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Abstract

We present a soft real-time CPU server for Continuous Media processing in the UNIX environment. The
server is a daemon process from which applications can request and acquire soft real-time QoS (Quality of
Service) Guarantees. Our server architecture addresses in addition to other multimedia CPU scheduling ex-
tensions properties such as fairness, QoS brokerage and enforcement, and security. Overall it provides (1)
protection among real-time(RT) processes, (2) fairness among RT and non-RT processes, (3) rate monotonic
scheduling, and (4) a fix to the UNIX security problem. We have implemented our soft real-time CPU server
in the SUN Solaris 2.5 Operating System, and we have shown through experiments that our soft RT server
provides predictable QoS for continuous media applications.
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I. INTRODUCTION

Continuous media such as Video and Audio are becoming widely-used in computer applications nowadays.
To preserve their time-sensitive (temporal) behavior, multimedia applications require that the underlying
systems provide soft real time Quality of Service (QoS) guarantees.! However, in the current UNIX multi-
user, multi-process, and time-sharing (TS) environment, these applications do not perform very well when
they are scheduled concurrently with the traditional non-RT applications such as text editors, compilers,
web browsers, or computation-intensive tasks. These soft real-time (RT) applications also do not perform
very well when other RT applications are scheduled concurrently. Part of the problem is due to untimely
scheduling of processes rather than insufficient CPU capacity. This paper addresses this problem and presents
an extension to the current UNIX scheduler - a soft real time server - to schedule soft RT applications in the
more predictable fashion.

One possible solution to serve RT application in UNIX environment is to dedicate the entire system to
serve only one RT application. This involves blocking services to all other RT or non-RT applications and
users. This solution avoids the potential scheduling problem, and it also defeats the UNIX environment goals
of supporting multi-user, multi-process and time-sharing properties. Therefore, this solution is not feasible in
the UNIX environment.

Another more feasible solution is the current RT extension to UNIX. The UNIX/POSIX.4 real time extension
provides fixed priorities to real time applications. The priority scheduling rule dictates that higher priority

*This work is supported by National Science Foundation Career Grant, under contract: NSFCCR96-23867 and CISE Instruc-
tional Equipment Grant.

!Soft real time guarantee means that there could exist a time when guarantees are violated, e.g. due to page faults, but this
violation is bounded.



TABLE 1
UNIX/POSIX.4 RT/TS PRIORITY CLASS WITH THE RATE MONOTONIC EMULATION

Priority | Class Process

RT process with smallest period

higher | fixed priority

RT process with largest period
Any TS process

[ dynamic priority

processes are scheduled before the lower ones in a preemptive fashion. RT processes are assigned higher fixed
priorities, whereas non-RT processes are assigned lower dynamic priorities. As a result, the RT processes
are served before non-RT processes, and higher priority RT processes are served before lower priority RT
processes. This fixed priority mechanism provides a convenient way to implement the rate monotonic (RM)
algorithm because the ordering of priorities between the RT processes depends on the ordering of the process
rates (the length of their periods) as shown in the Table I. Under this RM schedule[3], the RT processes with
smaller periods are executed first, followed by RT processes with larger periods, and then non-RT processes.
Prior to the start of any RT process, the schedulability test is performed by checking its total CPU demand
so that including this new process, the CPU resource allocation will not exceed the CPU capacity. But this
schedule has many problems described below.

o Priority should represent the importance of a process rather than whether this process is RT or non-RT.
For example, is user A playing a song (a RT application) more important than user B writing a term
paper (a non-RT application)? RT and non-RT applications must share the CPU time fairly. It is also
unreasonable to assign priority for RT applications based on the length of their periods. For example, is
a video player running at 30 frames per second more important than another video player running at 20
frames per second? This is called the fairness problem.

o It offers no protection between applications. There isn’t any mechanism to enforce deadline and to guard
against overrun and monopoly of CPU by a faulty or greedy RT process at high priority. Frequent overruns
from a high priority process can cause starvation to other processes at lower priority. A run-away RT
process at very high priority can even block most of the system processes and lock up the entire system.
This is called the enforcement problem.

o It requires root privilege to use the fixed priority. From a UNIX security viewpoint, it is impossible to
give every user root privilege to run RT applications. This is called the security problem.

