CPU Service Classes for Multimedia Applications *

Hao-hua Chu, Klara Nahrstedt
University of Illinois at Urbana Champaign
h-chu3,klara@cs.uiuc.edu

Abstract

We present the design, implementation, and exper-
imental results of our soft real time (SRT) system
for multimedia applications on top of general purpose
UNIX environment. The SRT system supports multi-
ple CPU service classes for the real time processes based
on their processor usage pattern including periodic con-
stant processing time class (PCPT) and periodic vari-
able processing time (PVPT) class. It also provides
the following features: (1) reservation and processing
time guarantees for the service classes, (2) overrun
protection and scheduling algorithm, and (3) system-
initiated adaptation strategies. The other unique fea-
ture of the SRT system is its easy portability to any
operating systems with real time extensions because it
is implemented purely in the user space without any
modifications to the kernel. We have implemented the
SRT system on the Solaris 2.6 operating system with
scheduling overhead under 400us and with good perfor-
mance guarantees.

1 Introduction

We present the design, implementation, and exper-
imental results of our soft real time (SRT) system!
for multimedia applications on top of general purpose
UNIX environment and hardware environment. Cur-
rent general purpose operating systems are based on
Time Sharing (TS) principle which is designed to bring
fairness to the multi-user and multi-process environ-
ment. However, it has been well known that mul-
timedia applications with real time (RT) constraints
do not perform well in the TS environment. On the
other hand, the hard RT environment that uses special-
ized operating systems and hardware is considered an
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LOur SRT system can be down-loaded with source code at
our SRT homepage http://monet.cs.uiuc.edu/~h-chu3/srt.

overkill for most of multimedia applications with soft
deadlines. Hence, our solution is the SRT system that
provides a soft RT environment with multiple service
classes for different types of multimedia applications
(e.g., tele-microscopy, visual tracking, 3-D animations)
in the TS operating system.

In recent years, there has been an abundance of re-
search in the area of providing real time support in the
general purpose operating systems. In general, these
research systems [1, 3, 4, 5, 6, 8] offer processor time
reservation and guarantee. The RT process first enters
a reservation with the system. Then a RT scheduling
algorithm is used to guarantee the processor time to RT
processes. They also provide overrun protection. An
overrun is a condition when a RT process needs more
processing time to complete its job? at a given iteration
than what it has reserved. The system provides pro-
tection such that overruns from one RT process cannot
cause violations to the contracts of other RT processes.

These systems work well for the class of RT pro-
cesses that have constant processor usage time period-
ically. We define this class of RT processes as periodic
constant processing time (PCPT) class. Unfortunately,
many multimedia applications do not behave as nicely
as PCPT. For example, their processor usage pattern
may be variable rather than constant. We define a new
periodic variable processing time (PVPT) class for RT
processes with variable processor usage pattern.

1.1 Variable Processing Time Class

There are a few common causes that contribute to
the variable processing time behavior in the multimedia
applications. First, the soft RT environment consists of
general purpose operating systems and hardware which
do not provide any timing guarantees. For example,
the unpredictable performance in the memory subsys-
tem and the unbounded service time for system calls in
the kernel all contribute to variations in the process-

2A process can release a stream of jobs, e.g. one job per
period.
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Figure 1. Frame-by-frame processing time for
a MPEG decoder decoding a 352x240 stream.

ing time. Second, most multimedia applications are
not programmed in such a strict timing manner as in
the hard RT system because they are content depen-
dent. For example, the amount of processor time for
a software MPEG decoder can be dynamic on a frame
by frame basis. The variability in processing time of
a MPEG decoder can be observed in Figure 1. It is
caused by a number of factors including the type of
frame (I, P, B), the composition of macro-blocks in a
frame, the background scene, and the amount of ac-
tions in the scene.

