Node-Disjoint Paths and Related Problems on Hierarchical Cubic Networks

Jung-Sheng Fu
Takming College, Taipei, TAIWAN
Gen-Huey Chen
Department of Computer Science and Information Engineering, National Taiwan University,
and
Dyi-Rong Duh
Department of Computer Science and Information Engineering, National Chi Nan University, Nantou, TAIWAN

Abstract

An n-dimensional hierarchical cubic network (denoted by $\operatorname{HCN}(n)$) contains $2^{n} n$-dimensional hypercubes. The diameter of the $\operatorname{HCN}(n)$, which is equal to $n+\lfloor(n+1) / 3\rfloor+1$, is about two-thirds the diameter of a comparable hypercube, although it uses about half as many links per node. In this paper, a maximal number of node-disjoint paths are constructed between every two distinct nodes of the $\operatorname{HCN}(n)$. Their maximal length is bounded above by $n+\lfloor n / 3\rfloor+4$, which is nearly optimal. The $(n+1)$-wide diameter and n-fault diameter of the $\mathrm{HCN}(n)$ are shown to be $n+$ $\lfloor n / 3\rfloor+3$ or $n+\lfloor n / 3\rfloor+4$, which are about two-thirds those of a comparable hypercube. Our results reveal that the $\operatorname{HCN}(n)$ has a smaller wide diameter and fault diameter than a comparable hypercube.

Index Terms: Container, fault diameter, hierarchical cubic network, node-disjoint paths, wide diameter

Correspondence Address: Professor Gen-Huey Chen
Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, TAIWAN 10764
e-mail: ghchen@csie.ntu.edu.tw
Tel: (886)-(2)-23625336 Ext. 427
Fax: (886)-(2)-23628167

1 Introduction

The hierarchical cubic network (HCN for short), which was proposed in [9] as an alternative to the hypercube, consists of 2^{n} basic components named clusters. Each cluster is an n-dimensional hypercube (n-cube for short). If each cluster is viewed as a single node, then the HCN appears as a 2^{n}-node complete graph. The HCN can emulate a hypercube of the same size in constant time, but with only about half as many links per node. The average internode distances in the HCN under random and localized traffic patterns are the same as a comparable hypercube. When message generation rates are moderate, the average message transit delays in the HCN are slightly better than a comparable hypercube. This is a consequence of the fact that the HCN has a smaller maximal routing distance than a comparable hypercube.

Previous works related to the HCN can be found in the literature [3], [9], [18], [19]. A shortest-path routing algorithm was presented in [3], [18], [19]. A broadcasting algorithm appeared in [3]. Some parallel algorithms were designed in [9]. The diameter, which is about two-thirds the diameter of a comparable hypercube, was computed in [18], [19]. A Hamiltonian cycle was constructed in [3], [18].

Suppose that A and B are two distinct nodes of an interconnection network (network for short) W. An (A, B)-container in W is a set of disjoint paths between A and B. Throughout this paper, "disjoint paths" always means "internally node-disjoint paths". The width of a container is the number of paths it contains. The length of a container is the maximal length of paths it contains. A container is the best if its length is minimum.

The length of a best (A, B)-container is the x-wide distance between A and B, where x is the width of the container. The maximal x-wide distance in W is the x-wide diameter of W. The maximal diameter in W with at most y nodes removed is the y-fault diameter of W. When $x=1(y=0)$, the x-wide diameter (y-fault diameter) is identical with the diameter. Apparently, the x-wide diameter is the maximal length of best containers of width x, and the y-fault diameter is bounded above by the $(y+1)$-wide diameter.

The concepts of container, wide diameter, and fault diameter arose naturally from the study of routing (such as Rabin's Information Dispersal Algorithm (IDA) [15]), reliability, fault tolerance, and communication protocols (such as Byzantine algorithms) in parallel architectures and distributed computer networks (see [10]). Containers can be used to accelerate the transmission rate and to enhance the transmission reliability. In [15], the IDA was proposed on the hypercube which involved the construction
of disjoint paths. The IDA has numerous potential applications to secure and fault-tolerant storage and transmission of information.

On the other hand, the wide diameter and fault diameter are two generalizations of the diameter. For all pairs of nodes, the diameter measures the maximal length of shortest paths, while the wide diameter measures the maximal length of best containers. In practical networks, node faults may happen. The fault diameter, which was first introduced in [12], estimates the maximal increment of the diameter when there are node faults. It is both practically and theoretically important to compute the wide diameter and fault diameter. Previous works related to container, wide diameter, and fault diameter can be found in the literature [2]-[8], [10]-[12], [14], [16], [17].

According to Menger's theorem [1], there are k_{w} disjoint paths between any two nodes of W, where k_{w} denotes the connectivity of W. The x-wide diameter and y-fault diameter in W are infinity whenever $x>k_{w}$ and $y>k_{w}-1$, respectively. For theoretical interest, most of previous works computed for W containers of width k_{w} (e.g., [2], [3], [5]-[8], [11], [17]), k_{w}-wide diameters (e.g., [7], [8], [11]), and ($k_{w}-1$)-fault diameters (e.g., [3], [4], [7], [8], [11], [12], [16]).

We use $\operatorname{HCN}(n)$ to represent the HCN that contains $2^{n} n$-cubes. The connectivity and diameter of the $\mathrm{HCN}(n)$ are $n+1$ (see [3]) and $n+\lfloor(n+1) / 3\rfloor+1$ (see [19]), respectively. In [3], containers of width $n+1$ were proposed in the $\operatorname{HCN}(n)$ whose lengths are $2 n+6$ at most. In this paper, we improve on the work of [3] by constructing new containers of width $n+1$ in the $\operatorname{HCN}(n)$ whose lengths are $n+\lfloor n / 3\rfloor+4$ at most. The construction of new containers makes use of shortest paths of the $\operatorname{HCN}(n)$ and best containers of the hypercube. In addition, the $(n+1)$-wide diameter and n-fault diameter of the $\operatorname{HCN}(n)$ are shown to be $n+$ $\lfloor n / 3\rfloor+3$ or $n+\lfloor n / 3\rfloor+4$.

In the next section, we formally define the $\operatorname{HCN}(n)$ in graph-theoretic terms. The shortest-path routing algorithm of the $\mathrm{HCN}(n)$ and best containers of the hypercube are reviewed. New containers are proposed in Section 3, and their lengths are analyzed in Section 4. In Section 5, a lower bound on the n-fault diameter is suggested and the main result of this paper is summarized. Finally, this paper concludes with some remarks in Section 6.

2 Preliminaries

The following is a formal definition of the $\mathrm{HCN}(n)$ in graph-theoretic terms.

Definition 1. The node set of the $\operatorname{HCN}(n)$ is $\{(X, Y) \mid X$ and Y are binary sequences of length $n\}$. Each node (X, Y) is adjacent to (1) $\left(X, Y^{(k)}\right)$ for all $1 \leq k \leq n$, where $Y^{(k)}$ differs from Y at the k th bit position, (2) (Y, X) if $X \neq Y$, and (3) (\bar{X}, \bar{Y}) if $X=Y$, where \bar{X} and \bar{Y} are the bitwise complements of X and Y, respectively.

The cluster where a node (X, Y) resides is denoted by X, and its location in the cluster is denoted by Y. Links (1) are inside clusters, whereas links (2) and (3) connect two clusters. Links (2) and (3) are referred to as nondiameter links and diameter links, respectively. The $\operatorname{HCN}(n)$ is regular of degree $n+1$. Since the $\mathrm{HCN}(1)$ and the $\mathrm{HCN}(2)$ are easy, we assume $n \geq 3$ throughout this paper. Refer to Figure 1 for the $\mathrm{HCN}(3)$.

Suppose that $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ are two distinct nodes of the $\operatorname{HCN}(n)$, where $X \neq X^{\prime}$. It was shown in [19] that any shortest path from I to I^{\prime} contains (1) one nondiameter link (without diameter links) or (2) two nondiameter links (without diameter links) or (3) one diameter link. The shortest path for (1), denoted by P_{1}^{*}, can be expressed as follows.

$$
P_{1}^{*}: \quad(X, Y) \Rightarrow^{*}\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)
$$

where \rightarrow denotes a link and \Rightarrow^{*} denotes a shortest path (inside a cluster). The length of P_{1}^{*}, denoted by $\left|P_{1}^{*}\right|$, is equal to $d_{\mathrm{H}}\left(Y, X^{\prime}\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+1$, where $d_{\mathrm{H}}()$ is the Hamming distance function.

Let P_{2} and P_{3} denote the paths for (2) and (3), respectively, which can be expressed as follows.
$P_{2}: \quad(X, Y) \Rightarrow^{*}(X, Z) \rightarrow(Z, X) \Rightarrow^{*}\left(Z, X^{\prime}\right) \rightarrow\left(X^{\prime}, Z\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$;
$P_{3}: \quad(X, Y) \Rightarrow^{*}(X, T) \rightarrow(T, X) \Rightarrow^{*}(T, T) \rightarrow(\bar{T}, \bar{T}) \Rightarrow^{*}\left(\bar{T}, X^{\prime}\right) \rightarrow\left(X^{\prime}, \bar{T}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$,
where $Z \notin\left\{X, X^{\prime}\right\},(X, T) \rightarrow(T, X) \Rightarrow^{*}(T, T)$ degenerates to (X, X) if $T=X$, and $(\bar{T}, \bar{T}) \Rightarrow^{*}\left(\bar{T}, X^{\prime}\right) \rightarrow\left(X^{\prime}\right.$, \bar{T}) degenerates to (X^{\prime}, X^{\prime}) if $T=\overline{X^{\prime}}$.

If Z belongs to a shortest path from Y to Y^{\prime} in the n-cube, then P_{2} is a shortest path for (2), denoted by P_{2}^{*}. Clearly, $\left|P_{2}^{*}\right|=d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+2$. On the other hand, P_{3} is a shortest path for (3), denoted by P_{3}^{*}, if $T=T^{*}$ can minimize $\left|P_{3}\right| . T^{*}$ can be determined as described below.

We have $\left|P_{3}\right|=d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X, T)+d_{\mathrm{H}}\left(\bar{T}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right)+\delta$, where $\delta=1$ if $T=X=\overline{X^{\prime}}, \delta=2$ if $T \in\{X$, $\left.\overline{X^{\prime}}\right\}$ and $X \neq \overline{X^{\prime}}$, and $\delta=3$ else. Define $Q_{\min }=\left\{T \mid d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X, T)+d_{\mathrm{H}}\left(\bar{T}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right)\right.$ is minimum $\}$. Let $X=x_{1} x_{2} \ldots x_{n}, Y=y_{1} y_{2} \ldots y_{n}, X^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, Y^{\prime}=y_{1}^{\prime} y_{2}^{\prime} \ldots y_{n}^{\prime}$, and $T=t_{1} t_{2} \ldots t_{n}$. Then $d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X, T)+d_{\mathrm{H}}(\bar{T}$, $\left.X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right)=\sum_{i=1}^{n}\left\{\left(y_{i} \oplus t_{i}\right)+\left(x_{i} \oplus t_{i}\right)+\left(\overline{t_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{t_{i}} \oplus y_{i}^{\prime}\right)\right\}$, where \oplus performs an exclusive-OR
operation. We have $T \in Q_{\text {min }}$ if and only if $\left(y_{i} \oplus t_{i}\right)+\left(x_{i} \oplus t_{i}\right)+\left(\bar{t}_{i} \oplus x_{i}^{\prime}\right)+\left(\bar{t}_{i} \oplus y_{i}^{\prime}\right)$ is minimum for all $1 \leq i \leq n$. According to [19], $T^{*}=X$ if $X \in Q_{\min }, T^{*}=\overline{X^{\prime}}$ if $X \notin Q_{\min }$ and $\overline{X^{\prime}} \in Q_{\min }$, and T^{*} can be any element of $Q_{\text {min }}$ else. We have $\left|P_{3}^{*}\right|=d_{\mathrm{H}}\left(Y, T^{*}\right)+d_{\mathrm{H}}\left(X, T^{*}\right)+d_{\mathrm{H}}\left(\overline{T^{*}}, X^{\prime}\right)+d_{\mathrm{H}}\left(\overline{T^{*}}, Y^{\prime}\right)+\delta$. A shortest path from I to I^{\prime} can be determined as the shortest one of P_{1}^{*}, P_{2}^{*}, and P_{3}^{*}.

In [19], bit patterns of X, Y, X^{\prime}, and Y^{\prime} were examined in order to compute the diameter of the $\operatorname{HCN}(n)$. We use $F_{1}, F_{2}, \ldots, F_{8}$ to denote the sets of dimensions having the same bit patterns, where

$$
\begin{array}{ll}
F_{1}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,0,0,0) \text { or }(1,1,1,1)\right\} ; & F_{2}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,1,1,0) \text { or }(1,0,0,1)\right\} ; \\
F_{3}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,1,0,1) \text { or }(1,0,1,0)\right\} ; & F_{4}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,0,1,1) \text { or }(1,1,0,0)\right\} ; \\
F_{5}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,1,0,0) \text { or }(1,0,1,1)\right\} ; & F_{6}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,0,0,1) \text { or }(1,1,1,0)\right\} ; \\
F_{7}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,0,1,0) \text { or }(1,1,0,1)\right\} ; & F_{8}=\left\{i \mid\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)=(0,1,1,1) \text { or }(1,0,0,0)\right\} .
\end{array}
$$

Define $f_{k}=\left|F_{k}\right|$, where $1 \leq k \leq 8$. Clearly, $f_{1}+f_{2}+\ldots+f_{8}=n . F_{k}$ and f_{k} will be used to simplify the discussion in Sections 3, 4, and 5. The following lemma expresses $d_{\mathrm{H}}\left(Y, X^{\prime}\right), d_{\mathrm{H}}\left(X, Y^{\prime}\right), d_{\mathrm{H}}\left(Y, Y^{\prime}\right), d_{\mathrm{H}}\left(X, X^{\prime}\right)$, $d_{\mathrm{H}}(X, Y), d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right), d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right), d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)$, and $d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X, T)+d_{\mathrm{H}}\left(\bar{T}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right)$, in terms of f_{k}. They will be used very often in the rest of this paper.

Lemma 1. $d_{\mathrm{H}}\left(Y, X^{\prime}\right)=f_{3}+f_{4}+f_{5}+f_{7}, d_{\mathrm{H}}\left(X, Y^{\prime}\right)=f_{3}+f_{4}+f_{6}+f_{8}, d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=f_{2}+f_{4}+f_{5}+f_{6}, d_{\mathrm{H}}\left(X, X^{\prime}\right)=f_{2}+f_{4}+f_{7}+f_{8}, d_{\mathrm{H}}(X$, $Y)=f_{2}+f_{3}+f_{5}+f_{8}, d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)=f_{2}+f_{3}+f_{6}+f_{7}, d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)=f_{1}+f_{2}+f_{5}+f_{7}, d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)=f_{1}+f_{2}+f_{6}+f_{8}$, and $d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X$, $T)+d_{\mathrm{H}}\left(\bar{T}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right)=2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}$, where $T \in Q_{\text {min }}$.

Proof. We have $d_{\mathrm{H}}\left(Y, X^{\prime}\right)=\sum_{i=1}^{n}\left(y_{i} \oplus x_{i}^{\prime}\right)=\left|F_{3}\right|+\left|F_{4}\right|+\left|F_{5}\right|+\left|F_{7}\right|=f_{3}+f_{4}+f_{5}+f_{7}$. The computations for $d_{\mathrm{H}}\left(X, Y^{\prime}\right)$, $d_{\mathrm{H}}\left(Y, Y^{\prime}\right), d_{\mathrm{H}}\left(X, X^{\prime}\right), d_{\mathrm{H}}(X, Y), d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right), d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)$, and $d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)$ are all similar. On the other hand, we have $\left(y_{i} \oplus t_{i}\right)+\left(x_{i} \oplus t_{i}\right)+\left(\overline{t_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{t_{i}} \oplus y_{i}^{\prime}\right)=2$ if $i \in F_{1} \cup F_{2} \cup F_{3}, 0$ if $i \in F_{4}$, and 1 if $i \in F_{5} \cup F_{6} \cup F_{7} \cup F_{8}$. Hence $d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X, T)+d_{\mathrm{H}}\left(\bar{T}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right)=\sum_{i=1}^{n}\left\{\left(y_{i} \oplus t_{i}\right)+\left(x_{i} \oplus t_{i}\right)+\left(\overline{t_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{t_{i}} \oplus y_{i}^{\prime}\right)\right\}=2 f_{1}+$ $2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}$.

Next, the best container of the hypercube is reviewed. Suppose that $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{n}$ are two distinct nodes of an n-cube. A best (A, B)-container of width n was proposed by Saad and Schultz [17]. Let $C=A \oplus B$. There are $d_{\mathrm{H}}(A, B) 1$ bits contained in C. Assume $c=d_{\mathrm{H}}(A, B)$, and let u_{i} and v_{j} be the positions of the i th 1 bit and j th 0 bit, respectively, from the left in C, where $1 \leq i \leq c, 1 \leq j \leq n-c, 1 \leq u_{i} \leq n$, and $1 \leq v_{j} \leq n$. For example, if $A=00001$ and $B=10011$, then $C=10010,\left(u_{1}, u_{2}\right)=(1,4)$, and $\left(v_{1}, v_{2}, v_{3}\right)=(2,3,5)$.

Saad and Schultz's best (A, B)-container is shown in Figure 2, where both end nodes of a link labeled with $u_{i}\left(v_{j}\right)$ differ at the u_{i} th (v_{j} th) bit position. The upper c paths each of length c are obtained by cyclically shifting the vector $\left(u_{1}, u_{2}, \ldots, u_{c}\right)$ left $c-1$ times. The other $n-c$ paths each of length $c+2$ are obtained by prefixing and suffixing v_{j} to the vector $\left(u_{1}, u_{2}, \ldots, u_{c}\right)$. Saad and Schultz's best (A, B)-container has length $d_{\mathrm{H}}(A, B)$ if $d_{\mathrm{H}}(A, B)=n$, and $d_{\mathrm{H}}(A, B)+2$ if $d_{\mathrm{H}}(A, B)<n$.

In the following, two properties of Saad and Schultz's containers are presented which will be used to show the disjoint property of the containers proposed in Section 3.

Lemma 2. Suppose that A, B, and H are three distinct nodes of an n-cube. There is a shortest path from A to H that has non- A common nodes with only one path, denoted by P, of Saad and Schultz's best (A, B) container (the shortest path should not pass through B). Furthermore, $|P|=3$ if $d_{\mathrm{H}}(A, B)=1$.
Proof. Without loss of generality, suppose that A and H differ at the leftmost h bit positions, where $h=$ $d_{\mathrm{H}}(A, H)$. Let $D=a_{1} a_{2} \ldots a_{h} \oplus b_{1} b_{2} \ldots b_{h}$ contain $d 1$ bits, where $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{n}$. The shortest path from A to H that corresponds to $\left(v_{1}, v_{2}, \ldots, v_{h-d}, u_{1}, u_{2}, \ldots, u_{d}\right)$ meets our requirement, where u_{i} and v_{j} have the same meanings as above. If $d_{\mathrm{H}}(A, B)=1$, then $d=0$ or 1 . Since $H \neq B$, we have $h>d$. Thus, a shortest path from A to H corresponds to $\left(v_{1}, v_{2}, \ldots, v_{h}\right)$ if $d=0$ or $\left(v_{1}, v_{2}, \ldots, v_{h-1}, u_{1}\right)$ if $d=1$. Both these paths intersect the container path corresponding to $\left(v_{1}, u_{1}, v_{1}\right)$, i.e., $|P|=3$.