In this paper, we describe a soft RT scheduling server in UNIX OS environment that will address the fairness,

enforcement, and security problems mentioned above without compromising the flexibility and efficiency of

the UNIX Operating System. The approach of our RT server is general, it requires no modification to the



kernel and it can be easily ported to almost any derivations of UNIX systems. Qur RT server is intended for
scheduling of soft RT applications only, such as multimedia applications that can tolerate some variations in
temporal quality of service.

The paper is organized as follows: Section 2 describes the related works; Section 3 explains the scheduling
server architecture; Section 4 describes the implementation on SUN Solaris; Section 5 shows the experimental

results; Section 6 presents the concluding remarks.

II. RELATED WORKS

The area of accommodating scheduling of soft RT applications on the current UNIX platforms was addressed
by several groups. Goyal, Guo, and Vin [2] implemented the Hierarchical CPU Scheduler in the SUN Solaris
2.4. The CPU resource is partitioned into hierarchical classes, such as Real-time and Best-Effort classes, in
a tree-like structure. A class can further partition its resource into subclasses. Each class can designate a
suitable scheduler to meet the objective of its processes(leaf nodes). Protection between classes is achieved by
the Start-time Fair Queuing (SFQ) algorithm which is a modification of the Weighted Fair Queuing Algorithm.
SFQ is a fair scheduler that schedules all the intermediate classes and subclasses according to their partitioned
resources. The major disadvantage of this approach is that their implementation requires modifications to the
Solaris kernel scheduler. Fair sharing also does not translate directly into applications QoS guarantees that
require a specific amount of CPU allocation and a constant periodicity. Furthermore, the scheduling overhead
can be expected to rise proportionally with increasing depth and breath of the hierarchical trees.

Mercer, Savage, and Tokuda [4] implemented the Processor Capacity Reserves abstraction for the RT-
threads in the RT Mach Operating System. A recent version [1] supports dynamic Quality adjustment policy.
A new thread must first request its CPU QoS in the form of period, and requested CPU usage in percentage
during the reservation phase. Once it is accepted, a reserve of CPU processing time is setup and it is binded
to this new thread. Any computation time done on behalf of this process, including all service time from
various system threads, is charged to this reserve. The reserve is replenished periodically by its requested
CPU usage time. This concept is similar to the Token Bucket. The accurate accounting of system service
time is a superior but costly feature. It requires non-trivial modifications and computation overhead inside
the UNIX kernel to support this abstraction, such as keeping track of the reserves database, and passing the
client process’s reserve to and between system threads.

Yau and Lam [13] implemented the Adaptive Rate-Controlled Scheduling, which is a modification of the
Virtual Clock Algorithm. Each process specifies a reserve rate and a period for its admission control phase.
During its execution phase, the reserve rate is adjusted upward or downward to match its actual usage rate
in a gradual fashion. It is called rate adaptation.

Gopalakkrishnan [12] implemented the Real Time Upcall (RTU) on the NetBSD UNIX to support periodic

tasks. Each RTU is similar to a process, it contains an event handler that registers to the kernel its execution



TABLE II
URSCHED PRIORITY STRUCTURE

Priority Process
highest URsched scheduler
RT class 2nd highest | Running RT process
. Not used
TS class any Any TS processes
RT Class lowest Waiting RT processes

time and period. The kernel dispatcher is modified to schedule the RTUs using the Rate Monotonic algorithm.
In order to increase the predictability and efficiency, the kernel dispatcher disallow preemptions during the
middle of the RTU execution, called delay preemption and no asynchronous preemption.

