A Secure Multicast Protocol with Copyright Protection

Hao-hua Chu, Lintian Qiao and Klara Nahrstedt
Department of Computer Science, University of Illinois at Urbana-Champaign,

1304 West Springfield Avenue, Urbana, IL. 61801, U.S.A.

ABSTRACT

We present a simple, efficient, and secure multicast protocol with copyright protection in an open and insecure
network environment. There is a wide variety of multimedia applications that can benefit from using our secure
multicast protocol, e.g., the commercial pay-per-view video multicast, or highly secure military intelligence video
conference. Our secure multicast protocol is designed to achieve the following goals. (1) It can run in any open
network environment. It does not rely on any security mechanism on intermediate network switches or routers. (2)
It can be built on top of any existing multicast architecture. (3) Our key distribution protocol is both secure and
robust in the presence of long delay or membership message. (4) It can support dynamic group membership, e.g.,
JOIN/LEAVE/EXPEL operations, in a network bandwidth efficient manner. (5) It can provide copyright protection
for the information provider. (6) It can help to identify insiders in the multicast session who are leaking information
to the outside world.

Keywords: Multicast security, copyright protection, key distribution

1. INTRODUCTION

We present a simple, efficient, and secure multicast protocol with copyright protection in an open and insecure
network environment. There is a wide range of multimedia applications that can benefit from using our secure
multicast protocol, e.g., the commercial pay-per-view video multicast, or highly secure military intelligence video
conference. Our secure multicast protocol is designed to achieve the following goals:

e Security in Open Network Environment

We assume that group members, who can be either or both senders and receivers, are in an open network
environment. This means that the multicast streams may travel through intermediate switches or routers which
may or may not have any security mechanism. Therefore, our secure multicast protocol must not depend on
any of the intermediate network components for security support. For example, the Scalable Multicast Key
Distribution by Ballardie! does not satisfy this property. It is based on the Core Based Tree architecture?
which requires the network routers to maintain a hard state, including the security information, on the nodes
of the multicast delivery tree.

e Multicast Architecture Independence
Our secure multicast protocol can be implemented on top of any existing multicast protocols: M-OSPF,3
DVMRP,> CBT,?2 or PIM.* We achieve this by encrypting or decrypting data on the endpoint hosts before
sending it to or after receiving it from the underlying multicast protocol.

e Robust Dynamic Membership Support

Lost packets and long network delay are prevalent in any open network environment, e.g. the Internet, where
the traffic congestion level and bandwidth availability for members in the same multicast group can vary
significantly. As a result, the key distribution protocol must deal gracefully with lossy or long delay unreliable
multicast channels. For example, the group key management protocol by Wallner® uses the same multicast
channel to distribute the group key as well as the multicast data. It is very likely that some members in the
multicast group do not get the key update (rekey) messages in time because of lost messages or long network
delay. This can create windows of security vulnerability. For example, a recently expelled receivers may still
be able to decrypt the multicast data from senders who do not receive the new key update messages in time.

This research is supported by National Science Foundation Career Grant NSF-CCR-96-23867 and Research Board of University of
Illinois at Urbana-Champaign. For further author information, e-mail h-chu3,l-qiao,klara@cs.uiuc.edu

e Copyright Protection
We assume that the content provider needs to have copyright protection for multicast video data, so that
the rightful ownership of the video data can be identified. We apply the watermark technique to encode the
ownership information into the video data.

o Leakers Identification

It is possible that some legal group members in the multicast session may leak the multicast data to non-
members for free or for a profit. The leaking of this multicast stream may cause a security or copyright
violation, and the consequence can be severe depending on the type of multicast applications. In case of a
military intelligence conference, a spy may gain clearance to be a legal group member and then leaks the
multicast content to hostile foreign agencies. By embedding an unique watermarking sequence inside the
multicast stream for different receivers, our multicast protocol enables the content providers and the group
leader to identify the leaker(s) after the leaking data is discovered and analyzed.

We organize the remainder of the paper as follows: section 2 describes the related work; section 3 presents our
key distribution protocol; section 4 presents our multicast watermark protocol; section 5 states our conclusion; and
appendix A provides a list of definitions for the various notations used in this paper.

2. RELATED WORK
2.1. Multicasting Schemes and Security Issues

The existing multicast security protocols are all focused on the problem of key management. The goal of the key
management is to distribute the group key securely to the group members who can then use it to encrypt or decrypt
the multicast data. They deal with issues like bandwidth scalability and the number of key messages exchanged with
increasing group size. We will describe three different key distribution approaches.