Lemma 3. Suppose that A and B are two distinct nodes of an n-cube and $d_{\mathrm{H}}(A, B)=c$. The c shortest paths of Saad and Schultz's best (A, B)-container are disjoint with the $n-c$ shortest paths of Saad and Schultz's best (A, \bar{B})-container.

Proof. Suppose $C=A \oplus B$. The c shortest paths of Saad and Schultz's best (A, B)-container can be obtained by cyclically shifting the vector $\left(u_{1}, u_{2}, \ldots, u_{c}\right)$ left $c-1$ times, where u_{i} and v_{j} have the same meanings as above. The $n-c$ shortest paths of Saad and Schultz's best (A, \bar{B})-container can be obtained by cyclically shifting the vector $\left(v_{1}, v_{2}, \ldots, v_{n-c}\right)$ left $n-c-1$ times. Hence they are disjoint.

3 Containers of width $\boldsymbol{n}+1$

Suppose that $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ are two distinct nodes of the $\mathrm{HCN}(n)$. It is not easy to construct a best $\left(I, I^{\prime}\right)$-container because of diameter links and nondiameter links. In [3], an $\left(I, I^{\prime}\right)$-container was proposed whose length is not greater than $n+5$ if $X=X^{\prime}$, and $2 n+6$ if $X \neq X^{\prime}$. In this section, we improve on the work of [3] by constructing an $\left(I, I^{\prime}\right)$-container for $X \neq X^{\prime}$ whose length is $n+\lfloor n / 3\rfloor+4$ at most. The construction of
the $\left(I, I^{\prime}\right)$-container makes use of $P_{1}^{*}, P_{2}^{*}, P_{3}^{*}$, and Saad and Schultz's best containers. Throughout this section, we assume that $X \neq X^{\prime}$ and each $\left(I, I^{\prime}\right)$-container has width $n+1$.

The construction of a best $\left(I, I^{\prime}\right)$-container is closely related to the construction of the shortest path from I to I^{\prime}. As described in Section 2, three shortest paths, i.e., P_{1}^{*}, P_{2}^{*}, and P_{3}^{*}, obeying some constraints need to be generated, in order to obtain the shortest path from I to I^{\prime}. It appears impossible to construct a best $\left(I, I^{\prime}\right)$-container by a single construction method. The $\left(I, I^{\prime}\right)$-container to be proposed is obtained using a main construction method accompanied by six auxiliary construction methods. Actually, these construction methods correspond to P_{1}^{*}, P_{2}^{*}, and P_{3}^{*}. The worst-case length of the $\left(I, I^{\prime}\right)$-container is nearly optimal.

We use (A), (B), (C), (D), (E), and (F) to denote the six auxiliary construction methods. They are applicable under some conditions. In fact, the main construction method corresponds to P_{2}^{*}. (A) and (B) correspond to P_{1}^{*} and P_{3}^{*}, respectively. On the other hand, (C) is the combination of (A) and $(\mathrm{B}),(\mathrm{D})$ is the combination of the main construction method and (A), and (E) is the combination of the main construction method and (B). (F) deals with a special situation for $n=3$.

3.1 Main construction method

Suppose that $Y \neq Y^{\prime}$ and $Q_{1}, Q_{2}, \ldots, Q_{n}$ are the n paths of Saad and Schultz's best $\left(Y, Y^{\prime}\right)$-container. Without loss of generality, we assume $\left|Q_{1}\right| \geq\left|Q_{2}\right| \geq \ldots \geq\left|Q_{n}\right|$. If there exists $W_{i} \in Q_{i}-\left\{X, X^{\prime}, Y, Y^{\prime}\right\}$, then let R_{i} be the path P_{2} with $Z=W_{i}$. Refer to Figure 3. The construction of R_{i} is in accordance with Q_{i}. That is, the combination of $(X, Y) \Rightarrow^{*}\left(X, W_{i}\right)$ and $\left(X^{\prime}, W_{i}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ is the same as Q_{i}, disregarding X and X^{\prime}. We have $\left|R_{i}\right|=d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2$ if $i>n-d_{\mathrm{H}}\left(Y, Y^{\prime}\right)$, and $\left|R_{i}\right|=d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4$ if $i \leq n-d_{\mathrm{H}}\left(Y, Y^{\prime}\right) . R_{i}$ and R_{j} are disjoint if $i \neq j$. There are at least $n-2$ paths Q_{i} such that $Q_{i}-\left\{X, X^{\prime}, Y, Y^{\prime}\right\} \neq \phi$. They are assumed to be Q_{1}, Q_{2}, \ldots, Q_{n-2}. From each of these paths we choose a $W_{i} \in Q_{i}-\left\{X, X^{\prime}, Y, Y^{\prime}\right\}$. Further, we assume $Q_{n-1}-\{X$, $\left.X^{\prime}, Y, Y^{\prime}\right\} \neq \phi$ if $Q_{n-1}-\left\{X, X^{\prime}, Y, Y^{\prime}\right\} \neq \phi$ or $Q_{n}-\left\{X, X^{\prime}, Y, Y^{\prime}\right\} \neq \phi$. So, when $Q_{n}-\left\{X, X^{\prime}, Y, Y^{\prime}\right\} \neq \phi, R_{1}, R_{2}, \ldots, R_{n}$ can be obtained.

On the other hand, if $Y=Y^{\prime}$, then let S_{i} be the path $(X, Y) \rightarrow\left(X, Y^{(i)}\right) \rightarrow\left(Y^{(i)}, X\right) \Rightarrow^{*}\left(Y^{(i)}, X^{\prime}\right) \rightarrow\left(X^{\prime}\right.$, $\left.Y^{(i)}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, where $Y^{(i)} \notin\left\{X, X^{\prime}\right\}$. We have $\left|S_{i}\right|=d_{\mathrm{H}}\left(X, X^{\prime}\right)+4 . S_{i}$ and S_{j} are disjoint if $i \neq j$. There are at least $n-2$ nodes $Y^{(i)} \notin\left\{X, X^{\prime}\right\}$ in an n-cube, and they are assumed to be $Y^{(1)}, Y^{(2)}, \ldots, Y^{(n-2)}$. If $Y^{(n-1)} \notin\left\{X, X^{\prime}\right\}$ or $Y^{(n)} \notin\left\{X, X^{\prime}\right\}$, we assume $Y^{(n-1)} \notin\left\{X, X^{\prime}\right\}$. So, when $Y^{(n)} \notin\left\{X, X^{\prime}\right\}, S_{1}, S_{2}, \ldots, S_{n}$ can be obtained.

We use $P_{1}^{\mathrm{M}}, P_{2}^{\mathrm{M}}, \ldots, P_{n+1}^{\mathrm{M}}$ to represent the $n+1$ disjoint paths that are obtained by the main construction method. They can be constructed as follows. If $Y \neq Y^{\prime}$, then let $P_{i}^{\mathrm{M}}=R_{i}$ for all $1 \leq i \leq n-2$. If $Y=Y^{\prime}$, then let $P_{i}^{\mathrm{M}}=S_{i}$ for all $1 \leq i \leq n-2$. The construction of $P_{n-1}^{\mathrm{M}}, P_{n}^{\mathrm{M}}$, and P_{n+1}^{M} depends on whether $X \neq Y$ and $X^{\prime} \neq Y^{\prime}$ or not, as discussed below.

Case 1. $X \neq Y$ and $X^{\prime} \neq Y^{\prime}$. The construction further depends on whether $X^{\prime} \neq Y, X \neq Y^{\prime}$, and $Y \neq Y^{\prime}$ or not.
Case 1.1. $X^{\prime} \neq Y, X \neq Y^{\prime}$, and $Y \neq Y^{\prime}$. If $\left\{Q_{n-1}, Q_{n}\right\}=\left\{Y \rightarrow X \rightarrow Y^{\prime}, Y \rightarrow X^{\prime} \rightarrow Y^{\prime}\right\}$, then let $P_{n-1}^{\mathrm{M}}=(X, Y) \rightarrow(X$, $\left.X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right), P_{n}^{\mathrm{M}}=(X, Y) \rightarrow(X, X) \rightarrow\left(X, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, and $P_{n+1}^{\mathrm{M}}=(X, Y)$ $\rightarrow(Y, X) \Rightarrow^{*}\left(Y, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right) \rightarrow\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. If $\left\{Q_{n-1}, Q_{n}\right\} \neq\left\{Y \rightarrow X \rightarrow Y^{\prime}, Y \rightarrow X^{\prime} \rightarrow Y^{\prime}\right\}$, then let $P_{n}^{\mathrm{M}}=(X, Y) \rightarrow(Y, X) \Rightarrow^{*}\left(Y, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ and $P_{n+1}^{\mathrm{M}}=(X, Y) \Rightarrow^{*}\left(X, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right)$ $\rightarrow\left(X^{\prime}, Y^{\prime}\right)$, where $\left(X^{\prime}, Y\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ and $(X, Y) \Rightarrow^{*}\left(X, Y^{\prime}\right)$ are the same as $Q_{n} . P_{n-1}^{\mathrm{M}}$ can be determined as follows.

If R_{n-1} exists, then let $P_{n-1}^{\mathrm{M}}=R_{n-1}$. If R_{n-1} does not exist, then $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=1,\left|Q_{n-1}\right|=3$, and either $Q_{n-1}=$ $Y \rightarrow X \rightarrow X^{\prime} \rightarrow Y^{\prime}$ or $Q_{n-1}=Y \rightarrow X^{\prime} \rightarrow X \rightarrow Y^{\prime} . P_{n-1}^{\mathrm{M}}$ can be obtained in accordance with Q_{n-1} by letting $P_{n-1}^{\mathrm{M}}=(X, Y) \rightarrow(X, X) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ if $Q_{n-1}=Y \rightarrow X \rightarrow X^{\prime} \rightarrow Y^{\prime}$, and $(X, Y) \rightarrow$ $\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ if $Q_{n-1}=Y \rightarrow X^{\prime} \rightarrow X \rightarrow Y^{\prime}$.

We have $\left|P_{n-1}^{\mathrm{M}}\right| \leq d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2$ if $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)>1$, and $\left|P_{n-1}^{\mathrm{M}}\right| \leq d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4$ if $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=$ 1. Both $\left|P_{n}^{\mathrm{M}}\right|$ and $\left|P_{n+1}^{\mathrm{M}}\right|$ are at most $d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2$.

Case 1.2. $X^{\prime} \neq Y, X \neq Y^{\prime}$, and $Y=Y^{\prime}$. We let $P_{n+1}^{\mathrm{M}}=(X, Y) \rightarrow(Y, X) \Rightarrow^{*}\left(Y, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$. The construction of P_{n}^{M} and P_{n-1}^{M} depends on whether $\left\{Y^{(n-1)}, Y^{(n)}\right\} \cap\left\{X, X^{\prime}\right\}$ is empty or not. Recall that if there is one more adjacent node of Y that does not belong to $\left\{X, X^{\prime}\right\}$, it is $Y^{(n-1)}$. If $\left\{Y^{(n-1)}, Y^{(n)}\right\} \cap\left\{X, X^{\prime}\right\}$ is empty, then let $P_{n-1}^{\mathrm{M}}=S_{n-1}$ and $P_{n}^{\mathrm{M}}=S_{n}$. If $Y^{(n-1)} \notin\left\{X, X^{\prime}\right\}$ and $Y^{(n)}=X$, then let $P_{n-1}^{\mathrm{M}}=S_{n-1}$ and $P_{n}^{\mathrm{M}}=(X, Y)$ $\rightarrow(X, X) \Rightarrow^{*}\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, where $(X, X) \Rightarrow^{*}\left(X, X^{\prime}\right)$ does not contain $\left(X, Y^{(1)}\right),\left(X, Y^{(2)}\right), \ldots$, $\left(X, Y^{(n-1)}\right)$. If $Y^{(n-1)} \notin\left\{X, X^{\prime}\right\}$ and $Y^{(n)}=X^{\prime}$, then let $P_{n-1}^{\mathrm{M}}=S_{n-1}$ and $P_{n}^{\mathrm{M}}=(X, Y) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \Rightarrow *\left(X^{\prime}\right.$, $\left.X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$.

If $Y^{(n-1)}=X$ and $Y^{(n)}=X^{\prime}$, then $d_{\mathrm{H}}\left(X, X^{\prime}\right)=2$ and there exists $Z \neq Y$ so that $d_{\mathrm{H}}(X, Z)=1$ and $d_{\mathrm{H}}\left(X^{\prime}, Z\right)=1$. Let $P_{n-1}^{\mathrm{M}}=(X, Y) \rightarrow(X, X) \rightarrow(X, Z) \rightarrow(Z, X) \rightarrow(Z, Z) \rightarrow\left(Z, X^{\prime}\right) \rightarrow\left(X^{\prime}, Z\right) \rightarrow\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right)$ and $P_{n}^{\mathrm{M}}=$ $(X, Y) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, Y\right)$. The discussion is similar if $Y^{(n-1)}=X^{\prime}$ and $Y^{(n)}=X$.

We have $\left|P_{n-1}^{\mathrm{M}}\right|,\left|P_{n}^{\mathrm{M}}\right|$, and $\left|P_{n+1}^{\mathrm{M}}\right|$ at most max $\left\{8, d_{\mathrm{H}}\left(X, X^{\prime}\right)+4\right\}$.
Case 1.3. $X^{\prime} \neq Y$ and $X^{\prime} Y^{\prime}\left(Y \neq Y^{\prime}\right.$ is implied because $\left.X \neq Y\right)$. W_{n-1} can be determined and we let $P_{n-1}^{\mathrm{M}}=R_{n-1}$. By Lemma 2, there is a shortest path from Y to X^{\prime} that intersects with Q_{r} for some $1 \leq r \leq n$, but does not intersect with Q_{j} for all $1 \leq j \leq n$ and $j \neq r$.

If R_{n} does not exist, then either $Q_{n}=Y \rightarrow X^{\prime} \rightarrow Y^{\prime}$ or $Q_{n}=Y \rightarrow Y^{\prime}$. If $Q_{n}=Y \rightarrow X^{\prime} \rightarrow Y^{\prime}$, then let $P_{n}^{\mathrm{M}}=$ $(X, Y) \rightarrow(Y, X) \Rightarrow^{*}\left(Y, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right) \rightarrow\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $P_{n+1}^{\mathrm{M}}=(X, Y) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$. If $Q_{n}=Y \rightarrow Y^{\prime}$, then let $P_{n}^{\mathrm{M}}=(X, Y) \rightarrow(Y, X) \Rightarrow^{*}\left(Y, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $P_{n+1}^{\mathrm{M}}=(X, Y) \Rightarrow^{*}\left(X, X^{\prime}\right)$ $\rightarrow\left(X^{\prime}, X\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$, where $(X, Y) \Rightarrow^{*}\left(X, X^{\prime}\right)$ is the same as the shortest path from Y to X^{\prime} above. Since P_{n+1}^{M} and P_{r}^{M} conflict, P_{r}^{M} is changed as follows. By Lemma 2, we have $\left|Q_{r}\right|=3$. Without loss of generality, we assume $Q_{r}=Y \rightarrow Y^{(s)} \rightarrow Y^{\prime(s)} \rightarrow Y^{\prime}$, where $1 \leq s \leq n . P_{r}^{\mathrm{M}}$ is changed as $(X, Y) \rightarrow\left(X, Y^{\prime}\right) \rightarrow\left(X, Y^{\prime(s)}\right) \rightarrow$ $\left(Y^{\prime(s)}, X\right) \Rightarrow^{*}\left(Y^{\prime(s)}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime(s)}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ whose length is $d_{\mathrm{H}}\left(X, X^{\prime}\right)+5=d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4$.

If R_{n} exists, then let $P_{n}^{\mathrm{M}}=R_{n}$. The construction of P_{n+1}^{M} is the same as above $\left(Q_{n}=Y \rightarrow Y^{\prime}\right.$), and P_{r}^{M} is changed as $(X, Y) \rightarrow(Y, X) \Rightarrow^{*}\left(Y, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right) \Rightarrow\left(X^{\prime}, Y^{\prime}\right)$, where \Rightarrow denotes a path (inside a cluster) and $\left(X^{\prime}, Y\right) \Rightarrow\left(X^{\prime}, Y^{\prime}\right)$ is the same as Q_{r}.

We have $\left|P_{n-1}^{\mathrm{M}}\right|$ and $\left|P_{n}^{\mathrm{M}}\right|$ at $\operatorname{most} d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4$, and $\left|P_{n+1}^{\mathrm{M}}\right|=d_{\mathrm{H}}\left(Y, X^{\prime}\right)+1 \leq d_{\mathrm{H}}(Y, X)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+$ $1=d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+1$.

Case 1.4. $X^{\prime}=Y$ and $X \neq Y^{\prime}\left(Y \neq Y^{\prime}\right.$ is implied because $\left.X^{\prime} \neq Y^{\prime}\right)$. Similar to Case 1.3.
Case 1.5. $X^{\prime}=Y$ and $X=Y^{\prime}\left(Y \neq Y^{\prime}\right.$ is implied because $\left.X \neq Y\right)$. W_{n-1} can be determined and we let $P_{n-1}^{\mathrm{M}}=R_{n-1}$. Let $P_{n+1}^{\mathrm{M}}=(X, Y) \rightarrow(Y, X)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$. If $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)>1$, then W_{n} can be determined and we let $P_{n}^{\mathrm{M}}=R_{n}$. If $d_{\mathrm{H}}(Y$, $\left.Y^{\prime}\right)=1$, then let $P_{n}^{\mathrm{M}}=((X, Y)=)\left(Y^{\prime}, Y\right) \rightarrow\left(Y^{\prime}, Y^{\prime}\right) \rightarrow\left(\overline{Y^{\prime}}, \overline{Y^{\prime}}\right) \rightarrow\left(\overline{Y^{\prime}}, \bar{Y}\right) \rightarrow\left(\bar{Y}, \overline{Y^{\prime}}\right) \rightarrow(\bar{Y}, \bar{Y}) \rightarrow(Y, Y) \rightarrow$ $\left(Y, Y^{\prime}\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$. We have $\left|P_{n-1}^{\mathrm{M}}\right|,\left|P_{n}^{\mathrm{M}}\right|$, and $\left|P_{n+1}^{\mathrm{M}}\right|$ at $\operatorname{most} \max \left\{7, d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4\right\}$.

Case 2. $X=Y$ and $X^{\prime} \neq Y^{\prime} . P_{n-1}^{\mathrm{M}}, P_{n}^{\mathrm{M}}$, and P_{n+1}^{M} can be obtained according to the value of $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)$.

