us that it is rel-

1036atively straightforward to separate application logic
1037components from UI components in a well-written Java

1038application. The difficult part is to decide the type (S-DI,

1039S-DD, or M-DD) for each component. Finally, their

1040experience told us that, since our SGUI library follows

1041Java Swing library, porting AWT components to use

1042SGUI components is relatively straightforward.

1043The original Chess game has approximately 7900

1044lines of code. After the converting it into a Roamlet, it
1045has approximately 9000 lines of code, which is about

104614% increase in code size. Most of the additional code

1047comes from code that converts Java objects into

1048Roamlet components, and the second (M-DD) GUI

1049component that supports the Pocket PC presentation.

1050This shows the tradeoff between development cost and

1051UI quality. That is device-dependent UIs in general have

1052higher quality, but developers need to create M-DD
1053presentations for different platforms, resulting in in-

1054creased application code size. This tradeoff can also be

1055found in the Connect4 game. When its UI component

1056has two device-dependent implementations for PC and

1057PDA, the code size is approximately 1200 lines. The

1058code size is reduced to 1100 lines when its UI component

1059is re-implemented as a device-independent component

1060using SGUI library.
1061We have measured migration latency of application

1062migration. Migration latency is defined as the elapsed

1063time from the moment the user accepts the migration

1064request on the target device, to the moment when the

1065Roamlet is completely restored on the target device. We

1066have measured latency for both Connect4 and Chess

1067games migrating from a notebook PC (Intel Pentium

1068III-800 CPU running Windows XP) to a Compaq iPAQ
1069H3870 Pocket PC (StrongARM 206 MHZ CPU running

Fig. 14. Experimental setup of Chess Roamlet.

Fig. 15. Screenshots of Chess game on notebook PC and Pocket PC after migration.
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1071 into two parts: (1) context transfer time is the time for

1072 saving the execution state on the source device, sending

1073 and restoring it on the target device, and (2) GUI

1074 transformation time is the time for transforming a de-

1075 vice-independent GUI component into a target device-
1076 specific presentation. The measurements are shown in

1077 Table 3.

1078 Measurements show that transformation time domi-

1079 nates the migration latency when migration is from a

1080 notebook PC to a Pocket PC, because the layout algo-

1081 rithm is computationally intensive and it runs the target

1082 device which is a slower Pocket PC. However, when

1083 migration is from a Pocket PC to a notebook PC, the
1084 context transfer time dominates the migration latency.

1085 This is due to serialization of the Roamlet execution

1086 time on a slow Pocket PC. For the shop hunter appli-

1087 cation, transformation is offloaded to a PC. Measure-

1088 ments show that the transformation manager takes less

1089 time to generate a presentation for a bigger display (0.9

1090 s) than for a smaller display (3.7 s). The reason is that

1091 generating a presentation for a smaller display is likely
1092 to involve testing different paginations and transfor-

1093 mation rules.

1094 3.6. End-user usability

1095 Our limited experience on the available Roamlet ap-

1096 plications shows that SGUI toolkit can generate con-

1097 sistent presentations across different platforms. There
1098 are three aspects of consistencies: task consistency, lay-

1099 out consistency, and transformation consistency. Task

1100 consistency means that, unless the developers specify

1101 that some tasks are not appropriate on certain plat-

1102 forms, all tasks will be presented across all platforms.

1103 Layout consistency means that, if UI components are

1104 laid out next to each other on one platform, they are

1105 likely to be found adjacent to each other or on adjacent
1106 pages on other platforms. Transformation consistency

1107 means that users can expect similar transformations to

1108 be applied to same type of UI components across ap-

1109 plications. We believe that these consistencies contribute

1110 to better learnability of applications.

1111 Our simple page navigation menu works only for

1112 simple UIs but not complex UIs. We believe that we can

1113 improve the usability and efficiency of generated page

1114navigation by incorporating device-specific navigation

1115models provided by SGUI toolkit or explicitly specified

1116by UI developers. To generate better page navigation,

1117the navigation model should consider interactions and

1118relation between tasks and device�s input methods.

11194. Related work

1120We divide the related work into two parts: mobile

1121agent systems and multi-platform UIs.

11224.1. Mobile agent systems

1123There has been an abundance of research work in the

1124area of migrateable mobile agent systems. Aglet (Lange

1125and Oshima, 1998) is one of the most well-known Java-

1126based agent systems. It provides a Java development

1127toolkit and libraries for building mobile agents that can

1128move from one computer to another. Like Roamlet,

1129Aglets do not require any modifications to the Java VM.