Kamada, Yuhara, and Ono [7] implemented the User-level RT Scheduler (URsched) in the SUN Solaris
2.4. The URsched approach is based on the POSIX.4 fixed priority extension and its priority scheduling
rule. The scheduler runs at the highest possible fixed-priority, the RT process waits its scheduling turn at
the lowest possible fixed-priority (called the waiting priority), and the active RT process runs at the 2nd
highest fixed-priority (called running priority). The priority structure is shown in Table II. The scheduler
wakes up periodically to dispatch the RT processes by moving them between the waiting and the running
priority; during the other time, it just sleeps. When scheduler sleeps, the RT process at the running priority
executes. When no RT processes exists, the non-RT processes with dynamic priorities execute using the fair
time sharing scheduler of UNIX. This provides a simple mechanism to do RT scheduling in UNIX. It also has
many desirable properties which the previous two approaches do not provide:

o It requires no modification to the existing UNIX/POSIX.4 kernels. The scheduling process can be imple-

mented as an user-level application.

¢ It has very low computation overhead.

o It provides the flexibility to implement any scheduling algorithms in the scheduler, e.g. rate monotonic,

earliest deadline, or even the Hierarchical CPU Scheduler.

In this paper, we will apply lessons learned from the previous approaches and extend the existing solutions
to build a higher level soft RT scheduling server. In addition to the properties of the URsched, we provide
the following functionalities:

o New Design of the Soft RT Server Architecture.

o Implementation of Rate Monotonic Scheduling.

o Provision of Protection among real-time processes.

o Fixing the Security problem in UNIX Operating System.



III. SERVER ARCHITECTURE DESIGN

Our server architecture contains three major components—the broker, the dispatcher, and the dispatch

table as shown in Figure 1. Each component is described in details in the following sections.

Dispatch Table
Write &ead
..... .
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Request

Dispatch

(RT Clients

Fig. 1. The Soft RT server architecture

A. Broker

The broker receives requests from client RT processes. It performs the admission control test to determine
whether the new client process can be scheduled. If it is schedulable, the broker will put the RT process into
the waiting RT process pool by changing it to the waiting priority. The broker also computes a new schedule
based on a desirable scheduling algorithm, the new schedule is written to the dispatch table.

The broker process is a root daemon process running at a normal dynamic priority. It can be started at
the system boot time, like any other network and file system daemons. It will wake up when the new client
request arrives. The broker needs to be a root process so that it can change processes into the fixed priority.
The broker process does not perform the actual dispatching of the RT processes, instead it will fork a separate
real-time dispatcher process. The reason is that the admission and schedulability test in the broker may have
variable computation time, hence it may affect the timing of dispatching. The admission and schedulability
test do not need to be done in real time; as a result, the broker runs at a dynamic priority. The separation
of RT dispatching in the dispatcher process and the non-RT schedulability test in the broker process is an
essential feature that allows both dispatcher and broker to do on-line computation without compromising the
precision of RT processes dispatching.

The client RT processes must start their processing at the non-RT dynamic priority level. The broker and
dispatcher will change them into the fixed RT priority when they are accepted and dispatched. This is an
improvement over the current UNIX environment, our scheme allows any user to run processes at the fixed

priority in a fair and secure manner.



TABLE III
SAMPLE DispaATcH TABLE, REAL TIME

Slot Number | Time Process PID
0 0—10ms | 721
1 10 — 20ms | 773 774 775
2 20 — 30ms | 721
3 30 — 40ms | free
4 40 — 50ms | 721
5 50 — 60ms | 773 774 775
6 60 — 70ms | 721
7 70 — 80ms | free

B. Dispatch Table

The dispatch table is a shared memory object where the broker writes the computed schedule to and the
dispatcher reads from in order to know how to dispatch RT processes. It is locked inside memory for efficient
read and write. The dispatch table contains a repeatable frame of slots, each slot corresponds to a time slice
of CPU time. Each slot can be assigned to a RT process pid, a group of cooperating RT process pids, or be
free which means yielding the control to the UNIX TS scheduler to schedule any non-RT processes. Consider
the example in Table III. The repeatable frame is 80ms, and it contains 8 time slots of 10ms each. The
sample dispatch table is a result of a RM schedule with the pid 721 at period=20ms, ezecution time=10ms,
and pid 773/774/775 at period=40ms, ezecution time=10ms. There are 2 free slots, which means 20ms out
of every 80ms of CPU is allocated to the non-RT processes.