2.1.1. Core Based Tree Key Distribution

The Core Based Tree (CBT) key distribution by Ballardie® is based on the hard state multicast protocol like the Core
Based Tree? where the multicast routers permanently maintain the state of the multicast tree, e.g. their adjacent
routers in the tree. The key distribution algorithm can take advantage of the hard state approach by appending
various security information into the hard state of the tree, e.g., the access control list (ACL), the group key, and the
key encrypting key (which is used for re-keying the group key). The algorithm contains the following steps: (1) the
initiating host first communicates, via asymmetric encryption, the ACL to a core router, (2) the core router generates
the group key and the key encrypting key, (3) when a new non-core router joins to become a part of the multicast
tree, the core router authenticates the new non-core router and passes the security information using asymmetric
encryption to the non-core router, and (4) as the multicast tree expands, the authenticated non-core router further
authenticates other new incoming non-core routers and distributes the security information.

This distributed key distribution approach has an efficiency improvement over a centralized key distribution
approach where the group key is distributed to the group members by only one or a few centralized servers. However,
the security level of the CBT key distribution scheme is based on a strong assumption that the involved multicast
routers can be trusted not to leak the security information. In addition, the key distribution algorithm does not
address dynamic membership operations such as JOIN/LEAVE/EXPEL.

2.1.2. Hierarchical Tree Key Distribution

The Hierarchical tree key distribution by Wallner® is an efficient and scalable approach that supports dynamic group
membership. The algorithm contains the following steps. (1) Each multicast group contains a key server which
maintains a rooted tree structure, and each leaf node corresponds to a group member as shown in Figure 1. (2) Each
node in the tree contains a key—each leaf node holds a pairwise key established between the server and the member
(e.g., K1, Ks, .., Kg), each intermediate node holds a key generated by the server (e.g., Ko, Kp,...Ky), and the root
node holds the group key which is used to encrypt the data (e.g., Ky). (3) The server sends to each group member
a sequence of keys on the path from his/her leaf node to the root. (4) Each key is encrypted with the previous key
in the sequence to ensure security.

We will illustrate it with the example in Figure 1. Member 1 first establishes the pairwise key K; with the
server, and it receives the sequence of intermediate and group keys (K,, K., K), where K, is encrypted with K,

Kg

/\
ANraY
A A A A

Kl K2 K3 K4 K5 K6 K7 K8
Members 1 2 3 4 5 6 7 8

Figure 1. Hierarchical tree key distribution

{Ka}tr, "), {Ke}tk,, and {Kg}k,. To expel a member from the group, intermediate and group keys on the path
from the expelled member’s leaf node to root must be changed. For example, the removal of member 1 from the
multicast group requires that the server generates new keys (Kj, K¢, K;). Each new key is encrypted using its two
immediate child keys: ({K;}r,, {K¢}ry, {Ke)k, {8g} i, {K g}k,). This new sequence is assembled into one rekey
message which is then multicasted to all members using a multicast channel. Upon receiving the rekey message, the
members decrypt only those keys that they need and no more. For example, member 2 can decrypt (K, K¢, K;),
members 3-4 can decrypt only (K¢, K;), and members 5-8 can decrypt only (k). Given a group size of N, each
membership update operation (JOIN/LEAVE/EXPEL) requires one rekey message that contains Log(N) number
of keys.

However, the multicast channel used by the key distribution may be unreliable when it can suffer long network
delay or even lost messages. This creates the following problems.

e Security Loophole
The server multicasts a rekey message, but some senders in the group do not receive it in time. As a result,
the senders continue to multicast data encrypted with the old group key. Recently expelled members can use
the old group key to decrypt the data. This is considered a security violation.

o Failure

The key distribution algorithm can fail with lost messages. If members miss any rekey messages, they won’t be
able to decode any future rekey messages as well as future multicast data. There are two possible but expensive
solutions. (1) Implement a reliable multicast channel with receiver acknowledgments and retransmissions,
which is similar to the concept of TCP for the unicast connection. However, a reliable multicast channel is
very expensive and inefficient. The reason is high probability that a small portion of receivers are on congested
networks so that the sender may have to retransmit many times to get acknowledgments from all receivers.
As a result, the bandwidth overhead caused by retransmission(s) and the associated delay in acknowledgments
are unacceptable, especially for multimedia applications with real time constraints. (2) Communicate the lost
messages through a reliable unicast channel between each lossy member and the server. However, this is also
unacceptable given that the server may have to open many reliable unicast channels to handle a sizable number
of lossy members.

2.1.3. Iolus

Iolus key distribution by Mittra® carries the CBT distribution concept further. It divides the group into regional
subgroups, and each subgroup is managed by a trusted Group Security Intermediary (GST). Each subgroup is treated
almost like a separate multicast group with its own subgroup key and its own multicast channel. The GSI in
each subgroup manages its subgroup key distribution and authenticates new members joining/leaving its subgroup.
The advantage is that the subgroup runs independently of each other, and the GSI can perform dynamic member
operations efficiently and independently without involving members of other subgroups. To bridge data across the
subgroups, the GSIs use another separate multicast channel managed by the Group Security Controller (GSC). As

*We will use the common notation {X}k to denote that X is encrypted with K.

a result, each data transmission requires three different multicasts. The sender first multicasts data in its subgroup
channel. When the sender’s GSI receives the data, it multicasts the data to the other GSIs. Then the other GSIs
multicast the data to their subgroup members through their subgroups’ multicast channels.