Case 2.1. $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=0$. We have $Y^{(n-1)} \notin\left\{X, X^{\prime}\right\}$. Let $P_{n-1}^{\mathrm{M}}=S_{n-1}$. If $d_{\mathrm{H}}\left(Y, X^{\prime}\right)=1$, then let $P_{n}^{\mathrm{M}}=(X, Y) \rightarrow(X$, $\left.X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$ and $P_{n+1}^{\mathrm{M}}=((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \rightarrow\left(\bar{X}, \overline{X^{\prime}}\right) \rightarrow\left(\overline{X^{\prime}}, \bar{X}\right) \rightarrow\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right) \rightarrow$ $\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$.

If $d_{\mathrm{H}}\left(Y, X^{\prime}\right)>1$, then $Y^{(n)} \notin\left\{X, X^{\prime}\right\}$ and let $P_{n}^{\mathrm{M}}=S_{n}$. Also let $P_{n+1}^{\mathrm{M}}=((X, Y)=)(X, X) \rightarrow\left(X, X^{(r)}\right) \Rightarrow{ }^{*}(X$, $\left.X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$, where $d_{\mathrm{H}}\left(X, X^{\prime}\right)=1+d_{\mathrm{H}}\left(X^{(r)}, X^{\prime}\right)$ for some $1 \leq r \leq n$. Since P_{n+1}^{M} and P_{r}^{M} conflict, P_{r}^{M} is changed as $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \rightarrow\left(\bar{X}, \overline{X^{(r)}}\right) \rightarrow\left(\overline{X^{(r)}}, \bar{X}\right) \rightarrow\left(\overline{X^{(r)}}, \overline{X^{(r)}}\right) \rightarrow\left(X^{(r)}, X^{(r)}\right) \Rightarrow{ }^{*}$ $\left(X^{(r)}, X^{\prime}\right) \rightarrow\left(X^{\prime}, X^{(r)}\right) \rightarrow\left(X^{\prime}, X\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$ if $d_{\mathrm{H}}\left(X, X^{\prime}\right)<n$, and $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X})\left(=\left(X^{\prime}, X^{\prime}\right)\right) \Rightarrow *$ $\left(X^{\prime}, X^{(r)}\right) \rightarrow\left(X^{\prime}, X\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$ if $d_{\mathrm{H}}\left(X, X^{\prime}\right)=n$. The new P_{r}^{M} has length not greater than $n+5$.

We have $\left|P_{n-1}^{\mathrm{M}}\right|$ and $\left|P_{n}^{\mathrm{M}}\right|$ at $\operatorname{most} d_{\mathrm{H}}\left(X, X^{\prime}\right)+4$, and $\left|P_{n+1}^{\mathrm{M}}\right|=\max \left\{6, d_{\mathrm{H}}\left(X, X^{\prime}\right)+1\right\}$.
Case 2.2. $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=1$. We have $\left|Q_{n-1}\right|=3$. Without loss of generality, suppose $Q_{n-1}=Y \rightarrow U \rightarrow V \rightarrow Y^{\prime}$, where $U \neq X^{\prime}$ and $V \neq X^{\prime}$. If $\bar{X} \neq X^{\prime}$ and $\bar{Y}^{\prime} \neq X^{\prime}$, then let $P_{n-1}^{\mathrm{M}}=(X, Y) \rightarrow\left(X, Y^{\prime}\right) \rightarrow(X, V) \rightarrow(V, X) \Rightarrow^{*}\left(V, X^{\prime}\right)$ $\rightarrow\left(X^{\prime}, V\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $P_{n}^{\mathrm{M}}=(X, Y) \rightarrow(X, U) \rightarrow(U, X) \Rightarrow^{*}\left(U, X^{\prime}\right) \rightarrow\left(X^{\prime}, U\right) \rightarrow\left(X^{\prime}, Y\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. Besides, let P_{n+1}^{M} be the shorter one of the following two paths: $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \rightarrow\left(\bar{X}, \overline{Y^{\prime}}\right) \rightarrow$ $\left(\overline{Y^{\prime}}, \bar{X}\right) \rightarrow\left(\overline{Y^{\prime}}, \overline{Y^{\prime}}\right) \rightarrow\left(Y^{\prime}, Y^{\prime}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \Rightarrow^{*}\left(\bar{X}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}\right.$, $\bar{X}) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, where $\bar{X} \neq Y^{\prime}$ because $d_{\mathrm{H}}\left(X, Y^{\prime}\right)=d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=1$. The former has length $d_{\mathrm{H}}\left(Y^{\prime}, X^{\prime}\right)+$ $6 \leq d_{\mathrm{H}}\left(Y^{\prime}, X\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+6=d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+6$, and the latter has length $d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)+3$.

If $\bar{X}=X^{\prime}$ or $\overline{Y^{\prime}}=X^{\prime}$, then let $P_{n-1}^{\mathrm{M}}=(X, Y) \rightarrow\left(X, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $P_{n}^{\mathrm{M}}=(X, Y)$ $\rightarrow(X, U) \rightarrow(U, X) \Rightarrow^{*}\left(U, X^{\prime}\right) \rightarrow\left(X^{\prime}, U\right) \rightarrow\left(X^{\prime}, Y\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. Besides, let $P_{n+1}^{\mathrm{M}}=((X, Y)=)(X, X) \rightarrow(\bar{X}$, $\bar{X})\left(=\left(X^{\prime}, \bar{Y}\right)\right) \Rightarrow^{*}\left(X^{\prime}, V\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ if $\bar{X}=X^{\prime}$, and $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \rightarrow\left(\bar{X}, \overline{Y^{\prime}}\right) \rightarrow\left(\overline{Y^{\prime}}, \bar{X}\right)$ $\left(=\left(X^{\prime}, \bar{Y}\right)\right) \Rightarrow^{*}\left(X^{\prime}, V\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ if $\overline{Y^{\prime}}=X^{\prime} . P_{n+1}^{\mathrm{M}}$ is disjoint with $P_{1}^{\mathrm{M}}, P_{2}^{\mathrm{M}}, \ldots, P_{n}^{\mathrm{M}} \operatorname{provided}\left(X^{\prime}, \bar{Y}\right) \Rightarrow^{*}\left(X^{\prime}\right.$, $V)$ is disjoint with $Q_{1}, Q_{2}, \ldots, Q_{n-2}$ and does not contain Y and U. They are true because $d_{\mathrm{H}}(\bar{Y}, V)=n-2$, $d_{\mathrm{H}}(\bar{Y}, U)=n-1, d_{\mathrm{H}}\left(\bar{Y}, Y^{(i)}\right)=n-1$, and $d_{\mathrm{H}}\left(\bar{Y}, Y^{\prime}{ }^{(i)}\right) \geq d_{\mathrm{H}}\left(\bar{Y}, Y^{\prime}\right)-1=n-2$ for all $1 \leq i \leq n$.

We have $\left|P_{n-1}^{\mathrm{M}}\right|$ and $\left|P_{n}^{\mathrm{M}}\right|$ at $\operatorname{most} d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4$, and $\left|P_{n+1}^{\mathrm{M}}\right|$ at $\operatorname{most} \max \left\{n+2, \min \left\{d_{\mathrm{H}}(X\right.\right.$, $\left.\left.\left.X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+6, d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)+3\right\}\right\}$, where $d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)=d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)$.

Case 2.3. $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=2 . W_{n-1}$ can be determined and we let $P_{n-1}^{\mathrm{M}}=R_{n-1}$. We have $\left|Q_{n}\right|=2$. If $Q_{n}=Y \rightarrow X^{\prime} \rightarrow$ Y^{\prime}, then let $P_{n}^{\mathrm{M}}=(X, Y) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $P_{n+1}^{\mathrm{M}}=((X, Y)=)(X, X) \rightarrow$ $(\bar{X}, \bar{X}) \rightarrow\left(\bar{X}, \overline{X^{\prime}}\right) \rightarrow\left(\overline{X^{\prime}}, \bar{X}\right) \rightarrow\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right) \rightarrow\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$.

Otherwise ($Q_{n} \neq Y \rightarrow X^{\prime} \rightarrow Y^{\prime}$), W_{n} can be determined and we let $P_{n}^{\mathrm{M}}=R_{n}$. If $\bar{X} \neq X^{\prime}$ and $\overline{Y^{\prime}} \neq X^{\prime}$, then let P_{n+1}^{M} be the shorter one of the following two paths: $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \Rightarrow^{*}\left(\bar{X}, \overline{Y^{\prime}}\right) \rightarrow\left(\overline{Y^{\prime}}, \bar{X}\right)$ $\Rightarrow^{*}\left(\overline{Y^{\prime}}, \overline{Y^{\prime}}\right) \rightarrow\left(Y^{\prime}, Y^{\prime}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \Rightarrow^{*}\left(\bar{X}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{X}\right) \Rightarrow^{*}$ $\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, where $\bar{X} \neq Y^{\prime}$ because $d_{\mathrm{H}}\left(X, Y^{\prime}\right)=d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=2$ and $n \geq 3$. The former has length $d_{\mathrm{H}}(\bar{X}$, $\left.\overline{Y^{\prime}}\right)+d_{\mathrm{H}}\left(\bar{X}, \overline{Y^{\prime}}\right)+d_{\mathrm{H}}\left(Y^{\prime}, X^{\prime}\right)+4=d_{\mathrm{H}}\left(Y^{\prime}, X^{\prime}\right)+8 \leq d_{\mathrm{H}}\left(Y^{\prime}, X\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+8=d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+8\left(d_{\mathrm{H}}\left(\bar{X}, \overline{Y^{\prime}}\right)=2\right.$ because $X=Y$ and $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=2$), and the latter has length $d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)+3$.

If $\bar{X}=X^{\prime}$ or $\overline{Y^{\prime}}=X^{\prime}$, then by Lemma 2 there is a shortest path from \bar{Y} to Y^{\prime} that intersects with Q_{r} for some $1 \leq r \leq n$, but does not intersect with Q_{j} for all $1 \leq j \leq n$ and $j \neq r$. Let $P_{n+1}^{\mathrm{M}}=((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X})$ $\left(=\left(X^{\prime}, \bar{Y}\right)\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ if $\bar{X}=X^{\prime}$, and $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X})(=(\bar{Y}, \bar{Y})) \Rightarrow^{*}\left(\bar{Y}, \overline{Y^{\prime}}\right) \rightarrow\left(\overline{Y^{\prime}}, \bar{Y}\right)$ $\left(=\left(X^{\prime}, \bar{Y}\right)\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ if $\overline{Y^{\prime}}=X^{\prime}$, where $\left(X^{\prime}, \bar{Y}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ is the same as the shortest path from \bar{Y} to Y^{\prime} above. P_{r}^{M} is changed as $(X, Y) \Rightarrow\left(X, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(Y^{\prime}, X^{\prime}\right)$, where $(X, Y) \Rightarrow\left(X, Y^{\prime}\right)$ is the same as Q_{r}.

We have $\left|P_{n-1}^{\mathrm{M}}\right|=\left|P_{n}^{\mathrm{M}}\right|=d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2$, and $\left|P_{n+1}^{\mathrm{M}}\right| \leq \max \left\{n+2, \min \left\{d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+8\right.\right.$, $\left.d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)+3\right\}$, where $d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)=d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)$.

Case 2.4. $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 3$. W_{n-1} can be determined and we let $P_{n-1}^{\mathrm{M}}=R_{n-1}$. Suppose, without loss of generality, that $Q_{n}=Y \rightarrow U \Rightarrow^{*} Y^{\prime}$ does not contain X^{\prime} and $\bar{U} \neq X^{\prime}$. Then $W_{n} \neq U\left(W_{n} \in Q_{n}-\left\{X, Y, X^{\prime}, Y^{\prime}\right\}\right)$ can be determined and we let $P_{n}^{\mathrm{M}}=R_{n}$. If $\bar{X}=X^{\prime}$, then P_{n+1}^{M} can be obtained all the same as the situation of $\bar{X}=X^{\prime}$ in Case 2.3.

If $\bar{X} \neq X^{\prime}$, then let P_{n+1}^{M} be the shorter one of the following two paths: $((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \rightarrow$ $(\bar{X}, \bar{U}) \rightarrow(\bar{U}, \bar{X}) \rightarrow(\bar{U}, \bar{U}) \rightarrow(U, U) \Rightarrow^{*}\left(U, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, U\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $((X, Y)=)(X$, $X) \rightarrow(\bar{X}, \bar{X}) \Rightarrow^{*}\left(\bar{X}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{X}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, where $(\bar{X}, \bar{X}) \Rightarrow^{*}\left(\bar{X}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{X}\right) \Rightarrow^{*}$ $\left(Y^{\prime}, X^{\prime}\right)$ is replaced with $(\bar{X}, \bar{X}) \Rightarrow^{*}\left(\bar{X}, X^{\prime}\right)$ if $\bar{X}=Y^{\prime}$. The former has length $d_{\mathrm{H}}\left(U, Y^{\prime}\right)+d_{\mathrm{H}}\left(U, X^{\prime}\right)+7 \leq$ $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+7$ (because $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=1+d_{\mathrm{H}}\left(U, Y^{\prime}\right)$ and $d_{\mathrm{H}}\left(X, X^{\prime}\right)=d_{\mathrm{H}}\left(U, X^{\prime}\right) \pm 1$), and the latter has
length $d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)+3$. We have $\left|P_{n-1}^{\mathrm{M}}\right|=\left|P_{n}^{\mathrm{M}}\right|=d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2$, and $\left|P_{n+1}^{\mathrm{M}}\right|=\min \left\{d_{\mathrm{H}}\left(X, X^{\prime}\right)+\right.$ $\left.d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+7, d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)+3\right\}$, where $d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)=d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)$.

Case 3. $X \neq Y$ and $X^{\prime}=Y^{\prime}$. Similar to Case 2.
Case 4. $X=Y$ and $X^{\prime}=Y^{\prime}$. Since $X \neq X^{\prime}$, we have $Y \neq Y^{\prime}$. W_{n-1} can be determined and we let $P_{n-1}^{\mathrm{M}}=R_{n-1}$. If $d_{\mathrm{H}}(Y$, $\left.Y^{\prime}\right)=1$, then let $P_{n}^{\mathrm{M}}=((X, Y)=)(X, X) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, X^{\prime}\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$. If $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 2$, then W_{n} can be determined and we let $P_{n}^{\mathrm{M}}=R_{n}$. Also, let $P_{n+1}^{\mathrm{M}}=((X, Y)=)(X, X) \rightarrow(\bar{X}, \bar{X}) \Rightarrow^{*}\left(\bar{X}, \overline{X^{\prime}}\right) \rightarrow\left(\overline{X^{\prime}}, \bar{X}\right)$ $\Rightarrow^{*}\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right) \rightarrow\left(X^{\prime}, X^{\prime}\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$ if $\bar{X} \neq X^{\prime}$, and $(X, X) \rightarrow(\bar{X}, \bar{X})\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$ if $\bar{X}=X^{\prime}$. We have $\left|P_{n-1}^{\mathrm{M}}\right|$, $\left|P_{n}^{\mathrm{M}}\right|$, and $\left|P_{n+1}^{\mathrm{M}}\right|$ at most $d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4$.

3.2 Construction method (A)

The construction method (A) can be applied when $f_{2} \geq 2$. According to Lemma 1, we have $d_{\mathrm{H}}(X, Y) \geq 2$, $d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right) \geq 2$, and $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 2$. We use $P_{1}^{\mathrm{A}}, P_{2}^{\mathrm{A}}, \ldots, P_{n+1}^{\mathrm{A}}$ to denote the resulting $n+1$ disjoint paths. Let $P_{i, j}=(X, Y) \rightarrow\left(X, Y^{(i)}\right) \rightarrow\left(Y^{(i)}, X\right) \Rightarrow^{*}\left(Y^{(i)}, Y^{\prime(j)}\right) \rightarrow\left(Y^{\prime(j)}, Y^{(i)}\right) \Rightarrow^{*}\left(Y^{\prime}(j), X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime(j)}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ (refer to Figure 4), where $1 \leq i \leq n, 1 \leq j \leq n$, and $\left\{Y^{(i)}, Y^{\prime(j)}\right\} \cap\left\{X, X^{\prime}, Y, Y^{\prime}\right\}$ is empty. If $Y^{(i)}=Y^{\prime}(j)$, then $\left(Y^{(i)}, X\right) \Rightarrow{ }^{*}$ $\left(Y^{(i)}, Y^{\prime(j)}\right) \rightarrow\left(Y^{\prime(j)}, Y^{(i)}\right) \Rightarrow^{*}\left(Y^{\prime}(j), X^{\prime}\right)$ is replaced with $\left(Y^{(i)}, X\right) \Rightarrow^{*}\left(Y^{\prime}(j), X^{\prime}\right) . P_{i_{1}, j_{1}}$ and $P_{i_{2}, j_{2}}$ are disjoint if $\left\{Y^{\left(i_{1}\right)}, Y^{\left(j_{1}\right)}\right\} \cap\left\{Y^{\left(i_{2}\right)}, Y^{\left(j_{2}\right)}\right\}$ is empty. We have $\left|P_{i, j}\right|=d_{\mathrm{H}}\left(X, Y^{\prime}{ }^{(j)}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y^{(i)}\right)+5 \leq d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+7$ if $Y^{(i)} \neq Y^{\prime}(j)$, and $d_{\mathrm{H}}\left(X, X^{\prime}\right)+4 \leq d_{\mathrm{H}}\left(X, Y^{\prime}{ }^{(j)}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y^{(i)}\right)+4<d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+7$ if $Y^{(i)}=Y^{\prime}{ }^{(j)}$. When $i \in F_{4}$ and $j \in F_{4}$, we have $\left|P_{i, j}\right|=d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+3$ because $x_{j} \neq y_{j}^{\prime}$ implies $d_{\mathrm{H}}\left(X, Y^{\prime}{ }^{(j)}\right)=d_{\mathrm{H}}\left(X, Y^{\prime}\right)-1$ and $x_{i}^{\prime} \neq y_{i}$ implies $d_{\mathrm{H}}\left(X^{\prime}, Y^{(i)}\right)=d_{\mathrm{H}}\left(X^{\prime}, Y\right)-1$.
$P_{1}^{\mathrm{A}}, P_{2}^{\mathrm{A}}, \ldots, P_{n}^{\mathrm{A}}$ can be obtained, depending on whether $d_{\mathrm{H}}\left(X, Y^{\prime}\right) \neq 1$ and $d_{\mathrm{H}}\left(X^{\prime}, Y\right) \neq 1$ or not. If $d_{\mathrm{H}}(X$, $\left.Y^{\prime}\right) \neq 1$ and $d_{\mathrm{H}}\left(X^{\prime}, Y\right) \neq 1$, then $\left\{Y^{(i)}, Y^{\prime(j)}\right\} \cap\left\{X, X^{\prime}, Y, Y^{\prime}\right\}$ is empty for all $1 \leq i \leq n$ and $1 \leq j \leq n$. For all $1 \leq k \leq n$, we let $P_{k}^{\mathrm{A}}=P_{k, u}$ if $Y^{(k)}=Y^{\prime}{ }^{(u)}$ for some $1 \leq u \leq n$, and $P_{k}^{\mathrm{A}}=P_{k, k}$ otherwise. If $d_{\mathrm{H}}\left(X, Y^{\prime}\right) \neq 1$ and $d_{\mathrm{H}}\left(X^{\prime}, Y\right)=1$, then $X^{\prime}=Y^{(r)}$ for some $1 \leq r \leq n$. We let $P_{r}^{\mathrm{A}}=(X, Y) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime(r)}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, and for all $k \in\{1$, $2, \ldots, n\}-\{r\}$, let $P_{k}^{\mathrm{A}}=P_{k, u}$ if $Y^{(k)}=Y^{\prime}(u)$ for some $1 \leq u \leq n$, and $P_{k}^{\mathrm{A}}=P_{k, k}$ otherwise. If $d_{\mathrm{H}}\left(X, Y^{\prime}\right)=1$ and $d_{\mathrm{H}}\left(X^{\prime}\right.$, $Y) \neq 1$, the discussion is similar. If $d_{\mathrm{H}}\left(X, Y^{\prime}\right)=1$ and $d_{\mathrm{H}}\left(X^{\prime}, Y\right)=1$, then $X^{\prime}=Y^{(s)}$ and $X=Y^{\prime(t)}$ for some $1 \leq s \leq n$ and $1 \leq t \leq n$. We let $P_{s}^{\mathrm{A}}=(X, Y) \rightarrow\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right), P_{t}^{\mathrm{A}}=P_{t, s}$ if $t \neq s$, and for all $k \in\{1,2, \ldots$,
$n\}-\{s, t\}, P_{k}^{\mathrm{A}}=P_{k, u}$ if $Y^{(k)}=Y^{\prime}{ }^{(u)}$ for some $1 \leq u \leq n$, and $P_{k}^{\mathrm{A}}=P_{k, k}$ otherwise. These paths have lengths at $\operatorname{most} d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+7$.
P_{n+1}^{A} can be obtained, depending on whether $X^{\prime} \neq Y$ and $X \neq Y^{\prime}$ or not. If $X^{\prime} \neq Y$ and $X \neq Y^{\prime}$, then let $P_{n+1}^{\mathrm{A}}=$ $(X, Y) \rightarrow(Y, X) \Rightarrow^{*}\left(Y, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, Y\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. If $X^{\prime} \neq Y$ and $X=Y^{\prime}$, then let $P_{n+1}^{\mathrm{A}}=(X, Y) \rightarrow(X$, $\left.Y^{(q)}\right) \Rightarrow^{*}\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right)$ for some $1 \leq q \leq n$, which conflicts with $P_{q}^{\mathrm{A}} . P_{q}^{\mathrm{A}}$ is changed as $(X, Y) \rightarrow(Y, X)$ $\Rightarrow^{*}\left(Y, Y^{\prime}(q)\right) \rightarrow\left(Y^{\prime(q)}, Y\right) \Rightarrow^{*}\left(Y^{\prime}(q), X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime(q)}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ whose length is at most $d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}(Y$, $\left.X^{\prime}\right)+5$. The discussion is similar if $X^{\prime}=Y$ and $X \neq Y^{\prime}$. If $X^{\prime}=Y$ and $X=Y^{\prime}$, then let $P_{n+1}^{\mathrm{A}}=\left(X, X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right)$. We have $\left|P_{n+1}^{\mathrm{A}}\right| \leq d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+5$.