The minimum number of free slots is maintained by the broker to provide a fair share of CPU time to
the non-RT processes. In the Table III, 25% (20ms out of 80ms) of the CPU is guaranteed to the non-RT
processes. The site administrator can adjust the non-RT percentage value to be what is considered fair. For
example, if the computer is used heavily for RT applications, the non-RT percentage can be set to a small

number, and vice versa.

C. Dispatcher

The dispatcher is a process running at the highest possible fixed priority. The dispatcher process is created
by the broker and it is killed when there are no RT processes to be scheduled in the system. When there are
only non-RT processes running, the system has no processing overhead associated with the RT server.

The dispatcher contains the shared memory dispatch table and a pointer to the next dispatching slot. At
the beginning of the next dispatch slot, a periodic RT timer signals the dispatcher to schedule the next RT
process. The length of time to switch from the end of one slot to the start of the next one is called the dispatch

latency. The dispatch latency is the scheduling overhead which should be kept at a minimal value.



The dispatching process is similar to the URsched approach. Consider the dispatch table in Table III at
time 50ms. The dispatcher is moving from slot 4 to slot 5, the following steps are taken.
o The periodic RT timer wakes up the dispatcher process, and the process 721 is preempted (1 context
switch).
o The dispatcher changes the process 721 to the waiting priority and processes 773/774/775 to the running
RT priority (4 system calls to set priority).
o The dispatcher puts itself to sleep, and one of the processes 773/774/775 are scheduled (1 context switch).
The program code segment that corresponds to the above steps is executed repeatedly, and is locked into
memory to avoid costly page faults. The dispatch latency can be bounded by the time to do 2 context switches
and (the maximum number of processes in any 2 adjacent slots) set-priority system calls.
Unless the processes are in their critical sections, dispatcher will not allow process to overrun. The execution

time of the RT processes execution time is protected from each other.

D. RT clients

Our client’s system QoS request uses the simple RT Mach’s form of QoS specification: period=p, CPU usage
in percentage=u. For example, the specification (p = 10ms, u = 20%) means that 2ms out of every 10ms are
reserved for this RT process. There are restrictions to the size of the period. The hardware restricts the size
to be greater than the software clock resolution. Smaller period also leads to smaller time slice, which results
in higher number of context switchings and inefficient CPU utilization.

The users can compute the client’s required period (e.g. 40 frames per second video player has a period of
25ms), but the computation of the CPU usage percentage is very difficult. The UNIX command rusage will
not give an accurate system time because some of the system threads execution times may not be accounted,
as described in the Process Reserves Model in the RT Mach [4]. The user can get a good estimation by a few
trial-and-error runs of the client programs.

The execution time also depends on the state of memory contention and the resulting number of page
faults. We are currently designing a memory broker where the RT process can reserve memory prior to their
execution.

The client RT process may block while making a system call. During this blocking time, the client is not
executing. But since the kernel is serving the system call for the client, the blocking time should be considered

as a part of client’s execution time (as in the case of Process Reserves Model).

IV. IMPLEMENTATION
A. SUN Solaris 2.5 Implementation

We have implemented our server architecture on a single processor Sun Sparc 10 running Solaris 2.5 OS. The

Solaris OS has a default global priority range (0-159), 0 the least importance. There are 3 priority classes:RT



class, System class, and TS class. The RT class contains fixed priority range (0-59), which maps to the global
priority range (100-159). The dispatcher’s priority is 59, the running priority is 58, and the waiting priority is
0. The waiting priority 0 needs to be mapped to the lowest global priority 0, and it must be lower than any
TS priorities. This can be done by compiling a new RT priority table RT_DPTBL inside the kernel.

The changing priority is done by using the priocntl() system call. Its average cost is measured as 175us.
The average dispatch latency (2 context switch + 2 priocntl() is measured as 1ms. The interval timer is
implemented using setitimer() with the maximum resolution of 10ms and it is the smallest time slot size.
The overhead is 10%, which is acceptable.