Tolus, similar to the CBT approach, depends on the security level of the various GSIs residing at various locations
in the network. Its overhead contains the three multicast transmissions per data transmission, the management of
multiple subgroups, and their multicast channels.

2.2. Watermarking Issues

During the past few years, a number of digital watermarking methods have been proposed. Among the earliest
works, L.F. Turner’ has proposed a digital audio watermarking method which substitutes the least significant bits
of randomly selected audio samples with the bits of an identification string (watermark). Similar idea can also be
applied to images.® There are many other proposals for watermarking such as Tanaka’s schemes® which use the fact
that the quantization noise is typically imperceptible to users, Brassil’s methods!? for textual document images, and
Caronni’s geometric patterns (also called tags).!!

Craver, Memon, Yeo, and Yeung'? address an important issue of rightful ownership. They provide an attack
(CMYY attack) counterfeit watermarking schemes that can be performed on a watermarked image to allow multiple
claims of rightful ownerships. They also define so called Non-invertible watermarking scheme. Qiao and Nahrstedt'?
address and prove the non-invertibility property. Schemes applying to MPEG video stream and uncompressed video
stream are designed.

3. KEY DISTRIBUTION ALGORITHM

Our key distribution algorithm is designed to achieve the goals described in section 1: (1) security in open network
environment, (2) multicast architecture independence, and (3) robust dynamic membership support.

To startup a new secure multicast group, our key distribution algorithm requires only a group leader to be started.
The group leader has the authority and the necessary information to accept/reject new membership requests. For
example, the group leader may be given an access control list (ACL) which it can check if the new member can join
it, or it can accept and verify a payment information as a mean for new members to be admitted into the multicast
group. We also assume that the address of the group leader is known to anyone who is interested to join the secure
multicast group.

To join a secure multicast group, a potential member first sends a JOIN request to the group leader using a secure
unicast channel. The group leader checks, e.g. its ACL, to decide to either accept or reject the JOIN request. If the
JOIN request is accepted, the group leader generates a unique member id uid that identifies the new member. The
member id is then communicated to the new member who can then begin to send and to receive data according to
the steps described in the following subsection.

3.1. Data Transmission

Data transmission can be divided into three phases as shown in Figure 2: (1) the sending phase when the sender
multicasts an encrypted data message, (2) the verification phase when the group leader multicasts a verification
message that contains the key for decrypting the data message, and (3) the receiving phase when the receivers receive
both the data and verification messages and decrypt the data. We now describe these three phases in details.

3.1.1. The Sending Phase

The first stage involves the sender constructing a data message that contains 3 components as shown in Figure 2 (step
S1). The first component contains the sender’s member id (suid) and a message id (msgid). Each sender maintains
a msgid counter, which is initialized to 0 and is incremented for every new message created. The (suid, msgid) pairs
uniquely identify a message in the multicast session.

The second component of the message contains the data encrypted (via symmetric encryption) with a message
key Kpmsg. The key is used only once for the current message, and a new key is randomly generated by the sender
for the next message. The key generation can use any secure key generation algorithms which satisfy the property
that new keys cannot be predicted from the previous and subsequent generated keys.

~ Sender Group Leader Members

Sending Phase:
: (S1) Multlcast Data Msg: :
{ ‘ (suid, msgld) ‘ {data}Kmsg‘ {Kmsg}Kpub gl ‘ }Kpri-suid
Used in (R2) § (R3,R9) (V3; R7)
Verification Phase Receiving Phase
: (V1) Recv/Decrypt Daﬁa Msg (R1) Recv/Decrypt Data Msg
(V2) Validate suid (R2) Get (suid, msgid)
(V3) Decrypt Kmsg (R3) Get {data}Kmsg

D (R4) Insert Data Queue: (suid, msgid, {data}Kmsg)
(V4) Multicast Verifijczjition Msg:
{ | (suid, msgid) Veﬂijd ‘ (uid1, {Kmsg}Kuidl) ‘ .., (uidn, {Kmsg}Kpub-uidn) }Kpriv-gl
Used in (R6,R8) (R7)

l

(R5) Recv/Decrypt Verification Msg

(R6) Get (suid, msgid)

(R7) Lookup slot and decode Kmsg

(R8) Lookup Data Queue with (suid, msgid) to retrieve {data}Kmsg
(R9) Decode data

Figure 2. Three phases of our secure data transmission.