3.3 Construction method (B)

The construction method (B) can be applied when $f_{4} \geq 2$. By $P_{1}^{\mathrm{B}}, P_{2}^{\mathrm{B}}, \ldots, P_{n+1}^{\mathrm{B}}$ we denote the resulting $n+1$ disjoint paths. First we determine M as follows: $M=Y$ if $X=Y, M=\overline{Y^{\prime}}$ if $X^{\prime}=Y^{\prime}$, and M is an arbitrary element of $Q_{\text {min }}$ else. Suppose $X=x_{1} x_{2} \ldots x_{n}, Y=y_{1} y_{2} \ldots y_{n}, X^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, Y^{\prime}=y_{1}^{\prime} y_{2}^{\prime} \ldots y_{n}^{\prime}$, and $M=m_{1} m_{2} \ldots m_{n}$. When $X=Y$, we have $\left(y_{i} \oplus m_{i}\right)+\left(x_{i} \oplus m_{i}\right)+\left(\overline{m_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{m_{i}} \oplus y_{i}^{\prime}\right) \leq 2$ if $m_{i}=y_{i}$, and ≥ 2 if $m_{i} \neq y_{i}$, where $1 \leq i \leq n$. Hence $M=Y \in Q_{\text {min }}$. Similarly, when $X^{\prime}=Y^{\prime}$, we have $M=\overline{Y^{\prime}} \in Q_{\text {min }}$.

For all $1 \leq i \leq n$, let P_{i}^{B} be the path P_{3} with $T=M^{(i)}$. Refer to Figure 5. As a consequence of Saad and Schultz's best (Y, M)-container (refer to Figure 2), there are n disjoint shortest paths from (X, Y) to $\left(X, M^{(1)}\right)$, $\left(X, M^{(2)}\right), \ldots,\left(X, M^{(n)}\right)$ (and from $\left(X^{\prime}, \overline{M^{(1)}}\right),\left(X^{\prime}, \overline{M^{(2)}}\right), \ldots,\left(X^{\prime}, \overline{M^{(n)}}\right)$ to $\left(X^{\prime}, Y^{\prime}\right)$), respectively. We have

$$
\begin{aligned}
\mid P_{i}^{\mathrm{B}} & \leq d_{\mathrm{H}}\left(Y, M^{(i)}\right)+d_{\mathrm{H}}\left(X, M^{(i)}\right)+d_{\mathrm{H}}\left(\overline{M^{(i)}}, X^{\prime}\right)+d_{\mathrm{H}}\left(\overline{M^{(i)}}, Y^{\prime}\right)+3 \\
& =d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3+\Delta,
\end{aligned}
$$

where $\Delta=0$ if $i \in F_{1} \cup F_{2} \cup F_{3}, \Delta=4$ if $i \in F_{4}$, and $\Delta=2$ if $i \in F_{5} \cup F_{6} \cup F_{7} \cup F_{8}$.
P_{n+1}^{B} whose length is at $\operatorname{most} d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+5$ can be obtained, depending on whether $X \neq Y$ and $X^{\prime} \neq Y^{\prime}$ or not.

Case 1. $X \neq Y$ and $X^{\prime} \neq Y^{\prime}$. The construction further depends on whether $Y \notin\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ and $Y^{\prime} \notin$ $\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$ or not.

Case 1.1. $Y \notin\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ and $Y^{\prime} \notin\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$. Let $P_{n+1}^{B}=(X, Y) \rightarrow(Y, X) \Rightarrow^{*}$ $(Y, M) \rightarrow(M, Y) \Rightarrow^{*}(M, M) \rightarrow(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{M}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. When $M=Y,(Y$, $M) \rightarrow(M, Y) \Rightarrow^{*}(M, M)$ is replaced with (Y, Y). When $\bar{M}=Y^{\prime},(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{M}\right)$ is replaced with $\left(Y^{\prime}, Y^{\prime}\right)$.

Arbitrarily determine $1 \leq r \leq n$ so that $d_{\mathrm{H}}(Y, X)=d_{\mathrm{H}}\left(Y, X^{(r)}\right)+1$. When $M=X$ and $\bar{M} \neq X^{\prime},(X, Y) \rightarrow(Y, X)$ $\Rightarrow^{*}(Y, M) \rightarrow(M, Y) \Rightarrow^{*}(M, M)$ is replaced with $(X, Y) \Rightarrow^{*}\left(X, X^{(r)}\right) \rightarrow(X, X)$, which conflicts with P_{r}^{B}. P_{r}^{B} is changed as $(X, Y) \rightarrow(Y, X) \rightarrow\left(Y, X^{(r)}\right) \rightarrow\left(X^{(r)}, Y\right) \Rightarrow^{*}\left(X^{(r)}, X^{(r)}\right) \rightarrow\left(\overline{X^{(r)}}, \overline{X^{(r)}}\right) \Rightarrow{ }^{*}\left(\overline{X^{(r)}}, X^{\prime}\right) \rightarrow$ $\left(X^{\prime}, \overline{X^{(r)}}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ whose length is at most $\left(d_{\mathrm{H}}(Y, X)-1\right)+\left(d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)+1\right)+\left(d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+1\right)+5=d_{\mathrm{H}}(Y, X)+$ $d_{\mathrm{H}}\left(\bar{X}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+6\left(<d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+7\right)$. The discussion is similar if $M \neq X$ and $\bar{M}=X^{\prime}$.

When $M=X$ and $\bar{M}=X^{\prime},(X, Y) \rightarrow(Y, X) \Rightarrow^{*}(Y, M) \rightarrow(M, Y) \Rightarrow^{*}(M, M)$ is replaced with (X, Y) $\Rightarrow^{*}\left(X, X^{(r)}\right) \rightarrow(X, X)$ and $(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{M}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ is replaced with $\left(X^{\prime}\right.$, $\left.X^{\prime}\right) \rightarrow\left(X^{\prime}, X^{\prime(r)}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right) . P_{r}^{\mathrm{B}}$ is changed as $(X, Y) \rightarrow(Y, X) \rightarrow\left(Y, X^{(r)}\right) \rightarrow\left(X^{(r)}, Y\right) \Rightarrow^{*}\left(X^{(r)}, X^{(r)}\right) \rightarrow$ $\left(\overline{X^{(r)}}, \overline{X^{(r)}}\right)\left(=\left(X^{\prime(r)}, X^{\prime(r)}\right)\right) \Rightarrow^{*}\left(X^{\prime(r)}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X^{\prime(r)}\right) \rightarrow\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ whose length is at most $d_{\mathrm{H}}(Y$, $X)+d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)+7\left(\leq d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+7\right)$.

Case 1.2. $Y \in\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ and $Y^{\prime} \notin\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$. Let $P_{n+1}^{\mathrm{B}}=(X, Y) \rightarrow(X, M) \rightarrow(M$, $X) \Rightarrow^{*}(M, M) \rightarrow(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{M}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. When $M=X,(X, M) \rightarrow(M, X)$ $\Rightarrow^{*}(M, M)$ is replaced with (X, X). When $\bar{M}=Y^{\prime},(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{M}\right)$ is replaced with $\left(Y^{\prime}\right.$, Y^{\prime}). When $\bar{M}=X^{\prime},(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{M}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ is replaced with $\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}\right.$, $\left.X^{\prime(s)}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ for some $s \in\{1,2, \ldots, n\}-F_{4} . P_{s}^{\mathrm{B}}$ is changed as $(X, Y) \Rightarrow^{*}\left(X, \overline{X^{(s)}}\right) \rightarrow\left(\overline{X^{\prime(s)}}, X\right) \Rightarrow{ }^{*}$ $\left(\overline{X^{(s)}}, \overline{X^{(s)}}\right) \rightarrow\left(X^{(s)}, X^{\prime(s)}\right) \Rightarrow^{*}\left(X^{\prime(s)}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X^{\prime(s)}\right) \rightarrow\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ whose length is $d_{\mathrm{H}}(Y$, $\left.\overline{X^{\prime(s)}}\right)+d_{\mathrm{H}}\left(X, \overline{X^{\prime(s)}}\right)+d_{\mathrm{H}}\left(X^{\prime(s)}, Y^{\prime}\right)+5 \leq d_{\mathrm{H}}\left(Y, \overline{X^{\prime}}\right)+d_{\mathrm{H}}\left(X, \overline{X^{\prime}}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)+6\left(=d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}(\bar{M}\right.$, $\left.\left.X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+6\right)$.

Case 1.3. $Y \notin\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ and $Y^{\prime} \in\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$. Similar to Case 1.2.

Case 1.4. $Y \in\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ and $Y^{\prime} \in\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$. Let $P_{n+1}^{\mathrm{B}}=(X, Y) \rightarrow(X, M) \rightarrow$ $(M, X) \Rightarrow^{*}(M, M) \rightarrow(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, X^{\prime}\right) \rightarrow\left(X^{\prime}, \bar{M}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. When $M=X,(X, M) \rightarrow(M, X) \Rightarrow^{*}(M$, $M)$ is replaced with (X, X). When $\bar{M}=X^{\prime},(\bar{M}, \bar{M}) \Rightarrow^{*}\left(\bar{M}, X^{\prime}\right) \rightarrow\left(X^{\prime}, \bar{M}\right)$ is replaced with $\left(X^{\prime}, X^{\prime}\right)$.

Case 2. $X=Y$ and $X^{\prime} \neq Y^{\prime}$. The construction depends on whether $Y^{\prime} \in\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\} \operatorname{or} \operatorname{not}(Y=M$ because $X=Y$). If $Y^{\prime} \in\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$, then let $P_{n+1}^{B}=((X, Y)=)(Y, Y) \rightarrow(\bar{Y}, \bar{Y}) \Rightarrow^{*}\left(\bar{Y}, X^{\prime}\right) \rightarrow$ $\left(X^{\prime}, \bar{Y}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. When $\bar{Y}=X^{\prime},(\bar{Y}, \bar{Y}) \Rightarrow^{*}\left(\bar{Y}, X^{\prime}\right) \rightarrow\left(X^{\prime}, \bar{Y}\right)$ is replaced with (\bar{Y}, \bar{Y}).

If $Y^{\prime} \notin\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$, then let $P_{n+1}^{\mathrm{B}}=((X, Y)=)(Y, Y) \rightarrow(\bar{Y}, \bar{Y}) \Rightarrow^{*}\left(\bar{Y}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{Y}\right)$ $\Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$. When $\bar{Y}=Y^{\prime},(\bar{Y}, \bar{Y}) \Rightarrow^{*}\left(\bar{Y}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{Y}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right)$ is replaced with (\bar{Y}, \bar{Y}) $\Rightarrow^{*}\left(\bar{Y}, X^{\prime}\right)$. When $\bar{Y}=X^{\prime},(\bar{Y}, \bar{Y}) \Rightarrow^{*}\left(\bar{Y}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{Y}\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ is replaced with $\left(X^{\prime}, X^{\prime}\right)$ $\rightarrow\left(X^{\prime}, X^{\prime(t)}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$, where $1 \leq t \leq n$ and $d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)=1+d_{\mathrm{H}}\left(X^{\prime(t)}, Y^{\prime}\right) . P_{t}^{\mathrm{B}}$ is changed as $((X, Y)=)(Y, Y)$ $\rightarrow\left(Y, Y^{(t)}\right) \rightarrow\left(Y^{(t)}, Y\right) \rightarrow\left(Y^{(t)}, Y^{(t)}\right) \rightarrow\left(\overline{Y^{(t)}}, \overline{Y^{(t)}}\right)\left(=\left(X^{\prime(t)}, X^{\prime(t)}\right)\right) \Rightarrow^{*}\left(X^{\prime(t)}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X^{\prime(t)}\right) \rightarrow\left(Y^{\prime}, X^{\prime}\right) \rightarrow$ $\left(X^{\prime}, Y^{\prime}\right)$ whose length is at most $d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)+6\left(<d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+7\right)$.

Case 3. $X \neq Y$ and $X^{\prime}=Y^{\prime}$. Similar to Case 2.
Case 4. $X=Y$ and $X^{\prime}=Y^{\prime}$. If $Y^{\prime} \in\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$, then let $P_{n+1}^{\mathrm{B}}=((X, Y)=)(Y, Y) \rightarrow(\bar{Y}, \bar{Y}) \Rightarrow{ }^{*}(\bar{Y}$, $\left.Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{Y}\right) \rightarrow\left(Y^{\prime}, Y^{\prime}\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$. If $Y^{\prime} \notin\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$ and $Y=\overline{Y^{\prime}}$, then let $P_{n+1}^{\mathrm{B}}=((X, Y)=)(Y$, $Y) \rightarrow\left(Y^{\prime}, Y^{\prime}\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$. If $Y^{\prime} \notin\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$ and $Y \neq \overline{Y^{\prime}}$, then let $P_{n+1}^{\mathrm{B}}=((X, Y)=)(Y, Y) \rightarrow(\bar{Y}$, $\bar{Y}) \Rightarrow^{*}\left(\bar{Y}, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, \bar{Y}\right) \rightarrow\left(Y^{\prime}, \overline{Y^{(u)}}\right) \Rightarrow^{*}\left(Y^{\prime}, Y^{\prime}\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$, where $1 \leq u \leq n$ and $d_{\mathrm{H}}\left(\bar{Y}, Y^{\prime}\right)=1+d_{\mathrm{H}}\left(\overline{Y^{(u)}}\right.$, $\left.Y^{\prime}\right) . P_{u}^{\mathrm{B}}$ is changed as $((X, Y)=)(Y, Y) \rightarrow\left(Y, Y^{(u)}\right) \Rightarrow^{*}\left(Y, \overline{Y^{\prime}}\right) \rightarrow\left(\overline{Y^{\prime}}, Y\right) \Rightarrow^{*}\left(\overline{Y^{\prime}}, \overline{Y^{\prime}}\right) \rightarrow\left(Y^{\prime}, Y^{\prime}\right)\left(=\left(X^{\prime}, Y^{\prime}\right)\right)$ whose length is at most $d_{\mathrm{H}}\left(Y, \overline{Y^{\prime}}\right)+d_{\mathrm{H}}\left(Y, \overline{Y^{\prime}}\right)+2\left(<d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+7\right.$ because $Y=M$).

For all $1 \leq i \leq n$ and $1 \leq j \leq n, P_{i}^{\mathrm{B}}$ and P_{j}^{B} with $i \neq j$ are disjoint provided $\left\{M^{(i)}, M^{(j)}\right\} \cap\left\{X^{\prime}, Y^{\prime}, \bar{X}, \bar{Y}\right\}$ is empty, and P_{i}^{B} and P_{n+1}^{B} are disjoint provided $\left\{M, M^{(i)}\right\} \cap\left\{X^{\prime}, Y^{\prime}, \bar{X}, \bar{Y}\right\}$ is empty. Since $M \in Q_{\text {min }}$, the following lemma assures that $P_{1}^{\mathrm{B}}, P_{2}^{\mathrm{B}}, \ldots, P_{n+1}^{\mathrm{B}}$ are disjoint.

Lemma 4. Suppose $M \in Q_{\text {min. }}\left\{M, M^{(i)}\right\} \cap\left\{\bar{X}, \bar{Y}, X^{\prime}, Y^{\prime}\right\}$ is empty if $f_{4} \geq 2$ or $f_{4}=1$ and $i \in\{1,2, \ldots, n\}-F_{4}$. Proof. Suppose $X=x_{1} x_{2} \ldots x_{n}, Y=y_{1} y_{2} \ldots y_{n}, X^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, Y^{\prime}=y_{1}^{\prime} y_{2}^{\prime} \ldots y_{n}^{\prime}$, and $M=m_{1} m_{2} \ldots m_{n}$. If $f_{4}=1$, then
$F_{4}=\{r\}$ for some $1 \leq r \leq n$. We have $x_{r}=y_{r}=\overline{x_{r}^{\prime}}=\overline{y_{r}^{\prime}}$. Further, $M \in Q_{\text {min }}$ implies $m_{r}=x_{r}=y_{r}$. Hence M and $M^{(i)}$ differ from $\bar{X}, \bar{Y}, X^{\prime}$, and Y^{\prime} at the r th bit position for all $i \in\{1,2, \ldots, n\}-\{r\}$. On the other hand, if $f_{4} \geq 2$, then assume $\{u, v\} \subseteq F_{4}$, where $1 \leq u \leq n, 1 \leq v \leq n$, and $u \neq v$. Similarly, we have $m_{u}=x_{u}=y_{u}=\overline{x_{u}^{\prime}}=\overline{y_{u}^{\prime}}$ and $m_{v}=$ $x_{v}=y_{v}=\overline{x_{v}^{\prime}}=\overline{y_{v}^{\prime}}$. Hence, $M \notin\left\{\bar{X}, \bar{Y}, X^{\prime}, Y^{\prime}\right\}, M^{(u)}$ differs from $\bar{X}, \bar{Y}, X^{\prime}$, and Y^{\prime} at the v th bit position, and $M^{(k)}$ differs from $\bar{X}, \bar{Y}, X^{\prime}$, and Y^{\prime} at the u th bit position for all $k \in\{1,2, \ldots, n\}-\{u\}$.