1130An Aglet is shielded through an Aglet Proxy, which
1131protects the Aglet from unauthorized access. Aglets run

1132in an execution environment called AgletContext, which

1133is like the Roam agent. However, Roamlets differ from

1134Aglets in that Roamlets assume a heterogeneous device

1135environment, whereas the Aglet assumes a homoge-

1136neous PC or PC-equivalent environment. Furthermore,

1137the Roam system implements dynamic instantiation and

1138computation apportioning to address the device heter-
1139ogeneity problem. We have found similar Java-based

1140agent systems in Jumping Beans (Aramira, 1999), MOA

1141(Milojicicc et al., 1998), Concordia (Mitsubishi Electric

1142ITA Horizon Systems Laboratory, 1998), Voyager

1143(ObjectSpace, xxxx), Mole (Strasser et al., 1996) and

1144Telescript (White et al., 1997). Voyager is a commercial

1145product by ObjectSpace, and it incorporates features of

1146mobile agents and mobile objects into the ORB and
1147COBRA. MOA performs resource management on mi-

1148grateable applications as to what system resource they

1149can use on the target device, and it also supports mi-

1150grateable communication channels (the external running

1151state) so that running communication channels can mi-

1152grate with the rest of the applications. There are also

1153similar but non-Java-based agent systems, e.g., Agent-

1154Tcl (Gray et al., 1997).

Table 3

Migration latency measurements

Applications Migration latency

Notebook PC to Pocket PC Pocket PC to notebook PC

Context transfer time (s) Transformation time (s) Context transfer time (s) Transformation time (s)

Chess 4.9 10.2 4.2 1.1

Connect4 2.8 6.4 1.2 1.4

Shop hunter N/A 3.7 N/A 0.9
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1155 F€uunfrocken (F€uunfrocken, 1998) and Ara (Peine and
1156 Stolpmann, 1997) describe ways to achieve strong mi-

1157 gration for Java applications. Strong migration means

1158 that the call stack, which is a part of the thread state that

1159 is not serializable, can also be migrated. F€uunfrocken
1160 uses a preprocessor that adds code to capture and to
1161 restore the state of the program stack at various exe-

1162 cution points. Ara proposes modifications to the JVM

1163 interpreters. Since thread state migration is not a specific

1164 challenge for heterogeneous device, the Roam system

1165 supports only weak mobility.

1166 Sumatra (Acharya et al., 1997) is an extension of Java

1167 that supports resource-aware migrateable mobile appli-

1168 cations. Sumatra�s resource-awareness is based on a
1169 monitor-feedback-adaptation loop. A resource monitor

1170 watches the level and quality of the system resources,

1171 and provides updates to the applications either contin-

1172 uously or on-demand. Applications can then adapt

1173 based on the resource updates, e.g., migrating some

1174 threads to remote devices to perform the computation.

1175 Sumatra is focused on building adaptive applications in

1176 the PC or PC-equivalent device environment, and ad-
1177 aptation is based on runtime resource level and quality.

1178 This is different from the Roam system, which is focused

1179 on adaptation in a heterogeneous device environment.

1180 Roamlets adapt according to target device capability at

1181 migration time and load time only.

1182 We have found parallel and ongoing research efforts

1183 at IBM (Banavar et al., 2000). The IBM researchers

1184 have proposed a new application model for pervasive
1185 computing. They have described several research chal-

1186 lenges, e.g., device-specific rendering and application

1187 apportioning, which are similar to the problems that the

1188 Roam system is addressing.

1189 4.2. Multi-platform user interfaces

1190 The model-based approach offers an attractive alter-
1191 native to build a high-level tool for multi-platform UIs

1192 (Szekely, 1996). In model-base systems such as Hu-

1193 manoid (Szekely et al., 1993), ITS (Wiecha et al., 1990),

1194 UIDE (Sukaviriya et al., 1993), and Mickey (Olsen,

1195 1989), UI designers would use a declarative language to

1196 specify abstract and high-level models that describe what

1197 UI should be. The model-base system would automati-

1198 cally generate low-level UI executable code. The model-
1199 based technique can be exploited for multi-platform UI

1200 generation. For example, UI designers can specify the

1201 high-level models using AIOs (abstract interactive ob-

1202 jects), which are device-independent objects. The AIOs

1203 are mapped to device-dependent CIOs (concrete inter-

1204 active objects) supported by the target platform UI li-

1205 brary. This AIO-CIO selection technique has been

1206 illustrated in model-based systems for purposes other
1207 than multi-platform UI generation. For example, Hu-

1208 manoid uses a ‘‘replacement hierarchy’’ for selecting the

1209most appropriate presentation template for displaying a

1210semantic object. UIDE contains constraints on how to

1211select the most appropriate interface actions to represent

1212application actions specified by the UI designers in ap-

1213plication models.

1214In recent work, RedWhale software (Eisenstein et al.,
12152000, 2001) employs the model-based approach by in-

1216troducing abstract models that specifically target multi-

1217platform UIs. It is comprised of platform model, pre-

1218sentation model, and task model. The platform model

1219allows the UI designers to specify platform constraints

1220that the UI generation must follow, such as device

1221screen sizes, input methods, etc. The presentation model

1222specifies the visual appearance of the generated UI,
1223which may include the layout of the UI components and

1224the mapping between AIOs and CIOs. The task model

1225specifies the decomposition of big tasks into smaller sub-

1226tasks. The device-dependent UI generation is based on

1227all three models.