The third component of the message contains the message key K,,s4 encrypted with the public key of the group
leader (K P “b) All three components are assembled into one data message which is then signed with the private key

of the sender (K f:;: 4)- The sender multicasts the following data message in the multicast channel:

{(suid, msgid), {data}x,,.,, {Kmsg}Kplub }Kpm:d
g sui

When the data message is received from the multicast channel, members cannot decode the data yet because
they do not have the message key Kp,s5. Only the group leader has K ;’l” which can be used to decode K.

3.1.2. The Verification Phase

The second phase involves the group leader as shown in Figure 2 (steps V1-V4). Upon receiving the data message
from the sender, the group leader decrypts the data message with the known public key of the sender in (V1). Then
it looks up its current membership list to check that the sender is indeed a valid group member in (V2). It also
decrypts the third component of the data message using its private key to reveal the message key K54 in (V3).

When the validation check succeeds, the group leader prepares a verification message which contains three compo-
nents. The first component is the message tag (suid, msgid). The second component is a VALID symbol indicating
that the data message (suid, msgid) has been verified by the group leader. The third component contains a sequence
of slots where each valid member in the current membership list has a corresponding slot. The slot contains the

pairs uid and K,,s4 encrypted with the public key of the corresponding member K 5?; , so that only member uid can
decrypt K5 from reading this slot.

All three components are assembled into one verification message which is then signed with the private key of the
group leader (K ;’l”). The group leader multicasts the following valid verification message in the multicast channel in

(V4).

{(suid, msgid), VALID, (uidy,{Kmsg}ru),
widy
(uz’d2, {Kmsg}Kﬁgz), cey

(uidn, {Kmsg}KF”b)}K””
uidn gl

It is also possible that one of the verification checks fails, e.g., the sender does not belong the group. The group
leader prepares an invalid verification message containing the message tag (suid, msgid) and an INVALID symbol.
The verification message is signed with the private key of the group leader. Since the data message is invalid, there
is no need for the receivers to decrypt the counterpart data message. Hence the message key K,,,4 is not included
in the verification message. The group leader multicasts the following invalid verification message:

{(suid, msgid), INVALID}K,;ZN-
9

3.1.3. The Receiving Phase

The third phase involves the receiver listening on the multicast channel as shown in Figure 2 (steps R1-R9). Upon
receiving a data message, the receiver decrypts it with the public key of the sender to reveal the message tag
(suid, msgid) in (R1,R2). Since the receiver may not have received its counterpart verification message which
contains the necessary message key K,,sq to decode the data, the receiver stores the encrypted data component
{data}r,,,, along with the message tag as its lookup index in a data queue in (R3-R4).

Upon receiving a verification message, the receiver decrypts it with the public key of the group leader to reveal
the message tag (suid,msgid) in (R5-R6). If the verification message contains the V ALID symbol, the receiver uses
his/her assigned uid and searches for his/her slot that contains the message key K54 in the verification message in
(R7). After the message key is decrypted, the receiver uses the message tag to retrieve the corresponding encrypted
data component from the data queue in (R8). Then the receiver can decrypt the data with the message key in (R9).
If the verification message contains the INV ALID symbol, the receiver simply removes the corresponding encrypted
data component from the data queue.

Two other scenarios can arise due to the variable network delay or lost messages. (1) The receiver may receive a
verification message before its counterpart data message arrives. Then the receiver needs to buffer the verification
message in a verification queue till its data message arrives. (2) Some data or verification messages may get lost
in the network so that some receivers may never receive them. As a result, the counterpart message to that lost
message may remain in the queues forever. For example, if a data message is lost but the counterpart verification
message is received, the verification message may remain in the verification queue forever. The receiver can use a
time-out-and-drop or overflow-and-drop policy to maintain a bounded queue size: if a message remains in the queue
for more than some time period, it is dropped; or if the message queue exceeds a size limit, the earliest arrived
message is dropped.

3.2. Dynamic Membership Operations

Our secure multicast protocol supports three dynamic membership operations: a potential member can JOIN the
group, an existing member can LEAVFE the group, and the group leader can EXPFEL an existing member. For the
JOIN operation, the group leader allocates a new member id to the new member, and adds an additional message
key slot (uid, { Kynsq } Kpg;) into the verification messages. For the LEAVE and EXPEL operations, the group leader
removes the message lzéy slot corresponding to the leaving or expelled member from the verification messages.
These operations are simple without any additional rekey messages or computational overhead to the existing group
members and the group leader.

Our key distribution protocol can also support a SUSPEND operation which denies access to a group member
for a time duration. For the SUSPEND operation, the group leader temporarily removes the message key slots
corresponding the suspended members from the verification messages. This does not require any additional re-
JOIN and re-authentication operations. The decision of suspension can be made by the group leader based on the
credentials (e.g. age) of the members. The SUSPEND operation is very useful for a video-on-demand multicast
where minors are temporarily suspended from seeing inappropriate material.