Systems that supports only the constant processing
time class are insufficient to handle the variable pro-
cessing time class of applications. For example, they
may require the RT applications to make reservation
close to the worst-case level. Since the worst-case rarely
occurs, it leads to a waste of processor resources and
low processor utilization. In Figure 1, the worst-case
processing time per frame is 85ms with the average
47ms. Reserving 85ms leads to 50% waste of proces-
sor resource. It is also unnecessary to provide deadline
guarantees given that users can tolerate a certain level
of deadline violations. In the example of a MPEG de-
coder, users generally cannot detect a few milli second
(ms) of delay in displaying a frame.

We can make an analogy between the CPU ser-
vice classes in the processor domain and the con-
stant/variable bit rate (rt-CBR/rt-VBR) traffic classes
in the ATM network domain [2]. It is well known in
the network area that constant bit rate (rt-CBR) traffic
class is insufficient in handling more dynamic network
applications like transmitting MPEG streams.

1.2 Processor Service Classes

We show a subset of our processor service classes
provided by our SRT system in Table 1. Interested
readers can visit our SRT webpage (see the footnote in
the first page) for a complete list of our service classes.

Classes | Parameters Guaranteed

PCPT | P (Period), PPT (Peak Pro- | PPT
cessing Time)

PVPT | P (Period), SPT (Sustainable | SPT

Processing Time), PPT (Peak
Processing Time), BT, (Burst
Tolerance)

Table 1. Processor service classes

The PCPT (Periodic Constant Processing Time)
specification of (P, PPT) can be used to describe
a process that needs at most PPT amount of pro-
cessor time every period of length P. The PVPT
(Periodic Variable Processing Time) specification of
(P,SPT,PPT, BT) can be used to describe a process
that needs on average SPT amount of processor time
but no more than PPT every period of length P. In ad-
dition, the PVPT process may generate a usage burst
in excess of SPT but no more than BT. A precise
definition for BT is described in section 2.4.

After the service contract is established, our SRT
system must check that the processes behave according
to their contracts during their execution. This is called
process conformance test, which is similar to the ATM
traffic conformance test. If a process conforms to its
contract, our system provides processor time guarantee
described in Table 1.

1.3 Overrun(Burst) Partition

To accommodate the bursts from the PVPT pro-
cesses, our SRT system sets aside some processor re-
source called overrun partition, and multiplex all bursts
into the overrun partition. Given a small probabil-
ity that all PVPT processes generate bursts simultane-
ously, our overrun partition can be considerable smaller
than the sum of all bursts. This is the benefit of the
statistical multiplexing. However, we cannot provide
hard guarantees that bursts will always be satisfied.

1.4 Adaptation

The PVPT class alone does not solve all problems
coming from variations in processing time. Consider
the MPEG decoder example in Figure 1. In frames



(0-370), the decoder can establish a PVPT contract
for (SPT = 40ms, PPT = 52ms) which should cover
most of the processing time bursts. However, there is
a major scene change around frame 370 where the av-
erage processing time per frame increases from 40ms
to 55ms. The contract should be adjusted accord-
ingly to reflect the change in processor usage time pat-
tern. For example, it should be adjusted to (SPT =
55ms, PPT = T0ms) after frame 350. Our SRT system
provides the system-initiated adaptation which can au-
tomatically adjust the parameters in the contracts for
the RT processes based on their actual processor usage
time.

We organize the remainder of the paper as follows:
section 2 explains the architecture of our SRT system
and its major components; section 3 describes our im-
plementation; section 4 shows our experimental results;
and section 5 presents our concluding remarks.

2 Design

The architecture of our SRT scheduler is shown in
Figure 2. The processor resource is divided into three
partitions: RT partition, overrun partition, and TS
partition. The RT partition is dedicated to serving
the reserved runs of RT processes, and its resource is
managed by a RT Scheduler. The overrun partition is
dedicated to serving overruns and bursts from the RT
processes, and its resource is managed by an Overrun
Scheduler. The TS partition is dedicated to serving
the TS processes so that traditional T'S processes do
not starve because of RT processes, and its resource is
managed by the underlying UNIX TS scheduler.
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Figure 2. System Architecture.