1228Another recent model-based work is Patern�oo et al�s
1229ConcurTaskTree (Patern�oo, 2000). Its task model con-
1230tains user tasks, abstract tasks, interaction tasks, and
1231application tasks. Each task is related to each other via a

1232set of temporal relationships such as enabling, deacti-

1233vation, and iteration. The ConcurTaskTree is generally

1234accepted to be a powerful task model to construct UIs.

1235However, it is mainly targeted to single platform UIs. If

1236we try to apply ConcurTaskTree to generate multi-

1237platform UIs, all UIs will have the same interaction

1238pattern as the interaction tasks are tightly coupled in the
1239model. However, devices such as cell phones and PDAs

1240have distinctive interaction patterns. To solve this

1241problem, our device-independent representation only

1242has user tasks. The interaction pattern information is

1243expressed as properties of the task, e.g., task preference,

1244or as platform-specific interaction models that would

1245interact with the task model. The latter expression will

1246be our future work. With our task model, we can easily
1247customize the interaction pattern for each platform.

1248Although the model-based approach is an attractive

1249technique for creating SGUI tools, it has usability and

1250authoring issues (Myers, 1995) such as loss of fine-

1251grained control of UI details, the quality of generated

1252UI, and the time needed for UI designers to learn and

1253construct models. Our SGUI toolkit combines the

1254model-based approach with the benefits of traditional
1255widget-based UI programming, as a solution to some of

1256these issues. Programming with the SGUI library is very

1257similar to programming with a traditional widget library

1258such as Swing, because the SGUI library is consisted of

1259low-level UI widgets rather than abstract models. The

1260transformation in SGUI is at the level of widgets and

1261events, rather than from abstract interaction models to

1262widgets and events. This has additional benefits that no
1263code generation is necessary, and that complex models
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1264 of UI Logic (data flow constraints, sequencing, side ef-

1265 fects, etc.) (Szekely et al., 1992) are also not needed.

1266 Microsoft has a commercial product available called

1267 the. NET Mobile Internet Toolkit (Microsoft Corpo-

1268 ration, xxxx), which targets different mobile devices

1269 ranging from the more capable PocketPC platform to
1270 relatively simple pagers. The Mobile Toolkit does not

1271 use a model-based approach. Rather, it assumes devel-

1272 opers have already implemented desktop PC versions of

1273 the user interface components, and that they want to

1274 port from existing code. The Mobile Toolkit allows

1275 developers to specify the corresponding UI presentation

1276 on mobile platforms, but the layout specification is very

1277 limited. It only offers flow-based layout (rather than the
1278 more sophisticated Grid-Bag layout). In addition, de-

1279 velopers must group widgets together into a form, the

1280 function of which is very similar to our LogicalPanel-
1281 Node. However, .NET mobile forms cannot be placed
1282 on the same page even if a page has enough space to

1283 accommodate them.

1284 5. Conclusion

1285 In this paper, we present challenges, design, and im-

1286 plementation of the Roam system. The Roam system is

1287 a seamless application framework for building seamless

1288 applications that can migrate at runtime across hetero-

1289 geneous devices. The Roam system provides adaptation

1290 strategies at the component level, including dynamic
1291 instantiation, offloading computation, and transforma-

1292 tion.

1293 There are many future directions to improve the

1294 Roam system. One problem with the existing SGUI

1295 toolkit is that it is difficult to customize a device-inde-

1296 pendent representation for a particular device. The

1297 reason is that the device-specific customization requires

1298 developers to add transformation rules that are both
1299 device-specific and application-specific. When the de-

1300 velopers change the device-independent model at a later

1301 time, they may also have to update these transformation

1302 rules that are affected by the change.

1303 We also like to support seamless application migra-

1304 tion for real-time applications such as video conferenc-

1305 ing. For example, a use may want to migrate a video

1306 conferencing from a mobile phone to a car navigation
1307 system when he/she is entering a car. This places a real-

1308 time constraint on migration latency. We want to make

1309 sure that the interruption time is minimized during ap-

1310 plication migration. One possible approach is to hide the

1311 migration latency, by delaying the application termina-

1312 tion on the source device, until adaptation has been

1313 applied to the application components on the target

1314 device.
1315 Finally, we would like to support a Roam execution

1316 state repository service where a user can save a Roam

1317application on one device, and restore it at a later time

1318on any device. This overcomes the limitation in the

1319current Roam system where application migration can-

1320not be suspended. We would like to extend this to col-

1321laborative applications where each user can save and

1322restore application execute state individually without
1323affecting other users.
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