We will show that our key distribution algorithm is robust and secure in the presence of long network delay or
lost messages. Note that a lost message is equivalent to a message suffering an infinitely long delay. We consider the
following two scenarios. (1) The group leader does not receive the data message in time, so it will not multicast the
counterpart verification message which contains the message key to the data message. As a result, no members can
decrypt the counterpart data message and it will be eventually dropped from the members’ data queues according
to the time-out-and-drop or the overflow-and-drop policy. Our security policy does not guarantee that all valid
messages are received by the members. However, it can guarantee that expelled or non-members cannot decode any
data in the presence of long network delay or lost messages. (2) Some receivers do not receive either the data or
the verification message in time so that they won’t be able to decrypt that lost message. However, since our key
distribution algorithm uses a new key for every new data message, a lost message has no adverse effects on the future
messages.

In contrast, other existing key distribution protocols, e.g. the Hierarchical Tree Key Distribution,® can fail in
the presence of long network delay or lost messages.

1. Some senders do not get the rekey message, and they continue to encrypt data with the outdated group key.
As a result, expelled receivers can still decrypt the data.

2. Some receivers do not get the rekey message. When expelled senders send data using the outdated group key,
these receivers receive the data which is in fact invalid.

3. Some receivers do not get some rekey messages. Because of the algorithmic dependency among the subsequent
rekey messages, they will not be able to process any future rekey messages and to decrypt any future data.

We also note that our key distribution protocol does not depend on any intermediate nodes for security. The
group members authenticate directly with the group leader through secure unicast connections when they first join.
The secure unicast connections can be closed after the authentication process and they are no longer used during
data transmission. The encryption and decryption are done at the endpoint hosts only. Our key distribution protocol
applies encryption on the data before sending it to the underlying multicast protocol, and it applies decryption on
the data after receiving it from the underlying multicast protocol. This means that our key distribution protocol can
be implemented on top of any multicast architecture. Our end-host solution is especially applicable to the M-OSPF
or DVMRP multicast architecture where the multicast server simply floods the multicast messages across network,
and the multicast messages are available to everyone listening over the network.

3.2.1. Overhead Analysis

The dominating network bandwidth overhead in our key distribution algorithm is in the verification messages. The
size of the verification message grows linearly with the group size N because it contains IV copies of message keys,
each is encrypted for each group member. The verification message is multicasted once for every data message
multicasted. Let M be the number of data messages multicasted per second (or the message_rate), the network
bandwidth overhead is O(N % M).

The storage requirement at the group member consists of (1) the public keys of all the senders and the group
leader, (2) his/her assigned member id, and (3) two queues for the data/verification messages. The number of senders
is usually very small (a constant) relative to the size of the group, e.g. the pay-per-view video application has only one
sender. The size of message queue is bounded by a constant due to the time-out-and-drop or the overflow-and-drop
policy described in section 3.1.3.

At a first glance, our key distribution algorithm does not seem to be scalable in terms of network bandwidth
overhead in comparison with other optimal secure multicast protocols. But this turns out to be false. We compare our

Table 1. Overhead comparison between our key distribution protocol and the Hierarchical Tree protocol.

Our Protocol | Hierarchical Tree Protocol
Network bandwidth overhead | O(N % M) O(p* N *log(N))
Storage overhead o(1) O(log(N))

overhead with the Hierarchical Tree Key Distribution,® which is considered one of the most optimal key distribution
algorithm in Table 1.

In the Hierarchical Tree protocol, the dominating overhead is in the rekey message which has a size O(log(N)).
The rekey message is multicasted for every membership change. Let p be a percentage of members who are leaving
or joining the group per second, the number of membership change per second in a group of size IV is p * V. This
results in p x N rekey messages generated per second, and the network bandwidth overhead is O(p * N x log(N)). As
for the storage overhead, each member needs to store the keys from its leaf to the root which is O(log(N)).

For the network bandwidth overhead comparison between our protocol and the Hierarchical Tree protocol, it is
O(N % M) vs. O(p* N xlog(N)). Factoring out N and the constant p, it becomes M vs. log(N). M is the message
rate which is usually a constant. For example, a standard pay-per-view MPEG-2 video multicast runs at 30 frames
or second or its message rate. Because our key distribution algorithm uses one key message per data message, the
number of key messages is equal to the number of data messages. Given a reasonable large group size, M = 30 is as
good as log(N). The storage overhead is small in both protocols.

We calculate the approximate network bandwidth overhead for the group size ranging from 100 to 10000 for a
MPEG-2 video multicast session in the unoptimized column of Table 2. Given that the length of a standard secure
key is 128 bits and additional 2 bytes (16 bits) are used to encode the member id, the size of the verification message
is 144 * N bits. The pay-per-view MPEG-2 video multicast has a bandwidth requirement of 4 Mbps, and it plays
at 30 frames per second. Note that the overhead ratio is computed as the network bandwidth overhead over the
MPEG-2 bitrate.