The size of a partition is represented as a percentage
of the total processor resource which is configurable by
the system administrator. For the RT and TS parti-

tions, their sizes depend on the relative weight between
the RT and TS workloads. For the overrun partition,
its size depends on the degree of burstiness from the RT
processes. The RT, overrun, and TS partition sched-
ulers are scheduled by a top-level scheduler which al-
locates processor time to the partitions according to
their relative sizes.

2.1 Top-level Scheduler

The top-level scheduler uses a very simple
credit/debit scheme to schedule the three partition
schedulers. Let (Cyt, Coy,Cts) be the credits of the
RT, overrun, and TS partitions. Let T, be the length
of time slice used by the top-level scheduler to schedule
a partition at one time. When a partition has accu-
mulated a credit greater than 7T, units, the top-level
scheduler will invoke its partition scheduler to run for
one time slice T,,. It is possible that none of the parti-
tions may have accumulated a credit of more than T,
units. For example, all partitions are initialized with
0 credit at the start of the system. Then the top-level
scheduler chooses the RT partition first if C.; > 0, or it
chooses either the overrun or T'S partition with a larger
credit.

At the end of one time slice, the top-level scheduler
debits the scheduled partition for T, units and credits
each partition for the amount proportional to their per-
centage values (or sizes). It is possible that the selected
partition has no process to schedule. The selected par-
tition yields its processor time back to the top-level
scheduler, which allocates it to the other partitions.

2.2 RT Partition

The RT partition serves only the reserved-runs of
the RT processes. The reserved-run is defined as the
amount of guaranteed processing time specified in the
contracts (see Table 1 for what is guaranteed in each
class). The RT partition is managed by the RT sched-
uler which schedules processes so that their reserved-
runs are always satisfied. In order to support such
guarantee, we require that a RT process goes through
a reservation phase prior to its execution phase.

A RT process starts by submitting a reservation re-
quest to the RT scheduler. Upon receiving the request,
the RT Scheduler will perform an admission control
test to determine if there is enough free processor re-
source in the RT partition to satisfy this request. Our
RT scheduler is based on the preemptive earliest dead-
line first [7] (p-EDF) algorithm which gives the most
optimal processor utilization. We assume that all RT



processes in our system are preempt-able®. The corre-
sponding admission control test is as follows:

Z R; < RT Partition, where
i#s

B { PPT/P if process € PCPT
~ | SPT/P if process € PVPT

After the reservation passes the admission control,
it becomes a contract. The contract is effective imme-
diately until the process frees it.

The RT scheduler maintains two queues: the run
queue, and the wait queue. The run queue contains
processes that are not overrunning their reserved pro-
cessing time, and they are sorted with the earliest dead-
line first. The deadline of a process is the end of its
current period. Processes which have completed their
jobs in the current period but have yet been released
for the next period are placed in the wait queue, which
is sorted with the earliest release time first.

When the RT scheduler is invoked by the top-level
scheduler, it checks the wait queue to see if any process
that needs to be released for its next period. Then the
RT scheduler dispatches the first process from the run
queue for one time slice. At the end of one time slice,
the RT scheduler can perform overrun detection and
protection. If the dispatched process hasn’t completed
its job and it has used up all its reserved processing
time, an overrun is detected. The dispatched process
is removed from the run queue and inserted into one
of the queues in the overrun partition. Otherwise, the
dispatched process is re-inserted into the run queue.

2.3 Overrun Partition

The overrun partition serves only the overruns from
the RT processes. We define overruns as the amount
in excess of the guaranteed processing time specified in
the contracts (see Table 1). The overrun partition acts
as a shared resource where all the bursts and overruns
are multiplexed into. The overrun partition is managed
by the overrun scheduler. Unlike the RT scheduler, the
overrun scheduler makes no guarantee on the amount
of processor time that each overrun process receives, or
that each overrun will be scheduled in time to meet its
deadline.