Lemma 4 (the situation of $f_{4}=1$) will be used again in Section 3.4.

3.4 Construction method (C)

The construction method (C) can be applied when $f_{2} \geq 1, f_{4} \geq 1, f_{2}+f_{4} \geq 3, f_{3}+f_{4} \geq 2$, and $\left\{X, X^{\prime}\right\} \cap\left\{Y, Y^{\prime}\right\}$ is empty. We use $P_{1}^{\mathrm{C}}, P_{2}^{\mathrm{C}}, \ldots, P_{n+1}^{\mathrm{C}}$ to denote the resulting $n+1$ disjoint paths. Let $P_{i}^{\mathrm{C}}=P_{i, i}$ for all $i \in F_{4}$ whose length is $d_{\mathrm{H}}\left(X^{\prime}, Y\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+3$. Recall that $P_{i, i}$ requires $\left\{Y^{(i)}, Y^{\prime(i)}\right\} \cap\left\{X, X^{\prime}, Y, Y^{\prime}\right\}$ empty, which holds as a consequence of $i \in F_{4}, f_{3}+f_{4} \geq 2$, and $f_{2}+f_{4} \geq 3$.

Then, determine $M=m_{1} m_{2} \ldots m_{n}$ so that $m_{k}=\overline{y_{k}}$ if $k \in F_{8}$ and $m_{k}=y_{k}$ if $k \in\{1,2, \ldots, n\}-F_{8}$. It is not difficult to see $M \in Q_{\text {min }}$. When $f_{8}=0$, we have $M=Y$. Let $P_{j}^{\mathrm{C}}=P_{j}^{\mathrm{B}}$ for all $j \in\{1,2, \ldots, n\}-F_{4}$ whose length is $d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3$ if $j \in F_{1} \cup F_{2} \cup F_{3}$, and $d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+$ $d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+5$ if $j \in F_{5} \cup F_{6} \cup F_{7} \cup F_{8}$. P_{j}^{C} 's are disjoint for the following reason. Recall that P_{j}^{B} 's are disjoint provided $M^{(j)} \notin\left\{\bar{X}, \bar{Y}, X^{\prime}, Y^{\prime}\right\}$. The latter holds by Lemma 4 because $f_{4} \geq 1$ and $j \notin F_{4}$ (the construction method (B) requires $f_{4} \geq 2$).
P_{i}^{C} and P_{j}^{C} are disjoint provided (1) $(X, Y) \rightarrow\left(X, Y^{(i)}\right)$ and $(X, Y) \Rightarrow^{*}\left(X, M^{(j)}\right)$ are disjoint, (2) (X^{\prime}, $\left.Y^{\prime(i)}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ and $\left(X^{\prime}, \overline{M^{(j)}}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$ are disjoint, and (3) $\left\{Y^{(i)}, Y^{\prime(i)}\right\} \cap\left\{M^{(j)}, \overline{M^{(j)}}\right\}$ is empty. Since $i \in F_{4}$, we have $y_{i}=m_{i}$. According to the construction of Saad and Schultz's best (Y, M)-container (refer to Figure 2), we have $(X, Y) \Rightarrow^{*}\left(X, M^{(i)}\right)=(X, Y) \rightarrow\left(X, Y^{(i)}\right)^{*}\left(X, M^{(i)}\right)$, which is disjoint with $(X, Y) \Rightarrow^{*}(X$, $M^{(j)}$. Hence (1) is true. Similarly, we have $y_{i}^{\prime}=\overline{m_{i}}$ (because $\left.i \in F_{4}\right)$ and $\left(X^{\prime}, \overline{M^{(i)}}\right) \Rightarrow{ }^{*}\left(X^{\prime}, Y^{\prime}\right)=\left(X^{\prime}, \overline{M^{(i)}}\right)$ $\Rightarrow^{*}\left(X^{\prime}, Y^{\prime(i)}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, which is disjoint with $\left(X^{\prime}, \overline{M^{(j)}}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$. Hence (2) is also true.
(1) and (2) can assure $Y^{(i)} \neq M^{(j)}$ and $Y^{\prime(i)} \neq \overline{M^{(j)}}$, respectively. It is easy to see $y_{k}=m_{k}$ for all $k \in F_{2} \cup$ F_{4}. Since $f_{2}+f_{4} \geq 3$, there exists $s \in F_{2} \cup F_{4}-\{i, j\}$ so that $Y^{(i)}$ and $\overline{M^{(j)}}$ differ at the s th bit position, i.e., $Y^{(i)} \neq$
$\overline{M^{(j)}}$. Similarly, we have $y_{k}^{\prime} \neq m_{k}$ for all $k \in F_{2} \cup F_{4}$, and $f_{2}+f_{4} \geq 3$ can assure the existence of $t \in F_{2} \cup F_{4}-\{i, j\}$ so that $Y^{\prime(i)}$ and $M^{(j)}$ differ at the t th bit position, i.e., $Y^{\prime(i)} \neq M^{(j)}$. Hence (3) is true.

The construction of P_{n+1}^{C} depends on whether $Y \notin\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ and $Y^{\prime} \notin\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots\right.$, $\left.\overline{M^{(n)}}\right\}$ or not. If $Y \notin\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ and $Y^{\prime} \notin\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$, then let $P_{n+1}^{\mathrm{C}}=(X, Y) \rightarrow(Y, X)$ $\Rightarrow^{*}\left(Y, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, Y\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ whose length is $d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(Y, X^{\prime}\right)+3$. P_{n+1}^{C} is disjoint with P_{i}^{C} provided $\left\{Y, Y^{\prime}\right\} \cap\left\{Y^{(i)}, Y^{\prime(i)}\right\}$ is empty, and disjoint with P_{j}^{C} provided $\left\{Y, Y^{\prime}\right\} \cap\left\{M^{(j)}, \overline{M^{(j)}}\right\}$ is empty. Since $f_{2}+f_{4} \geq 3$, we have $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 3$, which implies $\left\{Y, Y^{\prime}\right\} \cap\left\{Y^{(i)}, Y^{\prime(i)}\right\}$ empty. Lemma 4 assures that $\{Y$, $\left.Y^{\prime}\right\} \cap\left\{M^{(j)}, \overline{M^{(j)}}\right\}$ is empty.

If $Y \in\left\{M^{(1)}, M^{(2)}, \ldots, M^{(n)}\right\}$ or $Y^{\prime} \in\left\{\overline{M^{(1)}}, \overline{M^{(2)}}, \ldots, \overline{M^{(n)}}\right\}$, then let $P_{n+1}^{\mathrm{C}}=P_{n+1}^{\mathrm{B}}$. Since $f_{2} \geq 1$, we have $M \notin\left\{X, \overline{X^{\prime}}\right\}$. Hence no change of P_{s}^{C} for some $s \in\{1,2, \ldots, n\}-F_{4}$ is necessary (refer to Section 3.3). We have $\left|P_{n+1}^{\mathrm{C}}\right|=d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+5$ if $Y \neq M$ and $Y^{\prime} \neq \bar{M}$, and $d_{\mathrm{H}}(Y, M)+$ $d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3$ if $Y=M$ or $Y^{\prime}=\bar{M} . P_{n+1}^{\mathrm{C}}$ and P_{j}^{C} are disjoint for the following reason. Recall that P_{n+1}^{B} and P_{j}^{B} are disjoint provided $\left\{M, M^{(j)}\right\} \cap\left\{\bar{X}, \bar{Y}, X^{\prime}, Y^{\prime}\right\}$ is empty. The latter holds by Lemma 4 because $f_{4} \geq 1$ and $j \notin F_{4}$. On the other hand, P_{n+1}^{C} is disjoint with P_{i}^{C} provided $\left\{Y, Y^{\prime}\right\} \cap\left\{Y^{(i)}, Y^{(i)}\right\}$ is empty and $\{M, \bar{M}\} \cap\left\{Y^{(i)}, Y^{\prime(i)}\right\}$ is empty. Since $f_{2}+f_{4} \geq 3$, we have $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 3$ which implies $\left\{Y, Y^{\prime}\right\} \cap$ $\left\{Y^{(i)}, Y^{\prime(i)}\right\}$ is empty. Now that $i \in F_{4}, M(\bar{M})$ differs from $Y^{(i)}\left(Y^{\prime(i)}\right)$ at the i th bit position. Since $f_{2}+f_{4} \geq 3$, there exists $t \in F_{2} \cup F_{4}-\{i\}$ so that $M(\bar{M})$ differs from $Y^{\prime(i)}\left(Y^{(i)}\right)$ at the t th bit position. Hence $\{M, \bar{M}\} \cap$ $\left\{Y^{(i)}, Y^{\prime(i)}\right\}$ is empty.

According to the discussion above, $P_{1}^{\mathrm{C}}, P_{2}^{\mathrm{C}}, \ldots, P_{n+1}^{\mathrm{C}}$ have lengths at most $\max \left\{d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X\right.$, $\left.M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3, d_{\mathrm{H}}\left(X^{\prime}, Y\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+3\right\}$ if $f_{5}+f_{6}+f_{7}+f_{8}=0\left(Y=M\right.$ is implied because $\left.f_{8}=0\right)$, and $\max \left\{d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+5, d_{\mathrm{H}}\left(X^{\prime}, Y\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+3\right\}$ if $f_{5}+f_{6}+f_{7}+f_{8} \neq 0$.

3.5 Construction method (D)

The construction method (D) can be applied when $f_{1}=0, f_{2}+f_{3} \geq 2, f_{3}+f_{4} \geq 2, n>d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 1$, and $\left\{X, X^{\prime}\right\} \cap\{Y$, $\left.Y^{\prime}\right\}$ is empty. We use $P_{1}^{\mathrm{D}}, P_{2}^{\mathrm{D}}, \ldots, P_{n+1}^{\mathrm{D}}$ to denote the resulting $n+1$ disjoint paths. Suppose that $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=$ k and $Q_{1}, Q_{2}, \ldots, Q_{n}$ are the n paths of Saad and Schultz's best $\left(Y, Y^{\prime}\right)$-container, where $1 \leq k \leq n-1$ and $\left|Q_{1}\right| \geq$
$\left|Q_{2}\right| \geq \ldots \geq\left|Q_{n}\right|$ is assumed. By Lemma $1\left(d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=f_{2}+f_{4}+f_{5}+f_{6}\right), F_{2} \cup F_{4} \cup F_{5} \cup F_{6}$ contains the k bit positions where Y and Y^{\prime} differ. Without loss of generality, assume $F_{1} \cup F_{3} \cup F_{7} \cup F_{8}=\{1,2, \ldots, n-k\}$ and let $Q_{i}=Y \rightarrow Y^{(i)} \Rightarrow^{*} Y^{\prime(i)} \rightarrow Y^{\prime}$, where $1 \leq i \leq n-k$. We have $\left\{Y^{(i)}, Y^{\prime(i)}\right\} \cap\left\{Y, Y^{\prime}\right\}$ empty.

We let $P_{i}^{\mathrm{D}}=P_{i, i}$ for all $1 \leq i \leq n-k$, and $P_{j}^{\mathrm{D}}=P_{j}^{\mathrm{M}}$ for all $n-k+1 \leq j \leq n+1$. We have $d_{\mathrm{H}}\left(X, Y^{\prime}\right) \geq 2, d_{\mathrm{H}}(X, Y) \geq$ 2, $d_{\mathrm{H}}\left(X^{\prime}, Y\right) \geq 2$, and $d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right) \geq 2$, as a consequence of $f_{2}+f_{3} \geq 2$ and $f_{3}+f_{4} \geq 2$. Hence $\left\{Y^{(i)}, Y^{\prime(i)}\right\} \cap\left\{X, X^{\prime}\right\}$ is empty (recall that $P_{i, i}$ requires $\left\{Y^{(i)}, Y^{\prime(i)}\right\} \cap\left\{X, X^{\prime}, Y, Y^{\prime}\right\}$ empty). P_{i}^{D} has length $d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(Y, X^{\prime}\right)+3$ if $i \in F_{3}$ and $d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(Y, X^{\prime}\right)+5$ if $i \in F_{7} \cup F_{8}$ (F_{1} is empty). P_{j}^{D} has length at most $d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+$ 2. These $n+1$ paths have lengths at most $\max \left\{d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2, d_{\mathrm{H}}\left(X^{\prime}, Y\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+3\right\}$ if $f_{7}+f_{8}=0$, and at most $\max \left\{d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2, d_{\mathrm{H}}\left(X^{\prime}, Y\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+5\right\}$ if $f_{7}+f_{8} \neq 0$.
P_{i}^{D} and P_{j}^{D} are disjoint provided $\left\{Y^{(i)}, Y^{\prime(i)}\right\} \cap\left\{Y, Y^{\prime}\right\}$ is empty and Q_{j} does not contain $Y^{(i)}$ and $Y^{\prime(i)}$. The former is true because $i \in F_{1} \cup F_{3} \cup F_{7} \cup F_{8}$ can assure $Y \neq Y^{\prime}{ }^{(i)}$ and $Y^{\prime} \neq Y^{(i)}$. The latter is true because $i \neq j$ and Q_{i} contains $Y^{(i)}$ and $Y^{\prime}{ }^{(i)}$.

3.6 Construction method (E)

The construction method (E) can be applied when $f_{4} \geq 1, f_{5}+f_{6}+f_{7}+f_{8}=0, n \geq 4, d_{\mathrm{H}}\left(Y, Y^{\prime}\right)<n$, and $\left\{X, X^{\prime}\right\} \cap\{Y$, $\left.Y^{\prime}\right\}$ is empty. By $P_{1}^{\mathrm{E}}, P_{2}^{\mathrm{E}}, \ldots, P_{n+1}^{\mathrm{E}}$ we denote the resulting $n+1$ disjoint paths. Suppose that $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=k$ and $Q_{1}, Q_{2}, \ldots, Q_{n}$ are the n paths of Saad and Schultz's best $\left(Y, Y^{\prime}\right)$-container $\left(f_{4} \geq 1\right.$ can assure $\left.Y \neq Y^{\prime}\right)$, where $1 \leq k \leq n-1$ and $\left|Q_{1}\right| \geq\left|Q_{2}\right| \geq \ldots \geq\left|Q_{n}\right|$ is assumed. By Lemma 1, $F_{2} \cup F_{4} \cup F_{5} \cup F_{6}$ contains the k bit positions where Y and Y^{\prime} differ. Without loss of generality, assume $F_{1} \cup F_{3} \cup F_{7} \cup F_{8}=\{1,2, \ldots, n-k\}$. We let $Q_{i}=Y \rightarrow Y^{(i)} \Rightarrow^{*} Y^{\prime(i)} \rightarrow Y^{\prime}$ for all $1 \leq i \leq n-k . P_{1}^{\mathrm{E}}, P_{2}^{\mathrm{E}}, \ldots, P_{n+1}^{\mathrm{E}}$ can be obtained, depending on whether $k=$ $n-1$ or not.

Case 1. $k=n-1$. For all $2 \leq j \leq n$, let $P_{j}^{\mathrm{E}}=R_{j}$ whose length is at most $d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2$, where $W_{j} \notin\{X$, $\left.X^{\prime}, Y, Y^{\prime}\right\}$ can be determined for the following reason. Since $n \geq 4$, we have $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 3$. Now that $f_{5}+f_{6}+f_{7}+$ $f_{8}=0$, we have $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=f_{2}+f_{4}=d_{\mathrm{H}}\left(X, X^{\prime}\right)$ by Lemma 1. Hence $d_{\mathrm{H}}\left(X, X^{\prime}\right) \geq 3$.

We determine $M=\overline{Y^{\prime}}\left(f_{5}+f_{6}+f_{7}+f_{8}=0\right.$ can assure $\left.\overline{Y^{\prime}} \in Q_{\text {min }}\right)$, and let $P_{1}^{\mathrm{E}}=P_{1}^{\mathrm{B}}$ and $P_{n+1}^{\mathrm{E}}=P_{n+1}^{\mathrm{B}}$. We have $\left|P_{1}^{\mathrm{E}}\right| \leq d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3\left(1 \in F_{1} \cup F_{3} \cup F_{7} \cup F_{8}=F_{1} \cup F_{3}\right)$, and $\left|P_{n+1}^{\mathrm{E}}\right| \leq d_{\mathrm{H}}(X, M)+$
$d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)+4=d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3\left(Y=\overline{Y^{\prime(1)}}=M^{(1)}\right.$ and $\left.Y^{\prime}=\bar{M}\right)$. No change of P_{s}^{E} for some $s \in\{1,2, \ldots, n\}-F_{4}$ is necessary because $\bar{M}=Y^{\prime} \neq X^{\prime}$.
P_{n+1}^{E} and P_{1}^{E} are disjoint because P_{n+1}^{B} and P_{1}^{B} are disjoint (refer to Section 3.4 where it was shown that P_{n+1}^{B} is disjoint with P_{r}^{B} for all $\left.r \in\{1,2, \ldots, n\}-F_{4}\right) . P_{1}^{\mathrm{E}}$ and P_{j}^{E} are disjoint provided $\overline{M^{(1)}} \rightarrow Y^{\prime}$ is disjoint with Q_{j} and $W_{j} \notin\left\{M^{(1)}, \overline{M^{(1)}}\right\}$. The former is true because $\overline{M^{(1)}}=Y^{\prime(1)}$ and $j \neq 1$. We have $W_{j} \neq M^{(1)}$ because $W_{j} \neq Y=M^{(1)}$, and $W_{j} \neq \overline{M^{(1)}}$ because $W_{j} \in Q_{j}$ and $\overline{M^{(1)}} \notin Q_{j} . P_{n+1}^{\mathrm{E}}$ and P_{j}^{E} are disjoint provided $Y \rightarrow$ M is disjoint with Q_{j} and $W_{j} \notin\{M, \bar{M}\}$. Since $M=\overline{Y^{\prime}}$, the former holds as a consequence of Lemma 3 (let $A=Y$ and $B=Y^{\prime}$). We have $W_{j} \neq M$ and $W_{j} \neq \bar{M}$, similarly.