The broker implements a rate monotonic(RM) scheduling algorithm. In our future work, we will implement

the earliest deadline first (EDF) algorithm.

V. EXPERIMENTAL RESULTS

We have tested our soft RT server with two experiments which run concurrently multimedia application(s)
and non-RT applications. The metric to evaluate the performance of our CPU server is the jitter of the

continuous media in multimedia application(s).

A. FEzperiment 1

The first experiment consists of the mixture of the following 4 popular applications running concurrently:

o The Berkeley mpeg. play (version 2.3) plays the TV cartoon Simpsons mpeg file at 10 frames per second.

o The gcc compiler compiles the Berkeley mpeg_play code.

o Our program computes the sin and cos table using the infinite series formula.

o The Latex program formats this paper.

The graphs in Figure 2 show the measurement of frame jitter on the mpeg_play under the above specified
load. The left graph shows the result of the normal TS UNIX scheduler without our server. The right graph
shows the result of our server with 60% CPU reserved every 50ms to the mpeg play. Using the UNIX TS
scheduling, noticeable jitter over 100ms (equivalent to 1 frame time) occurs frequently—61 times out of the 650
frames (65 seconds). The largest jitter is about 350ms (over 3 frames time), which is clearly unacceptable.
Using our server, noticeable jitter over 100ms occurs only once.

The Table IV shows the elapsed time of the other three applications—compute, compile, and Latex. Using

our server, their execution time increases by no more than 20%, which is acceptable for non-RT applications.

B. Ezperiment 2

The second experiment adds a second mpeg_play that plays the same mpeg file at 5 frames per second. The
graphs in Figure 3 show the measurement of jitter on two mpeg_play applications. The top graphs show the
results of the 10 frames per second mpeg play and the bottom graphs show the results for the 5 frames per
second. The left graphs show the results of the normal TS UNIX without our server. The right graphs show
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Frame Jitter Measurement for mpeg play at 10 frames per second on the SUN Sparc 10 Solaris 2.5 platform.
The left graph shows the result for the TS UNIX Scheduler. The right graph shows the result of our RT scheduling
server with 60% CPU reserved every 50ms.

TABLE IV
ELAPSED TIME OF THE COMPUTE, COMPILE AND LATEX APPLICATIONS.

Compute | Compile | Latex
TS UNIX | 75.11s 141.36s | 28.93s
Server 90.90s 160.33s | 33.24s

the results of our server with 60% CPU reserved every 50ms to the first mpeg_play, and 30% CPU reserved

every 50ms to the second mpeg play. Using the UNIX TS scheduling, noticeable jitter over 100ms occurs

frequently—-153 times out of 650 frames (65 seconds) for the first mpeg_ play, and 10 times out of 325 frames

for the second mpeg_play programs. The largest jitter is about 400ms (4 frames time), which is unacceptable.

Using our server, noticeable jitter over 100ms occurs 0 and 1 time for the first and second mpeg_play programs.

The Table V shows the elapsed time of the other 3 applications. Using our server, their average execution

time increases by 50%, which is still acceptable for non-RT applications.

VI. CoNcLUSION AND FUTURE WORK

We have shown through experiments that our soft RT server provides predictable QoS for Continuous Media

applications in the UNIX environment. It addresses fairness by maintaining a minimum amount of CPU time

TABLE V
ELAPSED TIME OF THE COMPUTE, COMPILE AND LATEX APPLICATIONS.