The overrun scheduler distinguishes between con-
forming overruns and non-conforming overruns. Con-
forming overruns are defined as bursts from the PVPT

3This is generally true for processes in the general purpose
operating systems.

processes that exceed their SPT, but still conform
to their contracts. Non-conforming overruns are de-
fined as bursts from any processes that do not conform
to their contracts. We will describe the conformance
tests in section 2.4. The overrun scheduler maintains
three queues: conforming queue for conforming over-
runs, non-conforming queue for non-conforming over-
runs, and permanent non-conforming queue for non-
conforming overruns occurring frequently over a long
period of time.

When the overrun scheduler is invoked by the top-
level scheduler, it schedules the conforming overruns
first. When there are no conforming overruns, it
then schedules the non-conforming overruns and last
the permanent non-conforming overruns. Within each
overrun queue, the overrun scheduler uses a round robin
algorithm which gives each overrun an equal share of
the overrun partition. The emphasis is on fairness. All
overrun queues are FIFO (first in first out). The over-
run scheduler inserts a new overrun at the end of the
queue regardless of its deadline and dispatches from
the head of the queue.

At the end of every time slice (during the interrupt
point), the overrun queues need to be checked if any
periodic overrun process has passed its deadline. This
is called a deadline miss. A flag is set to notify the
process of a deadline miss.

2.4 Process Conformance Test

The process conformance test checks if the process
behaves according to its contract. The system-specific
burst tolerance (SSBT) is defined as the variation
caused by our scheduling overhead, the underlying gen-
eral purpose operating system, and hardware.
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Figure 3. Process conformance test for the
service classes.

The conformance test for the PCPT class can be rep-
resented by a leaky bucket in Figure 2.4. The bucket



has depth PPT+SSBT. The amount equivalent to the
processor usage time is poured into the bucket. Every
period P, the bucket is drained for the amount PPT.
The process conforms to its contract when its bucket
does not overflow. The conformance test for the PVPT
class can be represented by two leaky buckets. The left
bucket has a depth SPT + BT + SSBT and the right
one has depth PPT + SSBT. The amount equivalent
to the processor usage time is poured into both buck-
ets simultaneously. Every period P, the left bucket is
drained for the amount SPT, and the right one PPT.
The process conforms to its contract when both buck-
ets do not overflow.

The conformance test is invoked when a process is
dispatched for a time slice, or when a process encoun-
ters the end of its periodic deadline.

2.5 Adaptation

System-initiated adaptation can automatically ad-
just the parameters in the contracts for RT processes
based on the monitored processor usage time. A RT
application can choose from the following two adapta-
tion strategies. We denote X as the guaranteed param-
eter (PPT for a PCPT process and SPT for a PVPT
process) in the contract.

The exponential average strategy is based on the
following formula:

Xi=(l—-a)*xX;1+axX;

The RT application selects the parameter 0 < o < 1
that represents the relative weight between the current
X; value and the previous X; ; value in determining
the new X; value. The default value for « is 0.5. The
RT application also selects the window size (ws) which
represents the number of past iterations from which the
new X value is calculated from. For example, a PCPT
process with ws = 10 means that the peak process-
ing time is calculated as the maximum processing time
over the last 10 iterations. The window size controls
the frequency of adjustment on X. Since each adjust-
ment requires a re-negotiation of processor resources,
frequent adjustments can be undesirable.

The statistical strategy requires two parameters:
frequency of non-conforming overruns(f) and win-
dow size (ws). It will adjust X to a level where
no more than (f * ws) number of non-conforming
overruns can occur within the ws number of itera-
tions. For example of (f = 0.2,ws = 5) and a pro-
cess has its most recent 5 processing usage history
as (53ms, 50ms, 30ms, 40ms, 55ms), statistical adap-
tation will adjust PPT = 50ms so that only 2 non-
conforming overruns (> 50ms) occur.