Case 2. $k<n-1$. We determine $M=Y\left(f_{5}+f_{6}+f_{7}+f_{8}=0\right.$ assures $\left.Y \in Q_{\text {min }}\right)$, and let $P_{i}^{\mathrm{E}}=P_{i}^{\mathrm{B}}$ for all $1 \leq i \leq n-k$ and $P_{j}^{\mathrm{E}}=P_{j}^{\mathrm{M}}$ for all $n-k+1 \leq j \leq n+1$. We have $\left|P_{i}^{\mathrm{E}}\right| \leq d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}\left(X^{\prime}, \bar{M}\right)+d_{\mathrm{H}}\left(Y^{\prime}, \bar{M}\right)+3$ and $\left|P_{j}^{\mathrm{E}}\right| \leq$ $d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2 . P_{i}^{\mathrm{E}}$'s are disjoint because P_{i}^{B} 's are disjoint (refer to Section 3.4 where it was shown that P_{r}^{B} 's are disjoint for all $\left.r \in\{1,2, \ldots, n\}-F_{4}\right) . P_{i}^{\mathrm{E}}$ and P_{j}^{E} are disjoint provided $\overline{M^{(i)}} \Rightarrow{ }^{*} Y^{\prime}$ is disjoint with Q_{j} and Q_{j} does not contain $M^{(i)}$ and $\overline{M^{(i)}}$. By Lemma 3 (let $A=Y^{\prime}$ and $B=Y$), $\bar{Y} \Rightarrow^{*} Y^{\prime}$ and Q_{j} are disjoint, which means that $\overline{M^{(i)}}\left(=\overline{Y^{(i)}}\right) \Rightarrow{ }^{*} Y^{\prime}$ and Q_{j} are disjoint. Besides, we have $\overline{M^{(i)}} \neq Y^{\prime}$ because $d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)=d_{\mathrm{H}}\left(\bar{Y}, Y^{\prime}\right)=n-k>1$. Hence $\overline{M^{(i)}} \notin Q_{j}$. Since $M^{(i)} \in Q_{i}, M^{(i)}=Y^{(i)} \neq Y^{\prime}$, and $i \neq j$, we have $M^{(i)} \notin Q_{j}$.

3.7 Construction method (F)

The construction method (F) can be applied when $n=3, d_{\mathrm{H}}\left(X, X^{\prime}\right)=3, d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=2$, and $\left\{X, X^{\prime}\right\} \cap\left\{Y, Y^{\prime}\right\}$ is empty. By $P_{1}^{\mathrm{F}}, P_{2}^{\mathrm{F}}, P_{3}^{\mathrm{F}}$, and P_{4}^{F} we denote the resulting four disjoint paths. We have $d_{\mathrm{H}}(X, Y), d_{\mathrm{H}}\left(X, Y^{\prime}\right)$, $d_{\mathrm{H}}\left(X^{\prime}, Y\right)$, and $d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)$ all equal to 1 or 2 . We assume $d_{\mathrm{H}}(X, Y)=1$. The discussion for $d_{\mathrm{H}}(X, Y)=2$ is very similar.

We have $d_{\mathrm{H}}\left(X, Y^{\prime}\right)=1, d_{\mathrm{H}}\left(X^{\prime}, Y\right)=2$, and $d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)=2$, because $d_{\mathrm{H}}(X, Y)+d_{\mathrm{H}}\left(X, Y^{\prime}\right) \in\{2,4\}, d_{\mathrm{H}}(X, Y)+$ $d_{\mathrm{H}}\left(X^{\prime}, Y\right) \geq d_{\mathrm{H}}\left(X, X^{\prime}\right)=3$, and $d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right) \geq d_{\mathrm{H}}\left(X, X^{\prime}\right)=3$, respectively. Also we have $d_{\mathrm{H}}\left(X^{\prime}, \overline{Y^{\prime}}\right)=3-$ $d_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right)=1, d_{\mathrm{H}}\left(X^{\prime}, \bar{Y}\right)=3-d_{\mathrm{H}}\left(X^{\prime}, Y\right)=1$, and $d_{\mathrm{H}}\left(Y, \overline{Y^{\prime}}\right)=d_{\mathrm{H}}\left(\bar{Y}, Y^{\prime}\right)=3-d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=1$. Hence there are two paths $Y \rightarrow X \rightarrow Y^{\prime}$ and $Y \rightarrow \overline{Y^{\prime}} \rightarrow X^{\prime} \rightarrow \bar{Y} \rightarrow Y^{\prime}$ from Y to Y^{\prime} in a 3-cube. Suppose that $Y \rightarrow T \rightarrow Y^{\prime}$ is the
other shortest path from Y to Y^{\prime}, where $T \neq X$. The three paths from Y to Y^{\prime} are disjoint, because $X \notin\left\{\overline{Y^{\prime}}, \bar{Y}\right\}$, $T \notin\left\{\overline{Y^{\prime}}, \bar{Y}\right\}$, and $T \neq X^{\prime}$ (a consequence of $d_{\mathrm{H}}\left(Y^{\prime}, T\right)=1$ and $d_{\mathrm{H}}\left(Y^{\prime}, X^{\prime}\right)=2$).

Let $P_{1}^{\mathrm{F}}=(X, Y) \rightarrow(X, X) \rightarrow(\bar{X}, \bar{X})\left(=\left(X^{\prime}, X^{\prime}\right)\right) \rightarrow\left(X^{\prime}, \bar{Y}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right), P_{2}^{\mathrm{F}}=(X, Y) \rightarrow\left(X, \overline{Y^{\prime}}\right) \rightarrow(X$, $\left.X^{\prime}\right) \rightarrow\left(X^{\prime}, X\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right), P_{3}^{\mathrm{F}}=(X, Y) \rightarrow(X, T) \rightarrow\left(X, Y^{\prime}\right) \rightarrow\left(Y^{\prime}, X\right) \Rightarrow^{*}\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, and $P_{4}^{\mathrm{F}}=(X, Y)$ $\rightarrow(Y, X) \Rightarrow^{*}\left(Y, X^{\prime}\right) \rightarrow\left(X^{\prime}, Y\right) \rightarrow\left(X^{\prime}, T\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$, which were obtained according to the three paths from Y to Y^{\prime} above. They have lengths $4,4,7$, and 7 , respectively.

3.8 An (I, I')-container

At most seven $\left(I, I^{\prime}\right)$-containers can be obtained by the main construction method and six auxiliary construction methods. The $\left(I, I^{\prime}\right)$-container we desire is determined as the one with minimal length. For example, when $I=(0000,1100)$ and $I^{\prime}=(1111,0011)$, all auxiliary construction methods but (F) can be applied. The containers obtained by the main construction method and auxiliary construction methods (A), (B), (C), (D), and (E) have lengths $10,9,11,7,10$, and 10, respectively. Hence the container obtained by (C) is desired. The following are the five disjoint paths it contains.

$$
\begin{aligned}
P_{1}^{\mathrm{C}}= & (0000,1100) \rightarrow(0000,0100) \rightarrow(0100,0000) \rightarrow(0100,0100) \rightarrow(1011,1011) \rightarrow(1011,1111) \rightarrow \\
& (1111,1011) \rightarrow(1111,0011) . \\
P_{2}^{\mathrm{C}}= & (0000,1100) \rightarrow(0000,1000) \rightarrow(1000,0000) \rightarrow(1000,1000) \rightarrow(0111,0111) \rightarrow(0111,1111) \rightarrow \\
& (1111,0111) \rightarrow(1111,0011) . \\
P_{3}^{\mathrm{C}}= & (0000,1100) \rightarrow(0000,1110) \rightarrow(1110,0000) \rightarrow(1110,0001) \rightarrow(0001,1110) \rightarrow(0001,1111) \rightarrow \\
& (1111,0001) \rightarrow(1111,0011) . \\
P_{4}^{\mathrm{C}}= & (0000,1100) \rightarrow(0000,1101) \rightarrow(1101,0000) \rightarrow(1101,0010) \rightarrow(0010,1101) \rightarrow(0010,1111) \rightarrow \\
& (1111,0010) \rightarrow(1111,0011) . \\
P_{5}^{\mathrm{C}}= & (0000,1100) \rightarrow(1100,0000) \rightarrow(1100,0001) \rightarrow(1100,0011) \rightarrow(0011,1100) \rightarrow(0011,1110) \rightarrow \\
& (0011,1111) \rightarrow(1111,0011) .
\end{aligned}
$$

4 An upper bound on the lengths of the best containers

In this section, the length of the $\left(I, I^{\prime}\right)$-container that was obtained in Section 3 was analyzed. We use $L^{\mathrm{M}}(I$, $\left.I^{\prime}\right), L^{\mathrm{A}}\left(I, I^{\prime}\right), L^{\mathrm{B}}\left(I, I^{\prime}\right), L^{\mathrm{C}}\left(I, I^{\prime}\right), L^{\mathrm{D}}\left(I, I^{\prime}\right), L^{\mathrm{E}}\left(I, I^{\prime}\right)$, and $L^{\mathrm{F}}\left(I, I^{\prime}\right)$ to represent the worst-case lengths of the $(I$, I^{\prime})-containers that were obtained by the main construction method and auxiliary construction methods (A), (B), (C), (D), (E), and (F), respectively. We have

$$
\begin{aligned}
L^{\mathrm{M}}\left(I, I^{\prime}\right)= & \max \left\{n+5, d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4, \min \left\{d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+8, d_{\mathrm{H}}\left(\bar{X}, Y^{\prime}\right)+d_{\mathrm{H}}\left(\bar{Y}, X^{\prime}\right)+3\right\}\right\} \text { if } \\
& \left(X=Y \text { and } X^{\prime} \neq Y^{\prime}\right) \text { or }\left(X \neq Y \text { and } X^{\prime}=Y^{\prime}\right), d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2 \text { if } d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=n \text { and }\left\{X, X^{\prime}\right\} \cap\{Y, \\
& \left.Y^{\prime}\right\} \text { is empty, and } \max \left\{8, d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+4\right\} \text { else. } \\
L^{\mathrm{A}}\left(I, I^{\prime}\right)= & d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+7 . \\
L^{\mathrm{B}}\left(I, I^{\prime}\right)= & d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+7, \text { where } M \in Q_{\text {min }} . \\
L^{\mathrm{C}}\left(I, I^{\prime}\right)= & \max \left\{d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3, d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+3\right\} \text { if } f_{5}+f_{6}+f_{7}+ \\
& f_{8}=0, \text { and } \max \left\{d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+5, d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+3\right\} \text { if } \\
& f_{5}+f_{6}+f_{7}+f_{8} \neq 0, \text { where } M \in Q_{\text {min }} . \\
L^{\mathrm{D}}\left(I, I^{\prime}\right)= & \max \left\{d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2, d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+3\right\} \text { if } f_{5}+f_{6}+f_{7}+f_{8}=0, \text { and } \max \left\{d_{\mathrm{H}}\left(X, X^{\prime}\right)+\right. \\
& \left.d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2, d_{\mathrm{H}}\left(X, Y^{\prime}\right)+d_{\mathrm{H}}\left(X^{\prime}, Y\right)+5\right\} \text { if } f_{5}+f_{6}+f_{7}+f_{8} \neq 0 . \\
L^{\mathrm{E}}\left(I, I^{\prime}\right)= & \max \left\{d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+3, d_{\mathrm{H}}\left(X, X^{\prime}\right)+d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+2\right\}, \text { where } M \in \\
& Q_{\min .} . \\
L^{\mathrm{F}}\left(I, I^{\prime}\right)= & 7 .
\end{aligned}
$$

By Lemma 1, we have
$L^{\mathrm{M}}\left(I, I^{\prime}\right)=\max \left\{n+5,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4, \min \left\{2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+8,2 f_{1}+2 f_{2}+f_{5}+f_{6}+f_{7}+f_{8}+3\right\}\right\}$
if ($X=Y$ and $X^{\prime} \neq Y^{\prime}$) or $\left(X \neq Y\right.$ and $\left.X^{\prime}=Y^{\prime}\right)$,
$2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+2$ if $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=n$ and $\left\{X, X^{\prime}\right\} \cap\left\{Y, Y^{\prime}\right\}$ is empty, and $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\}$ else.
$L^{\mathrm{A}}\left(I, I^{\prime}\right)=2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7$.
$L^{\mathrm{B}}\left(I, I^{\prime}\right)=2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+7$.
$L^{\mathrm{C}}\left(I, I^{\prime}\right)=\max \left\{2 f_{1}+2 f_{2}+2 f_{3}+3,2 f_{3}+2 f_{4}+3\right\}$ if $f_{5}+f_{6}+f_{7}+f_{8}=0$, and $\max \left\{2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+5,2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+3\right\}$ if $f_{5}+f_{6}+f_{7}+f_{8} \neq 0$.
$L^{\mathrm{D}}\left(I, I^{\prime}\right)=\max \left\{2 f_{2}+2 f_{4}+2,2 f_{3}+2 f_{4}+3\right\}$ if $f_{5}+f_{6}+f_{7}+f_{8}=0$, and $\max \left\{2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+2,2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+5\right\}$ if $f_{5}+f_{6}+f_{7}+f_{8} \neq 0$.

$$
\begin{aligned}
& L^{\mathrm{E}}\left(I, I^{\prime}\right)=\max \left\{2 f_{1}+2 f_{2}+2 f_{3}+3,2 f_{2}+2 f_{4}+2\right\} . \\
& L^{\mathrm{F}}\left(I, I^{\prime}\right)=7
\end{aligned}
$$

The following two lemmas together show that the $\left(I, I^{\prime}\right)$-container of Section 3 has length not greater than $n+\lfloor n / 3\rfloor+4$.

Lemma 5. When $\left\{X, X^{\prime}\right\} \cap\left\{Y, Y^{\prime}\right\}$ is not empty, the $\left(I, I^{\prime}\right)$-container of Section 3 has length at most $n+5$. Proof. Four cases are discussed below.

Case 1. $X \neq Y$ and $X^{\prime} \neq Y^{\prime}$. We have $X=Y^{\prime}$ or $X^{\prime}=Y$. We assume $X=Y^{\prime}$, which implies $f_{3}=f_{4}=f_{6}=f_{8}=0$ by Lemma 1. Hence $f_{1}+f_{2}+f_{5}+f_{7}=n$. If $f_{2} \geq 2$, then there is an (I, $\left.I^{\prime}\right)$-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7=f_{5}+f_{7}+7=\left(n-f_{1}-f_{2}\right)+7 \leq n+5$. If $f_{2} \leq 1$, then there is an $\left(I, I^{\prime}\right)-$ container obtained from the main construction method whose length is at most max $\left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+\right.$ $\left.f_{8}+4\right\} \leq n+5$. The discussion for $X^{\prime}=Y$ is similar.

Case 2. $X=Y$ and $X^{\prime} \neq Y^{\prime}$. By Lemma 1 we have $f_{2}=f_{3}=f_{5}=f_{8}=0$. Hence $f_{1}+f_{4}+f_{6}+f_{7}=n$. If $f_{1} \geq f_{4}-1$, then there is an $\left(I, I^{\prime}\right)$-container obtained from the main construction method whose length is at most $\max \left\{n+5,2 f_{2}+\right.$ $\left.2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4, \min \left\{2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+8,2 f_{1}+2 f_{2}+f_{5}+f_{6}+f_{7}+f_{8}+3\right\}\right\}=\max \left\{n+5,2 f_{4}+f_{6}+f_{7}+4, \min \left\{2 f_{4}+\right.\right.$ $\left.\left.f_{6}+f_{7}+8,2 f_{1}+f_{6}+f_{7}+3\right\}\right\} \leq n+5$, because $\min \left\{2 f_{4}+f_{6}+f_{7}+8,2 f_{1}+f_{6}+f_{7}+3\right\}=2 f_{4}+f_{6}+f_{7}+8$ if $f_{1} \geq f_{4}+3$, and $2 f_{1}+f_{6}+$ $f_{7}+3$ if $f_{4}-1 \leq f_{1} \leq f_{4}+2$. On the other hand, if $f_{1} \leq f_{4}-2$, then $f_{4} \geq 2$ and there is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (B) whose length is at most $2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+5$.

Case 3. $X \neq Y$ and $X^{\prime}=Y^{\prime}$. Similar to Case 2.
Case 4. $X=Y$ and $X^{\prime}=Y^{\prime}$. By Lemma 1 we have $f_{2}=f_{3}=f_{5}=f_{6}=f_{7}=f_{8}=0$. Hence $f_{1}+f_{4}=n$. If $f_{1} \geq f_{4}-1$, then there is an $\left(I, I I^{\prime}\right.$-container obtained from the main construction method whose length is at most max $\left\{8,2 f_{2}+2 f_{4}+\right.$ $\left.f_{5}+f_{6}+f_{7}+f_{8}+4\right\} \leq n+5$. If $f_{1} \leq f_{4}-2$, then there is an (I, I^{\prime})-container obtained from the construction method (B) whose length is at most $2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+5$.

Lemma 6. When $\left\{X, X^{\prime}\right\} \cap\left\{Y, Y^{\prime}\right\}$ is empty, the (I, I^{\prime})-container of Section 3 has length at most $n+\lfloor n / 3\rfloor+4$. Proof. There are four cases discussed below.

Case 1. $f_{1}=0$ and $f_{5}+f_{6}+f_{7}+f_{8}=0$. We have $f_{2}+f_{3}+f_{4}=n$. Three cases are discussed below.
Case 1.1. $f_{3} \geq f_{4}$. Three cases are further discussed below.

Case 1.1.1. $f_{3} \geq f_{2}$. We have $3 f_{3} \geq f_{2}+f_{3}+f_{4}=n$, which implies $f_{3} \geq\left\lceil n / 37\right.$. By Lemma 1, $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=f_{2}+f_{4}=$ $n-f_{3} \leq\lfloor 2 n / 3\rfloor<n$. There is an (I, $\left.I^{\prime}\right)$-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\} \leq n+\lfloor n / 3\rfloor+4$.

Case 1.1.2. $f_{3}=f_{2}-1$ or $f_{2}-2$. We have $f_{3} \geq\lceil(n-2) / 3\rceil \geq 1$, similarly. Also, $f_{2} \geq\lceil(n+2) / 3\rceil \geq 1$ because $f_{2} \geq$ $f_{3}+1 \geq f_{4}+1$. We have $1 \leq f_{2} \leq d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=n-f_{3}<n$. When $f_{3}+f_{4} \geq 2$, there is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (D) whose length is at most max $\left\{2 f_{2}+2 f_{4}+2,2 f_{3}+2 f_{4}+3\right\}<n+\lfloor n / 3\rfloor+4$.

When $f_{3}+f_{4}<2$, we have $f_{3}=1$ and $f_{4}=0$, which implies $f_{2}=n-1$. If $n \geq 4$, then $f_{2} \geq 3$ and there is an $\left(I, I^{\prime}\right)$ container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+$ $\lfloor n / 3\rfloor+4$. If $n=3$, then $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=n-f_{3}=2$. There is an (I, I)-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\}=8=n+\lfloor n / 3\rfloor+4$.

Case 1.1.3. $f_{3} \leq f_{2}-3$. We have $f_{2} \geq\lceil n / 3\rceil+2 \geq 3$ because $f_{2} \geq f_{3}+3 \geq f_{4}+3$. There is an (I, I^{\prime})-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7<n+\lfloor n / 3\rfloor+4$.