Compute | Compile | Latex
TS UNIX | 102.84s 283.10s | 33.70s
Server 132.86s 293.04s | 69.53s




10

. 500 T
e2_sun_nrtl0 — e2_sun_rt10 —

300 300

Jitter in ms
Jitter in ms

200 200

100 100 -

|

5y
T

’ h ’» ! U” W el \h M I\

| T A T T
1 1 1 1 1 1 1
0 100 300 400 500 600 700 0 100 200 300 400 500 600 700
Frame Number Frame Number
500 T T T 500 T T T
e2_sun_nrt5 — e2_sun_rt5 —
400 | B 400 |
300 b 300
@ @
£ £
£ £
5] 5]
=1 200 =1 200
5 5
100 Bl 100
o [Ly, “HH “ \‘\ \i\ “\“ J ’ Lm gy M\J.U"mJ \“ \L 11 \“” T 0 ‘ 1 ‘ ‘ 1 | J ‘ ‘ ‘
1 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Frame Number Frame Number

Fig. 3. Jitter Measurement for the two mpeg plays at 10fps(top) and 5fps(bottom) on the SUN Sparc 10 Solaris 2.5
platform. The left graphs shows TS UNIX. The right graphs shows our server with 10fps(top) 60% CPU reserved
every 50ms, and 5fps(bottom) 30% CPU reserved every 50ms.

for the non-RT processes, it offers protection by disallowing RT process to overrun their time slots, and it
provides security through the broker interface. In our future work, we will incorporate our soft RT server
in our general Resource Broker Architecture that provides better QoS for soft real-time applications. We list
three areas which our Resource Broker Architecture will address:

¢« Memory Management.

o Adaptive Resource Management and Dynamic QoS Request

o QoS Translation Service

A. Memory Management

Our current resource management controls only the CPU, but this is not sufficient. Memory management is
also important. It is well known that the performance of the virtual memory system has a great impact on the
process performance, or its execution time. For example, a page fault can take up to 10ms to service on a SUN
sparc 10 workstation, and it can disrupt the timing of the real-time process. Page faults can occur frequently

when processes are competing for physical memory. Unfortunately most of the Continuous Media applications
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that deal with video and audio are memory intensive even when compression is used. The frequency of the
page fault must be minimized in order to provide predictable CPU execution time. As a result, the system
must provide a memory management scheme that allows real-time processes to reserve and to lock certain

critical sections of their program and data segments into physical memory.

B. Adaptive Resource Management and Dynamic QoS Request

The second not well understood issue is the adaptive resource management and dynamic QoS request. Most
of the current protocols rely on the static resource allocation and static QoS request. These protocols require
that a real-time process submits its QoS request during the reservation phase. Then admission control is
performed to check for resource availability; if it is successful, resource is allocated for the entire duration of
the real-time process regardless of its actual resource consumption and the changing load on the resources.
For example, a video playback application may initially request the most desirable QoS of 30 fps (frames per
second), but when resource load is high, it can tolerate a degradation to 20 fps.

Min QoS Max QoS
Guaranteed Adaptive

Fig. 4. Dynamic QoS Request

Our designed protocol supports dynamic QoS request in the form of a range { MinQoS, MazQoS} as shown
in Figure 4. The MinQoS is the guaranteed portion to the real-time process, it should be the minimum level
of resource that real-time process needs in order to perform its task. The adaptive portion, up to MazQoS
is dynamically adjusted by the resource management depending on its current resource consumption and the

overall availability of the resources. This is similar to the Imprecise Computation model [14].

C. QoS Translation Service

Application QoS

Network QoS

[ Memory QoS] [CPU QOQ

Fig. 5. QoS dependency graph for QoS Translation service

The third issue is the complexity of the QoS specification. Most protocols require the specification of the
QoS parameters at the resource level, e.g. CPU time in period and milliseconds, memory usage in bytes, and
network bandwidth in Mbits per second. However, it is difficult to translate the higher level application QoS

parameter into these lower level resource QoS parameters. Take the example of a network mpeg video player,
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where the application QoS is specified in frame-rate, e.g. 10 frames per second(fps). How much memory or
CPU resources does 10 fps translate to? As shown in Figure 5, the application QoS needs to be translated
into network QoS for its network processing task, and memory and CPU QoS for its decode and display tasks.
Furthermore, the Network Protocol Stack Processing is a part of the network task, so the network (oS needs
to be translated into memory and CPU QoS. This forms the QoS dependency graph which the QoS translation

service needs to take into an account and resolve the resource mappings.
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