3 Implementation

Another novel feature of our SRT system is that it
is implemented purely in the user space without any
modifications into the kernel. The implementation re-
quires that the underlying operating system provides
the following two services (1) a real time interval timer
(e.g. setitimer()), (2) fixed priorities (e.g. priocntl()).
These two services are available in almost all UNTX
systems under the POSIX.4 real time extension.

The essence in the implementation of the our server
is in the dispatch mechanism. The SRT server process
must have root privilege so that it can manipulate the
fixed RT priorities and it can change the priority of RT
client processes. The server process runs at the high-
est possible global(and fixed) priority. At the system
startup time, the server sets the real time interval timer
equal to the time slice T, which means that the timer
will wake up (signal) the server process every T, time.
After a RT process pid is selected to be dispatched, the
server promotes pid’s priority from lowest to the 2nd
highest global (and fixed) priority. Then the server
sleeps, and pid is scheduled by the underlying kernel
given that it is the runnable process with the high-
est priority. At the end of one time slice, the interval
timer wakes up the server, which also preempts pid.
The server stops(suspends) pid and lowers pid's prior-
ity from the 2nd highest priority to the lowest priority.
This dispatch cycle repeats.

The server allows the TS processes to run by not
promoting any RT processes to the dispatch priority.
As a result, the kernel will schedule the TS processes
according to its TS scheduler.

We have implemented our SRT system on a sin-
gle processor Sun Ultra Sparc machine running Solaris
2.6 operating system. The dispatch latency, which the
amount from the end of previous dispatched process to
the start of the next dispatched process, is measured
to be consistently less than 400us.

4 Experiment

The experiment consists of the following mixture
of RT and TS processes running concurrently. TS-1:
a compilation process. TS-2 and TS-3: a computa-
tion intensive program. RT-4: a PVPT class MPEG
decoder plays the 352x240 stream in Figure 1 at 5
frames per second. The PVPT parameters are (P =
200ms, SPT = 40ms, PPT = 52ms, BT = 15ms)
with statistical adaptation strategy (f = 0.2, ws = 10).
RT-5: a PVPT class MPEG decoder plays the 192x144
stream at 10 frames per second. The PVPT parameters
are (P = 100ms, SPT = 15ms, PPT = 25ms, BT =



10ms). RT-6: a PCPT class monitor program takes
a sample every 50ms. The PCPT parameters are
(P = 50ms, PPT = 500us) without any adaptation.
RT-7: a PCPT class misbehaving program uses as
much processor time as possible. Its PCPT parame-
ters are (P = 500ms, PPT = 10ms). This is to show
our overrun protection.
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Figure 4. The inter-frame time for the three
behaving RT processes.

Figure 4 plots the inter-frame time for the three be-
having RT processes RT-4, RT-5, and RT-6. There is
no deadline miss for them, and the jitter for the two
MPEG decoders are all kept within one frame time.
This shows that the misbehaving RT-7 process does not
affect the behaving RT processes. Figure 5 shows how
the statistical adaptation strategy adjusts the S PT pa-
rameter for the RT-4 MPEG decoder process. The
SPT value is adjusted from the initial 40ms to 56ms
when the processor usage time increases after frame
370.

5 Conclusion

Our SRT system stands out among the related sys-
tem by introducing various real time service classes in
the processor domain. Our system also provides unique
features like exponential average and statistical adap-
tation strategies, and overrun scheduling. Our system
can achieve low overhead and provide good guarantees
to RT processes using a user-space implementation and
without any kernel modifications. We have also shown
through experimental result that our SRT system can
deliver good guarantees to the RT processes.
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Figure 5. Statistical adaptation strategy ad-
justs SPT (Sustainable Processing Time)
shown as the line for RT-4. The dotted line
represents the actual usage.
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