Case 1.2. $f_{3}=f_{4}-1$ or $f_{4}-2$. Three cases are discussed below.
Case 1.2.1. $f_{4} \geq f_{2}+2$. We have $f_{3} \geq\lceil(n-2) / 3\rceil \geq 1$ and $f_{4} \geq\lceil n / 3\rceil+1 \geq 2$, similarly. Then $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=n-f_{3}<n$. If $n \geq 4$, then there is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (E) whose length is at most $\max \left\{2 f_{1}+2 f_{2}+2 f_{3}+3,2 f_{2}+2 f_{4}+2\right\} \leq n+\lfloor n / 3\rfloor+4$. If $n=3$, then $f_{4}=2$ and $f_{3}=1$. There is an (I, I)-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\}=8=n+$ $\lfloor n / 3\rfloor+4$.

Case 1.2.2. $f_{2}-1 \leq f_{4} \leq f_{2}+1$. We have $\left.f_{2} \geq\lceil(n-1) / 3\rceil \geq 1, f_{3} \leq L(n-1) / 3\right\rfloor$, and $f_{4} \geq\lceil n / 3\rceil \geq 1$, similarly. If $n \geq 4$, then $f_{4} \geq 2$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (C) whose length is at most $\max \left\{2 f_{1}+2 f_{2}+2 f_{3}+3,2 f_{3}+2 f_{4}+3\right\} \leq n+\lfloor n / 3\rfloor+4$. If $n=3$, then $f_{3}=0$ and $d_{\mathrm{H}}(Y, Y)=n-f_{3}=n$. There is an $(I$, I^{\prime})-container obtained from the main construction method whose length is at most $2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+2=$ $8=n+\lfloor n / 3\rfloor+4$.

Case 1.2.3. $f_{4} \leq f_{2}-2$. We have $f_{2} \geq\lceil(n-1) / 3\rceil+2$. There is an (I, I)-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+\lfloor n / 3\rfloor+4$.

Case 1.3. $f_{3} \leq f_{4}-3$. Three cases are discussed below.

Case 1.3.1. $f_{4} \geq f_{2}+2$. We have $f_{4} \geq\lceil(n-1) / 3\rceil+2$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (B) whose length is at most $2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+\lfloor n / 3\rfloor+4$.

Case 1.3.2. $f_{2}-1 \leq f_{4} \leq f_{2}+1$. We have $f_{2} \geq[(n+1) / 3\rceil \geq 2$ and $f_{4} \geq[(n+2) / 3] \geq 2$. There is an (I, I^{\prime})-container obtained from the construction method (C) whose length is at most max $\left\{2 f_{1}+2 f_{2}+2 f_{3}+3,2 f_{3}+2 f_{4}+3\right\}<n+$ $\lfloor n / 3\rfloor+4$.

Case 1.3.3. $f_{4} \leq f_{2}-2$. We have $f_{2} \geq[(n+1) / 3\rceil+2 \geq 3$. There is an (I, I)-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7<n+\lfloor n / 3\rfloor+4$.

Case 2. $f_{1}=0$ and $f_{5}+f_{6}+f_{7}+f_{8}>0$. Suppose $f_{5}+f_{6}+f_{7}+f_{8}=k \geq 1$. We have $f_{2}+f_{3}+f_{4}=n-k$. Two cases are discussed below.

Case 2.1. $f_{3} \geq f_{4}-1$. Four cases are further discussed below.
Case 2.1.1. $f_{2} \geq f_{3}+3$. We have $f_{2} \geq[(n-k+2) / 3\rceil+1$. There is an (I, I)-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7=2\left(n-k-f_{2}\right)+k+7 \leq n+\lfloor n / 3\rfloor+4$.

Case 2.1.2. $f_{2}=f_{3}+1$ or $f_{3}+2$. We have $f_{2} \geq\lceil(n-k+1) / 3\rceil$ and $f_{3} \geq\lceil(n-k) / 3\rceil-1$. When $f_{2}+f_{4}=1$ or $\left(f_{2}+f_{4}=2\right.$ and $n \geq 4$), there is an $\left(I, I^{\prime}\right)$-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\} \leq n+\lfloor n / 3\rfloor+4$.

When $f_{2}+f_{4}=2$ and $n=3$, we have $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 2$ by Lemma 1. If $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=2$, then $f_{5}+f_{6}=0, f_{7}+f_{8}=k=1$, and $d_{\mathrm{H}}\left(X, X^{\prime}\right)=f_{2}+f_{4}+f_{7}+f_{8}=3$. There is an (I, I^{\prime})-container obtained from the construction method (F) whose length is $7<n+\lfloor n / 3\rfloor+4$. If $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=3$, then there is an $\left(I, I^{\prime}\right)$-container obtained from the main construction method whose length is $2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+2=7<n+\lfloor n / 3\rfloor+4$.

When $f_{2}+f_{4} \geq 3$, we have $n \geq 4$ and $d_{\mathrm{H}}\left(Y, Y^{\prime}\right) \geq 3$. Since $f_{2} \geq f_{4}$, we have $f_{2} \geq 2$. If $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)<n$ and $f_{3}+f_{4} \geq 2$, then there is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (D) whose length is at most $\max \left\{2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+2,2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+5\right\} \leq n+\lfloor n / 3\rfloor+4$. If $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)<n$ and $f_{3}+f_{4} \leq 1$, then there is an $\left(I, I I^{\prime}\right.$-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+$ $f_{8}+7 \leq n+\lfloor n / 3\rfloor+4$. If $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)=n$, then there is an $\left(I, I^{\prime}\right)$-container obtained from the main construction method whose length is at most $2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+2 \leq n+\lfloor n / 3\rfloor+4$.

Case 2.1.3. $f_{2}=f_{3}$ and $f_{3}=f_{4}-1$. We have $n-k \geq 1, f_{2}=(n-k-1) / 3$, and $f_{4}=(n-k-1) / 3+1$. When $k=n-1$, we have $f_{2}=0$ and $f_{4}=1$. There is an $\left(I, I^{\prime}\right.$-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\} \leq n+\lfloor n / 3\rfloor+4$. When $k \leq n-2$, we have $f_{2} \geq 1$ and $f_{4} \geq 2$. There is an (I,
I^{\prime})-container obtained from the construction method (C) whose length is at most max $\left\{2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+\right.$ $\left.f_{7}+f_{8}+5,2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+3\right\} \leq n+\lfloor n / 3\rfloor+4$.

Case 2.1.4. $\left(f_{2}=f_{3}\right.$ and $\left.f_{3}>f_{4}-1\right)$ or $f_{2}<f_{3}$. We have $n-k=f_{2}+f_{3}+f_{4}<f_{3}+f_{3}+\left(f_{3}+1\right)=3 f_{3}+1$. Hence, $f_{3} \geq$ $\lceil(n-k) / 3\rceil$. There is an $\left(I, I^{\prime}\right)$-container obtained from the main construction method whose length is at $\operatorname{most} \max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\} \leq n+\lfloor n / 3\rfloor+4$.

Case 2.2. $f_{3} \leq f_{4}-2$ (hence $f_{4} \geq 2$). Three cases are discussed below.
Case 2.2.1. $f_{4} \geq f_{2}+2$. We have $f_{4} \geq\lceil(n-k+1) / 3\rceil+1$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (B) whose length is at most $2 f_{1}+2 f_{2}+f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+\lfloor n / 3\rfloor+4$.

Case 2.2.2. $f_{4}=f_{2}$ or $f_{2}+1$ (hence $f_{2} \geq 1$). We have $f_{4} \geq[(n-k+2) / 3\rceil$. There is an (I, I)-container obtained from the construction method (C) whose length is at most max $\left\{2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+5,2 f_{3}+f_{4}+\right.$ $\left.f_{5}+f_{6}+f_{7}+f_{8}+3\right\} \leq n+\lfloor n / 3\rfloor+4$.

Case 2.2.3. $f_{4} \leq f_{2}-1$ (hence $f_{2} \geq 3$). We have $\left.f_{2} \geq(n-k+1) / 3\right\rceil+1$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+\lfloor n / 3\rfloor+4$.

Case 3. $f_{1}>0$ and $f_{5}+f_{6}+f_{7}+f_{8}=0$. We have $d_{\mathrm{H}}\left(Y, Y^{\prime}\right)<n$ and $f_{1}+f_{2}+f_{3}+f_{4}=n$. Three cases are discussed below.
Case 3.1. $f_{3} \geq f_{4}-f_{1}+1$. Two cases are further discussed below.
Case 3.1.1. $f_{2} \leq f_{3}+1$. We have $f_{3} \geq\left\lceil\left(n-2 f_{1}\right) / 3\right\rceil$. There is an (I, I^{\prime})-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\}=\max \left\{8,2\left(n-f_{1}-f_{3}\right)+4\right\} \leq n+$ $\lfloor n / 3\rfloor+4$.

Case 3.1.2. $f_{2} \geq f_{3}+2$. We have $f_{2} \geq\left\lceil\left(n-2 f_{1}+2\right) / 3\right\rceil+1$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7<n+\lfloor n / 3\rfloor+4$.

Case 3.2. $f_{4}-f_{1}-2 \leq f_{3} \leq f_{4}-f_{1}$. Three cases are discussed below.
Case 3.2.1. $f_{4} \geq f_{1}+f_{2}+1$. We have $f_{3} \geq\left\lceil\left(n-2 f_{1}\right) / 3\right\rceil-1$ and $f_{4} \geq\left\lceil\left(n+f_{1}+1\right) / 3\right\rceil$. If $n \geq 4$, then there is an $\left(I, I^{\prime}\right)-$ container obtained from the construction method (E) whose length is at most max $\left\{2 f_{1}+2 f_{2}+2 f_{3}+3,2 f_{2}+\right.$ $\left.2 f_{4}+2\right\}=\max \left\{2\left(n-f_{4}\right)+3,2\left(n-f_{3}-f_{1}\right)+2\right\} \leq n+\lfloor n / 3\rfloor+4$. If $n=3$, then $f_{1}=1, f_{2}=f_{3}=0$, and $f_{4}=2$. There is an (I, I^{\prime})-container obtained from the main construction method whose length is max $\left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+\right.$ $4\}=8=n+\lfloor n / 3\rfloor+4$.

Case 3.2.2. $f_{4}=f_{1}+f_{2}-1$ or $f_{1}+f_{2}$ (hence $f_{4} \geq f_{2}$ because $f_{1} \geq 1$). We have $f_{2} \geq\left\lceil\left(n-2 f_{1}\right) / 3\right\rceil$ and $f_{4} \geq$ $\left\lceil\left(n+f_{1}-1\right) / 3\right\rceil$. If $f_{2}=0$, then $f_{1} \geq f_{4}$ which implies $f_{4} \leq\lfloor n / 2\rfloor$. There is an $\left(I, I I^{\prime}\right.$-container obtained from the main construction method whose length is $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\} \leq n+\lfloor n / 3\rfloor+4$. If $f_{2}=1$ and $f_{4}=1$, then there is an $\left(I, I^{\prime}\right)$-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\}=8 \leq n+\lfloor n / 3\rfloor+4$. If $\left(f_{2}=1\right.$ and $\left.f_{4}>1\right)$ or $f_{2}>1$, then there is an (I, I^{\prime})-container obtained from the construction method (C) whose length is at most $\max \left\{2 f_{3}+2 f_{4}+3,2 f_{1}+2 f_{2}+2 f_{3}+3\right\}=$ $\max \left\{2\left(n-f_{1}-f_{2}\right)+3,2\left(n-f_{4}\right)+3\right\}<n+\lfloor n / 3\rfloor+4$.

Case 3.2.3. $f_{4} \leq f_{1}+f_{2}-2$. We have $f_{2} \geq\left\lceil\left(n-2 f_{1}+1\right) / 3\right\rceil+1$. Since $f_{4} \geq f_{1}+f_{3}$, we have $f_{2} \geq f_{3}+2$. There is an $(I$, I^{\prime})-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq$ $n+\lfloor n / 3\rfloor+4$.

Case 3.3. $f_{3} \leq f_{4}-f_{1}-3$ (hence $f_{4} \geq 4$). Three cases are discussed below.
Case 3.3.1. $f_{4} \geq f_{2}+f_{1}+2$. We have $f_{4} \geq\left[\left(n+f_{1}+2\right) / 3\right\rceil+1$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (B) whose length is at most $2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+7<n+\lfloor n / 3\rfloor+4$.

Case 3.3.2. $f_{2}+f_{1}-1 \leq f_{4} \leq f_{2}+f_{1}+1$. We have $f_{2} \geq\left\lceil\left(n+1-2 f_{1}\right) / 3\right\rceil$ and $f_{4} \geq\left\lceil\left(n+f_{1}+2\right) / 3\right\rceil$. We have $f_{2} \geq f_{4}-f_{1}-$ $1 \geq\left(f_{3}+3\right)-1=f_{3}+2$. There is an (I, I)-container obtained from the construction method (C) whose length is at most max $\left\{2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+3,2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+3\right\}<n+\lfloor n / 3\rfloor+4$.

Case 3.3.3. $f_{4} \leq f_{2}+f_{1}-2$. We have $f_{2} \geq f_{4}-f_{1}+2 \geq\left(f_{3}+3\right)+2=f_{3}+5$. There is an (I, $\left.I^{\prime}\right)$-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7<n+\lfloor n / 3\rfloor+4$.

Case 4. $f_{1}>0$ and $f_{5}+f_{6}+f_{7}+f_{8}>0$. Suppose $f_{5}+f_{6}+f_{7}+f_{8}=k \geq 1$. We have $f_{1}+f_{2}+f_{3}+f_{4}=n-k$. Two cases are discussed below.

Case 4.1. $f_{3} \geq f_{4}-f_{1}-1$. Three cases are further discussed below
Case 4.1.1. $f_{2} \geq f_{3}+2$. We have $f_{2} \geq\left\lceil\left(n-2 f_{1}-k\right) / 3\right\rceil+1$. There is an (I, I^{\prime})-container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+\lfloor n / 3\rfloor+4$.

Case 4.1.2. $f_{2}=f_{3}+1$ and $f_{3}=f_{4}-f_{1}-1$. We have $f_{2}=\left(n-2 f_{1}-k+1\right) / 3$ and $f_{4}=\left(n+f_{1}-k+1\right) / 3$. There is an $(I$, I^{\prime})-container obtained from the construction method (C) whose length is at most max $\left\{2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+\right.$ $\left.f_{7}+f_{8}+5,2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+3\right\} \leq n+\lfloor n / 3\rfloor+4$.

Case 4.1.3. $\left(f_{2}=f_{3}+1\right.$ and $\left.f_{3}>f_{4}-f_{1}-1\right)$ or $f_{2}<f_{3}+1$. We have $n-k=f_{1}+f_{2}+f_{3}+f_{4}<f_{1}+\left(f_{3}+1\right)+f_{3}+\left(f_{3}+f_{1}+1\right)=$ $2 f_{1}+3 f_{3}+2$. Hence we have $f_{3} \geq\left\lceil\left(n-2 f_{1}-k-1\right) / 3\right\rceil$. There is an $\left(I, I^{\prime}\right)$-container obtained from the main construction method whose length is at most $\max \left\{8,2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\} \leq n+\lfloor n / 3\rfloor+4$.

Case 4.2. $f_{3} \leq f_{4}-f_{1}-2$ (hence $f_{4} \geq 3$). Three cases are discussed below.
Case 4.2.1. $f_{4} \geq f_{2}+f_{1}+2$. We have $f_{4} \geq\left\lceil\left(n+f_{1}-k+1\right) / 3\right\rceil+1$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (B) whose length is at most $2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+\lfloor n / 3\rfloor+4$.

Case 4.2.2. $f_{2}+f_{1} \leq f_{4} \leq f_{2}+f_{1}+1$ (hence $f_{2} \geq f_{4}-f_{1}-1 \geq f_{3}+1$). We have $f_{2} \geq\left\lceil\left(n-2 f_{1}-k\right) / 3\right\rceil$ and $f_{4} \geq$ $\left\lceil\left(n+f_{1}-k+2\right) / 3\right\rceil$. There is an $\left(I, I^{\prime}\right)$-container obtained from the construction method (C) whose length is at $\operatorname{most} \max \left\{2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+3,2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+5\right\}<n+\lfloor n / 3\rfloor+4$.

Case 4.2.3. $f_{4} \leq f_{2}+f_{1}-1$ (hence $f_{2} \geq f_{4}-f_{1}+1 \geq f_{3}+3$). We have $f_{2} \geq\left[\left(n-2 f_{1}-k+1\right) / 3\right]+1$. There is an (I, $\left.I^{\prime}\right)-$ container obtained from the construction method (A) whose length is at most $2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+7 \leq n+$ $\lfloor n / 3\rfloor+4$.

It was shown in [3] that when $X=X^{\prime}$, there is an $\left(I, I^{\prime}\right)$-container whose length is at most $n+5$. According to Lemma 5 and Lemma 6, we have the following lemma.

Lemma 7. Suppose that $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ are two distinct nodes of the $\operatorname{HCN}(n)$, where $n \geq 3$. A best (I, I^{\prime})-container of width $n+1$ has length not greater than $n+\lfloor n / 3\rfloor+4$.

5 A lower bound on the fault diameter and the main result

In this section we show that the n-fault diameter of the $\operatorname{HCN}(n)$ is $n+\lfloor n / 3\rfloor+3$ at most. For this purpose we need to estimate the minimal length of a path when it contains nondiameter links and/or diameter links. The following two lemmas serve the purpose.

Lemma 8. Suppose that $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ are two distinct nodes of the $\mathrm{HCN}(n)$ and P is a path from I to I^{\prime} that contains $c>0$ nondiameter links (without diameter links), where $X \neq X^{\prime}$. Then, $|P| \geq d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+$ $d_{\mathrm{H}}\left(X, X^{\prime}\right)+c$ if c is even, and $|P| \geq d_{\mathrm{H}}\left(Y, X^{\prime}\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+c$ if c is odd.
Proof. If c is odd, then P can be expressed as $(X, Y) \Rightarrow^{*}\left(X, Z_{1}\right) \rightarrow\left(Z_{1}, X\right) \Rightarrow^{*}\left(Z_{1}, Z_{2}\right) \rightarrow\left(Z_{2}, Z_{1}\right) \Rightarrow^{*}\left(Z_{2}\right.$, $\left.Z_{3}\right) \rightarrow\left(Z_{3}, Z_{2}\right) \Rightarrow^{*} \ldots \Rightarrow^{*}\left(Z_{c-2}, Z_{c-1}\right) \rightarrow\left(Z_{c-1}, Z_{c-2}\right) \Rightarrow^{*}\left(Z_{c-1}, X^{\prime}\right) \rightarrow\left(X^{\prime}, Z_{c-1}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$. We have

$$
\begin{aligned}
|P| & =d_{\mathrm{H}}\left(Y, Z_{1}\right)+1+d_{\mathrm{H}}\left(X, Z_{2}\right)+1+\sum_{i=1}^{c-3}\left\{d_{\mathrm{H}}\left(Z_{i}, Z_{i+2}\right)+1\right\}+d_{\mathrm{H}}\left(Z_{c-2}, X^{\prime}\right)+1+d_{\mathrm{H}}\left(Z_{c-1}, Y^{\prime}\right) \\
& =\left(d_{\mathrm{H}}\left(Y, Z_{1}\right)+\sum_{i \in\{1,3,5, \ldots, c-4\}} d_{\mathrm{H}}\left(Z_{i}, Z_{i+2}\right)+d_{\mathrm{H}}\left(Z_{c-2}, X^{\prime}\right)\right)+\left(d_{\mathrm{H}}\left(X, Z_{2}\right)+\sum_{i \in\{2,4,6, \ldots, c-3\}} d_{\mathrm{H}}\left(Z_{i}, Z_{i+2}\right)+d_{\mathrm{H}}\left(Z_{c-1}, Y^{\prime}\right)\right)+c \\
& \geq d_{\mathrm{H}}\left(Y, X^{\prime}\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+c .
\end{aligned}
$$

The discussion is similar for even c.
Lemma 9. Suppose that $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ are two distinct nodes of the $\mathrm{HCN}(n)$ and P is a path from I to I^{\prime} that contains $d>0$ diameter links, where $X \neq X^{\prime}$. Then, $|P| \geq d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+2 d-1$ if d is even, and $|P| \geq d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+2 d+\Delta$ if d is odd, where $M \in Q_{\text {min }}$ and Δ can be determined as follows:
(1) $\Delta=1$ if P contains neither of the two links $(X, X) \rightarrow(\bar{X}, \bar{X})$ and $\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right)$;
(2) $\Delta \in\{0,1\}$ if P contains $(X, X) \rightarrow(\bar{X}, \bar{X})$ or $\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right)$ but not both;
(3) $\Delta \in\{-1,0,1\}$ else.