Table 2. Network bandwidth overhead of our key distribution algorithm given a pay-per-view MPEG-2 video
multicast application and a group size ranging from 100 to 10000. The MPEG-2 video has a bit-rate of 4Mbps with
a framerate of 30. We also assume that MPEG-2 stream has the repeating IBBPBBPBB pattern which one I frame
occurs in every 9 frames. The optimized columns compute the overhead based on one message key per I frame,
whereas the unoptimized column compute the overhead based on one message key per frame.

Unoptimized Optimized
Group size 100 1,000 10,000 100 1,000 10,000
Network bandwidth overhead | 432Kbps | 4.32Mbps | 43.2Mbps || 48Kbps | 480Kbps | 4.8Mbps
Overhead ratio 10.8% 108% 1,080% 1.2% 12% 120%

3.2.2. Optimization

We can make a tradeoff between the network bandwidth overhead and the security level by reusing the same message
key for data messages within some fixed time period of ¢ second(s). This means that (message_rate*t = m) number
of data messages share the same message key for data encryption and decryption. Therefore we multicast only one
verification message every m data messages. This translates into m folds reduction in network bandwidth overhead
with a tradeoff of ¢ second(s) in security vulnerability. We define security vulnerability as that a recently expelled
member may still be able to decrypt at most ¢ seconds of video after the time he/she is expelled by using his/her
last message key. This also holds true for a recently joined member who can decrypt at most ¢ seconds of past
video before the time he/she joins by using his/her first message key. These few seconds of security vulnerability are
acceptable to many applications that do not have stringent security requirements.

The sender can also take advantage of the MPEG encoding dependency among the IPB frames to encrypt only
the I frames. Without the I frames, the receivers can hardly decode the PB frames. As a result, our group leader

only needs to multicast a verification message per I-frame data message. Given a typical MPEG frame pattern
of IBBPBBPBB, an I frame occurs only once every 9 frames. This translates into 9 folds reduction in network
bandwidth overhead as shown in the optimized column of Table 2.

4. MULTICAST WATERMARK PROTOCOL

The copyright protection problem in the multicast environment raises an interesting issue not found in the unicast
environment. In the multicast environment, all group members receive the same multicasted watermark data. When
some security-sensitive data is illegally leaked out to the public, which receiver(s) are to be blamed? This is called
the leaker(s) identification problem. In the unicast environment, this problem can be solved by the content provider
sending a different watermarked copy to each different receiver. When the content provider discovers the leaked copy
in the public, he/she can analyze its watermark to identify the source of the leaked copy: the receiver who is sent
that particular watermarked copy by the the content provider. However, in the multicast environment, there is no
way to differentiate among the receivers because they are given the same multicast copy. As a result, there is no way
to identify the leaker(s).

Leaker(s) identification can be a very powerful tool to protect copyright in a secure multicast environment. Take
the example of the pay-per-view video multicast. A leaker can join the multicast session as a legal customer. Once
the leaker receives the data, he/she re-distributes or resells the data to the public. Our multicast watermark protocol
enables the content provider to identify the leaker(s) in the multicast group when the leaked copy is discovered. This
is a preventive method. Knowing that they may be caught, potential leakers may think twice before leaking out the
data. Another example is a top-secret video/audio conferencing among military intelligence agents. Some agents
may be spies who are selling the video/audio content to hostile foreign agencies. The leaker(s) identification can help
to catch the spies.

Our multicast watermark protocol is a direct extension of our key distribution protocol described in section 3. We
present the multicast watermark protocol in a similar fashion as the key distribution protocol. We first describe the
extension to the data transmission, followed by the leakers identification algorithm, and then the overhead analysis
of the multicast watermark protocol.

4.1. Data Transmission

The data transmission can be divided into five steps which are described below. Given that it is a direct extension
of our key distribution protocol, we simply embed the functions of our multicast watermark protocol inside the data
transmission of our key distribution protocol.

1. The sender multicasts the stream of video frames denoted as di,ds,...,d,. It applies two different watermark
functions to generate two different watermarked frames, d¥*° and d*!, for every picture frame d; in the stream.
The watermark generation function can be applied to the video stream prior to any video transmissions as in
the case of a pay-per-view video multicast when the video stream is available. Or it can be applied just prior
to each picture transmission as in the case of a live video conferencing.

2. The group leader generates a random bit string, denoted By;q, for each member (uid) in the group.

_ 1 2 3 n
Buid = byig, byids buids ---buid

The length of the bit string (denoted n) is equal to the number of video frames in the stream. In case of a live
video, we use a function to generate the bit string on the fly. Each bit b; has a value of either 0 or 1 which
means that the member will be able to decrypt either the first or second (d*° or d¥') watermarked frame.

3. During the sending phase, the sender prepares the data message that contains two different watermarked
frames, d*° and d¥’!. The format of the augmented data message' also contains the two corresponding message

keys, K0, and Kt , which are used to decrypt the two watermarked frames.

{(SUida msgld), {d;—UO}K}ﬁgga {d;DI}K%}Sg) {K:zgga Kﬁig}xglub }Kz”'i

suid

TThe original data message for our key distribution algorithm is described in section 3.1.1.

4. During the verification phase, the group leader prepares the following augmented verification message based
on the random bit strings of group members. If the bit b;(uid) in the random bit string is 0 for the group
member wid, then the message key slot corresponding to member wid in the verification message contains the
bit value 0 and the message key to the first watermarked frame. Member uid will only be able to decrypt the
first watermarked frame d¥ and not the second watermarked frame d¥!.

{(suid, msgid), VALID, (uidy, {b:. Ky b),
uidy

uidy?
. ; bl
(uids, {bﬁm , Kmsg® } KDu)
. : b .
(uidn, {bzidnv Kmu;;n }KP’.“’)}KP”
widyp gl

We will illustrate with an example of a group size of 4 with their member ids widy,..uids. The group leader
generates the following random bit strings for the group members:

|framenumber’1|2|3|4|5|
Buid, 1|{1(1(01]0
Buid, 1/0(0]1]1
Buidg 0O|1|]0|11]0
Buid, 0/0|1]0]1

The verification message corresponding to the 2nd data frame is as follows.

{(suid, msgid), VALID, (uidy,{1, K,’;’ég}Kﬂ;l),
uidy, {07 K#)ng}}{;’;‘(g)a
ids, {1, K28} o).
)

; w0 .
uidy, {07 Kmsg}K;’?;‘l }Kgl”

A~ A~~~

5. During the receiving phase, the receiver decrypts its slot in the verification message to reveal the bit value and
the corresponding watermark message key. Then the receiver can decrypt the data message to reveal either
one of the watermarked data frame.

4.2. Leakers Identification

The leakers identification algorithm requires an input of a partial or complete leaked watermark data stream. It also
requires the cooperation between the senders, who can read the watermark to produce the embedded bit string of
the leaked data stream, and the group leader, who has the randomly generated bit strings of all the group members.
We first assume that there exists only one leaking member. However, there is a possibility of a collusion if more
than one members cooperate together to generate a leaked stream using a combination of their watermark streams.
We first describe the algorithm for the simple case without collusion, then we describe an improved algorithm for
detecting collusions.

1. The leaked watermark data stream is given to the sender(s) who analyze the watermark in the leaked stream
to produce its bit string (Bjeqked). For example, if the first frame in the illegal stream is encoded with the first
watermark, then the first bit is marked with 0 (b},,;.;, = 0). If some frames are missing in the leaked stream,
that bit is noted as missing '—’.

2. Bieaked 1s communicated to the group leader. The group leader performs matching between Bjeqreq and the
random bit streams of the group members B, ;4. Assuming no collusions, if one member’s B,;4 exactly matches
the Bieaked, he/she must be the leaker.

$The original verification message for our key distribution algorithm is described in section 3.1.2.

The bit string matching algorithm requires on average 2 x N number of bit comparisons, where N is the size of
the group. Because we use random number generator to generate the bit strings, on average half of the B, ;4s will
not match Bjegkeq On a bit comparison. Assuming no collusions, members with B,;4s that do not match the Bjegred
cannot possibly generate the leaked stream; therefore we can remove these B,;4s from the list of possible candidates
for the leaker. The number of bit comparisons is calculated as follows:

N+N/2+N/4..+1=2xN

We illustrate the matching algorithm with the following example. It has the bit strings of a leaked stream and
4 group members (N = 4). After the first bit comparison, we can remove uids and uidy from the list of candidates
because their first bit values do not match that of Bjeqreq. After the second bit comparison, we can further remove
utdy from the list of candidates because its second bit value does not match that of Bjcqreq- This leaves only uid;
who is identified as the leaker.

|framenumber‘1|2|3|4|5|
| Bicaked ([[-]-[-]
Buid, 111|010
Buid, 110|011
Buid3 0 1 0 110
Buid, ojlofj1]0]|1

4.2.1. Collusion

A collusion is defined as more than one group members cooperating together to generate a leaking stream. If
we consider the possibility of a collusion in the previous example, members (uids,uids), or (uids,uids,uids) can
cooperate together to generate the first two bits in Bjegger-

To detect a collusion, we need to analyze more bits in Bjegkeq- Let ¢ be maximum number of members involved
in a collusion. We use the bit strings from the following example and we also assume that ¢ = 2.

|framenumber‘1|2|3|4|5|
| Bieaked (L]t [1[1]1]
Buid, 1(1(1]0]0
Buidz 1 0 0 1 1
Buid, 0O[1|0|1]0
Buid4 00 1 0 1

The leakers identification algorithm first generates a list (denoted L) consisting of all possible 2-combinations
from the set of members: L = {(uidy, uids), (uidy, uids), (uidy, uidy), (uida, uids), (uida, uidy), (uids, uidy)}. After
the first bit comparison, we can remove the combination (uids, uids) from L because uids and uids cannot possibly
come up with the watermarked frame d*!. Applying the same logic repeatedly, we can remove the combination
(uidg, uidy) from L after the 2nd bit comparison, (uida, uids) after the 3rd bit comparison, (uidy,uids) after the 4th
bit comparison, and (uid;, uids) after the 5th bit comparison. Now L has only one combination left (uid;, uids). We
have identified (uid;,uids) as the cooperating leakers assuming ¢ = 2.

We generalize the leaker(s) identification algorithm to c-collusion detection given N members. The algorithm
first initializes L to contain a list of all possible c-combinations among the N members. After every bit comparison,
we remove from L all the c-combinations that cannot produce the Bjegreq bit value. Because of the complexity in
the algorithm, we haven’t been able to derive any formula to compute the minimum number of bits that we need
to compare in order to guarantee a c-collusion detection. This is for future work. However, we can eliminate more
combinations from L with a longer |Bjeqked|-

4.3. Overhead Analysis

Our multicast watermark protocol puts two copies of data in the data message. Therefore, the network bandwidth
overhead is approximately doubled. The storage overhead remains unchanged.

5. CONCLUSION

In this paper, we present a secure multicast protocol with copyright protection. Qur secure multicast protocol
contains two components: the key distribution protocol and a multicast watermark protocol. Both protocols do
not require any security mechanism on the network switches or routers. They can be implemented on top of any
existing multicast architecture. They are robust in the presence of long delay and lost messages when the underlying
multicast protocol is unreliable. They are also efficient in terms of network bandwidth and storage requirements with
dynamic membership support.

APPENDIX A. NOTATION

utd;: the member id assigned by the group leader.

suid: the sender’s member id.

msgid: the message id assigned by the sender.

N: the size of the group.

¢: the number of members in a collusion.

L: a list containing the possible combinations of members in a collusion.

d¥0,d¥!: the first/second watermarked frame corresponding to the i-th data frame.
Kps4: key to the data message.

KwO

KX¥! : key to the first/second watermark frame in the data message.

msgr “*msg*

K;’l“b, K;’l”: public/private key of the group leader.

K Z;‘(Z, K74 : public/private key of the member wid;.
Bieakeq: the bit string corresponding to the leaked stream.
Byiqi: the bit string corresponding to the member wid.

b: the i-th bit value in a bit string.

bi.4: the i-th bit value in a bit string of member uid.

W N =

10.

11.

12.

13.

REFERENCES

A. Ballardie, “Scalable multicast key distribution,” rfc1949, May 1996.

A. Ballardie, “Core based trees (CBT) multicast architecture,” ietf draft, February 1996.

D. Waitzman, S. Deering, and C. Partridge, “Distance Vector Multicast Routing Protocol,” rfc1075, November
1988.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei, “The PIM Architecture for Wide-Area
Multicast Routing,” in IEEE/ACM Transactions on Networking, vol. 4, April 1996.

D. Wallner, E. Harder, and R. Agee, “Key Management for Multicast: Issues and Architectures,” ietf draft,
JULY 1997.

S. Mittra, “Iolus: A Framework for Scalable Secure Multicasting,” in Proceedings of ACM SIGCOMM ’97,
(Cannes, France), September 1997.

L. F. Turner, “Digital Data Security System.” Patent IPN WO 89/08915, 1989.

R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne, “A Digital Watermark,” in Proceedings of the International
Conference on Image Processing, vol. 2, pp. 86-90, (IEEE), 1994.

K. Tanaka, Y. Nakamura, and K. Matsui, “Embedding Secret Information into a Dithered Multi-level Image,”
in Proceedings of 1990 IEEE Military Communications Conference, pp. 216-220, 1990.

J. Brassil, S. Low, N. Maxemchuk, and L. O’Gorman, “Electronic marking and identification techniques to
discourage document copying,” in Proceedings of IEEE INFOCOM’94, vol. 3, pp. 1278-1287, (Toronto), June
1994.

G. Caronni, “Assuring Ownership Rights for Digital Images,” in Proceedings of Reliable IT Systems, VIS’95,
Vieweg Publishing Company, 1995.

S. Craver, N. Memon, B. Yeo, and M. Yeung, “Can invisible watermarks resolve rightful ownerships?,” in
Proceedings of the IS&T/SPIE Conference on Storage and Retrieval for Image and Video Databases V, vol. 3022,
pp- 310-321, (San Jose, CA), February 1997.

L. Qiao and K. Nahrstedt, “Watermarking Method for MPEG Encoded Video: Towards Resolving Rightful
Ownership,” in IEEE Multimedia Computing and Systems, (Austin, Texas), June 1998.