Proof. Since a lower bound on the length of P is concerned, P can be expressed as $(X, Y) \Rightarrow^{*}\left(X, T_{1}\right) \rightarrow$ $\left(T_{1}, X\right) \Rightarrow^{*}\left(T_{1}, T_{1}\right) \rightarrow\left(\overline{T_{1}}, \overline{T_{1}}\right) \Rightarrow^{*}\left(\overline{T_{1}}, T_{2}\right) \rightarrow\left(T_{2}, \overline{T_{1}}\right) \Rightarrow^{*}\left(T_{2}, T_{2}\right) \rightarrow\left(\overline{T_{2}}, \overline{T_{2}}\right) \Rightarrow^{*} \ldots \Rightarrow^{*}\left(T_{d}, T_{d}\right) \rightarrow$ $\left(\overline{T_{d}}, \overline{T_{d}}\right) \Rightarrow^{*}\left(\overline{T_{d}}, X^{\prime}\right) \rightarrow\left(X^{\prime}, \overline{T_{d}}\right) \Rightarrow^{*}\left(X^{\prime}, Y^{\prime}\right)$, where $\left(X, T_{1}\right) \rightarrow\left(T_{1}, X\right) \Rightarrow^{*}\left(T_{1}, T_{1}\right)$ and $\left(\overline{T_{d}}, \overline{T_{d}}\right) \Rightarrow *\left(\overline{T_{d}}\right.$, $\left.X^{\prime}\right) \rightarrow\left(X^{\prime}, \overline{T_{d}}\right)$ degenerate to (X, X) and $\left(X^{\prime}, X^{\prime}\right)$ if $T_{1}=X$ and $\overline{T_{d}}=X^{\prime}$, respectively. We have $|P|=d_{\mathrm{H}}\left(Y, T_{1}\right)+$ $d_{\mathrm{H}}\left(X, T_{1}\right)+2 \sum_{i=1}^{d-1} d_{\mathrm{H}}\left(\overline{T_{i}}, T_{i+1}\right)+d_{\mathrm{H}}\left(\overline{T_{d}}, X^{\prime}\right)+d_{\mathrm{H}}\left(\overline{T_{d}}, Y^{\prime}\right)+2 d+\Delta$, where $\Delta=1$ if $T_{1} \neq X$ and $\overline{T_{d}} \neq X^{\prime}, \Delta=0$ if $T_{1}=X$ or $\overline{T_{d}}=X^{\prime}$ but not both, and $\Delta=-1$ if $T_{1}=X$ and $\overline{T_{d}}=X^{\prime}$.

If d is odd, then

$$
\begin{aligned}
& d_{\mathrm{H}}\left(Y, T_{1}\right)+d_{\mathrm{H}}\left(X, T_{1}\right)+2 \sum_{i=1}^{d-1} d_{\mathrm{H}}\left(\overline{T_{i}}, T_{i+1}\right) \\
= & \left(d_{\mathrm{H}}\left(Y, T_{1}\right)+\sum_{i \in\{1,3,5, \ldots, d-2\}} d_{H}\left(T_{i}, \overline{T_{i+1}}\right)+\sum_{i \in\{2,4,6, \ldots, d-1\}} d_{H}\left(\overline{T_{i}}, T_{i+1}\right)\right)+\left(d_{\mathrm{H}}\left(X, T_{1}\right)+\right. \\
& \left.\sum_{i \in\{1,3,5, \ldots, d-2\}} d_{H}\left(T_{i}, \overline{T_{i+1}}\right)+\sum_{i \in\{2,4,6, \ldots, d-1\}} d_{H}\left(\overline{T_{i}}, T_{i+1}\right)\right) \\
\geq & d_{\mathrm{H}}\left(Y, T_{d}\right)+d_{\mathrm{H}}\left(X, T_{d}\right) .
\end{aligned}
$$

Hence $|P| \geq d_{\mathrm{H}}\left(Y, T_{d}\right)+d_{\mathrm{H}}\left(X, T_{d}\right)+d_{\mathrm{H}}\left(\overline{T_{d}}, X^{\prime}\right)+d_{\mathrm{H}}\left(\overline{T_{d}}, Y^{\prime}\right)+2 d+\Delta \geq d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+$ $d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+2 d+\Delta$, where $M \in Q_{\text {min }}$ and $\Delta \in\{1,0,-1\}$. If P contains neither of $(X, X) \rightarrow(\bar{X}, \bar{X})$ and $\left(X^{\prime}\right.$, $\left.X^{\prime}\right) \rightarrow\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right)$, then $\left\{T_{1}, T_{d}\right\} \cap\left\{X, \bar{X}, X^{\prime}, \overline{X^{\prime}}\right\}$ is empty, which implies $\Delta=1$. If P contains $(X, X) \rightarrow(\bar{X}$, $\bar{X})$ or $\left(X^{\prime}, X^{\prime}\right) \rightarrow\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right)$ but not both, then $\left\{T_{1}, T_{d}\right\} \cap\{X, \bar{X}\}$ or $\left\{T_{1}, T_{d}\right\} \cap\left\{X^{\prime}, \overline{X^{\prime}}\right\}$ is empty, which implies $\Delta \in\{0,1\}$. Otherwise, we have $\Delta \in\{-1,0,1\}$.

If d is even, then $d_{\mathrm{H}}\left(Y, T_{1}\right)+d_{\mathrm{H}}\left(X, T_{1}\right)+2 \sum_{i=1}^{d-1} d_{\mathrm{H}}\left(\overline{T_{i}}, T_{i+1}\right) \geq d_{\mathrm{H}}\left(Y, \overline{T_{d}}\right)+d_{\mathrm{H}}\left(X, \overline{T_{d}}\right)$, similarly. Hence $|P| \geq d_{\mathrm{H}}\left(Y, \overline{T_{d}}\right)+d_{\mathrm{H}}\left(X, \overline{T_{d}}\right)+d_{\mathrm{H}}\left(\overline{T_{d}}, X^{\prime}\right)+d_{\mathrm{H}}\left(\overline{T_{d}}, Y^{\prime}\right)+2 d+\Delta \geq d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+2 d-1$.

In Lemma 9 , when d is odd, the computation of Δ is with the purpose of getting a more accurate lower bound on $|P|$. It is crucial to the main result in Section 5.

Lemma 10. The n-fault diameter of the $\operatorname{HCN}(n)$ is $n+\lfloor n / 3\rfloor+3$ at least.
Proof. To prove this lemma, we show two nodes $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ whose distance can increase to $n+\lfloor n / 3\rfloor+3$ or more if at most n nodes are removed, where $X \neq X^{\prime}$. According to Lemma 8 and Lemma 9, there are lower bounds on the lengths of four categories of paths from I to I^{\prime}. We use l_{1}, l_{2}, l_{3}, and l_{4} to denote the lower bounds. I and I^{\prime} are intended to minimize $\mid\left\{l_{i} \mid l_{i}<n+\lfloor n / 3\rfloor+3\right.$ and $\left.1 \leq i \leq 4\right\} \mid$ and maximize l_{i} for each $l_{i}<n+\lfloor n / 3\rfloor+3$.

For each $l_{i}<n+\lfloor n / 3\rfloor+3$, the nodes to be removed are intended to increase l_{i} to $n+\lfloor n / 3\rfloor+3$ or more. When $\mid\left\{l_{i} \mid l_{i}<n+\lfloor n / 3\rfloor+3\right.$ and $\left.1 \leq i \leq 4\right\} \mid<4$, removing fewer than n nodes can result in a lower bound of n^{+} $\lfloor n / 3\rfloor+3$ on the lengths of paths from I to I^{\prime}. Three cases: (1) $n=3 k+1$, (2) $n=3 k+2$, and (3) $n=3 k$ are discussed below, where $k \geq 1$.

Case 1. $n=3 k+1$. Consider $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ with $f_{2}=k+1$ and $f_{3}=f_{4}=k$ (hence $X \neq \overline{X^{\prime}}$ and $f_{1}=f_{5}=f_{6}=f_{7}=$ $f_{8}=0$), and remove $2 k+2$ nodes $\left(X, X^{\prime}\right),(Y, X)$, and $\left(X, Y^{(i)}\right)$ for all $i \in F_{3} \cup F_{4}$ from the $\mathrm{HCN}(n)$. Let P be a path from $\left(X, Y^{(j)}\right)$ to I^{\prime} in the resulting $\operatorname{HCN}(n)$, where $j \in F_{2}$. Since every path from I to I^{\prime} has $\left(X, Y^{(j)}\right)$ as the second node, it suffices to show $|P| \geq n+\lfloor n / 3\rfloor+2=4 k+3$. Two cases are discussed below.

Case 1.1. P contains no diameter link. Since node $\left(X, X^{\prime}\right)$ was removed, P contains two or more nondiameter links. According to Lemma $8,|P| \geq \min \left\{d_{\mathrm{H}}\left(Y^{(j)}, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+2, d_{\mathrm{H}}\left(Y^{(j)}, X^{\prime}\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+3\right\}=$ $\min \left\{\left(d_{\mathrm{H}}\left(Y, Y^{\prime}\right)-1\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+2,\left(d_{\mathrm{H}}\left(Y, X^{\prime}\right)+1\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+3\right\}$ (because $j \in F_{2}$), which is equal to $\min \left\{2 f_{2}+\right.$ $\left.2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+1,2 f_{3}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+4\right\}=\min \{4 k+3,4 k+4\}=4 k+3$ by Lemma 1.

Case 1.2. P contains $d>0$ diameter links. According to Lemma 9, if d is even, then $|P| \geq d_{\mathrm{H}}\left(Y^{(j)}, Y^{\prime}\right)+$ $d_{\mathrm{H}}\left(X, X^{\prime}\right)+3=4 k+4$. If d is odd, then $|P| \geq d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+2 d+\Delta$, where N belongs to $Q_{\text {min }}$ with Y replaced by $Y^{(j)}$. Since $X \neq X^{\prime}$ and $X \neq \overline{X^{\prime}}$, links $(X, X) \rightarrow(\bar{X}, \bar{X})$ and $\left(X^{\prime}, X^{\prime}\right) \rightarrow$ ($\overline{X^{\prime}}, \overline{X^{\prime}}$) are distinct. Hence, when $d=1$, we have $\Delta \in\{0,1\}$ and hence $2 d+\Delta \geq 2$. When $d \geq 3$, we have $2 d+$ $\Delta \geq 6+(-1)=5$. Since $d_{\mathrm{H}}\left(Y^{(j)}, N\right) \geq d_{\mathrm{H}}(Y, N)-1$ and $d_{\mathrm{H}}(Y, N)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right) \geq 2 f_{1}+2 f_{2}+2 f_{3}+$ $f_{5}+f_{6}+f_{7}+f_{8}$ (by Lemma 1), we have $|P| \geq 2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+(2-1)=4 k+3$.

Case 2. $n=3 k+2$. Consider $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ with $f_{2}=f_{3}=k$ and $f_{4}=k+2$, and remove $2 k+3$ nodes (X, X), $\left(X^{\prime}, X^{\prime}\right),(Y, X)$, and $\left(X, Y^{(i)}\right)$ for all $i \in F_{2} \cup F_{3}$ from the $\operatorname{HCN}(n)$. Let P be a path from $\left(X, Y^{(j)}\right)$ to I^{\prime} in the resulting $\operatorname{HCN}(n)$, where $j \in F_{4}$. It suffices to show $|P| \geq n+\lfloor n / 3\rfloor+2=4 k+4$.

Similar to Case 1, we have $|P| \geq \min \left\{d_{\mathrm{H}}\left(Y^{(j)}, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+2, d_{\mathrm{H}}\left(Y^{(j)}, X^{\prime}\right)+d_{\mathrm{H}}\left(X, Y^{\prime}\right)+1\right\}=\min \{4 k+5$, $4 k+4\}=4 k+4$ if P contains no diameter link, and $|P| \geq \min \left\{d_{\mathrm{H}}\left(Y^{(j)}, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+3, d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+\right.$ $\left.d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+2+\Delta\right\}$ if P contains one or more diameter links, where N has the same meaning as in Case 1.2. We have $d_{\mathrm{H}}\left(Y^{(j)}, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+3=4 k+6$. Since nodes (X, X) and $\left(X^{\prime}, X^{\prime}\right)$ were removed, we have $\Delta=1$. In the following, we show $d_{\mathrm{H}}\left(Y^{(j)}, N\right)=d_{\mathrm{H}}(Y, N)+1$. Hence, $d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+$ $d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+2+\Delta=d_{\mathrm{H}}(Y, N)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+(3+1) \geq 2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+4=4 k+4$.

Suppose $X=x_{1} x_{2} \ldots x_{n}, Y=y_{1} y_{2} \ldots y_{n}, X^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, Y^{\prime}=y_{1}^{\prime} y_{2}^{\prime} \ldots y_{n}^{\prime}$, and $N=n_{1} n_{2} \ldots n_{n}$. We have

$$
\begin{gathered}
d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right) \\
=\sum_{i \in\{1,2, \ldots, n\}-\{j\}}\left\{\left(y_{i} \oplus n_{i}\right)+\left(x_{i} \oplus n_{i}\right)+\left(\overline{n_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{n_{i}} \oplus y_{i}^{\prime}\right)\right\}+ \\
\\
\left(\left(\overline{y_{j}} \oplus n_{j}\right)+\left(x_{j} \oplus n_{j}\right)+\left(\overline{n_{j}} \oplus x_{j}^{\prime}\right)+\left(\overline{n_{j}} \oplus y_{j}^{\prime}\right)\right),
\end{gathered}
$$

where $\left(y_{i} \oplus n_{i}\right)+\left(x_{i} \oplus n_{i}\right)+\left(\overline{n_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{n_{i}} \oplus y_{i}^{\prime}\right)$ and $\left(\overline{y_{j}} \oplus n_{j}\right)+\left(x_{j} \oplus n_{j}\right)+\left(\overline{n_{j}} \oplus x_{j}^{\prime}\right)+\left(\overline{n_{j}} \oplus y_{j}^{\prime}\right)$ are required to be minimum. Since $j \in F_{4}$, we have $x_{j}=y_{j}=\overline{x_{j}^{\prime}}=\overline{y_{j}^{\prime}}$, which implies $\left(\overline{y_{j}} \oplus n_{j}\right)+\left(x_{j} \oplus n_{j}\right)+$ $\left(\overline{n_{j}} \oplus x_{j}^{\prime}\right)+\left(\overline{n_{j}} \oplus y_{j}^{\prime}\right)=1$ if $n_{j}=y_{j}$, and 3 if $n_{j}=\overline{y_{j}}$. Consequently, we have $n_{j}=y_{j}$ and hence $d_{\mathrm{H}}\left(Y^{(j)}, N\right)=$ $d_{\mathrm{H}}(Y, N)+1$.

Case 3. $n=3 k$. Three cases are discussed below.
Case 3.1. $k=1$. Consider $I=(X, Y)=(000,110)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)=(111,001)$, and remove three nodes $(X$, $X)=\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right),\left(X, X^{\prime}\right)=\left(X, Y^{(3)}\right)$, and (Y, X) from the $\operatorname{HCN}(n)$. We have $F_{2}=\{1,2\}$ and $F_{4}=\{3\}$. Let P be a
path from $\left(X, Y^{(j)}\right)$ to I^{\prime} in the resulting $\operatorname{HCN}(n)$, where $j \in F_{2}$. It suffices to show $|P| \geq n+\lfloor n / 3\rfloor+2=6$.
Similar to Case 1.1, $|P| \geq 6$ if P contains no diameter link, and similar to Case $2,|P| \geq \min \left\{d_{\mathrm{H}}\left(Y^{(j)}\right.\right.$, $\left.\left.Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+3, d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+3(\Delta=1)\right\}$ if P contains one or more diameter links. We have $d_{\mathrm{H}}\left(Y^{(j)}, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+3=8$ and $d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+3 \geq\left(d_{\mathrm{H}}(Y, N)-\right.$ 1) $+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+3 \geq 6$.

Case 3.2. $k=2$. Consider $I=(X, Y)=(000000,110000)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)=(101111,011111)$, and remove four nodes $(X, X),(Y, Y),\left(\overline{X^{\prime}}, \overline{X^{\prime}}\right)$, and $\left(\overline{Y^{\prime}}, \overline{Y^{\prime}}\right)$ from the $\operatorname{HCN}(n)$. We have $F_{2}=\{1\}, F_{3}=\{2\}, F_{4}=\{3,4,5$, $6\}$, and $Q_{\min }=\{000000,110000,010000,100000\}=\left\{X, Y, \overline{X^{\prime}}, \overline{Y^{\prime}}\right\}$. Let P be a path from I to I^{\prime} in the resulting $\operatorname{HCN}(n)$. It suffices to show $|P| \geq n+\lfloor n / 3\rfloor+3=11$. Three cases are discussed below.

Case 3.2.1. P contains no diameter link. By Lemma $8,|P| \geq \min \left\{d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+2, d_{\mathrm{H}}\left(Y, X^{\prime}\right)+\right.$ $\left.d_{\mathrm{H}}\left(X, Y^{\prime}\right)+1\right\}=11$.

Case 3.2.2. P contains one diameter link. We have $|P| \geq d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X, T)+d_{\mathrm{H}}\left(\bar{T}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right)+\delta$, where $(T, T) \rightarrow(\bar{T}, \bar{T})$ is the diameter link (refer to Section 2 for $\left.P_{3}\right)$. Since nodes $(X, X),(Y, Y),\left(\overline{X^{\prime}}\right.$, $\overline{X^{\prime}}$), and ($\overline{Y^{\prime}}, \overline{Y^{\prime}}$) were removed, we have $T \notin\left\{X, Y, \overline{X^{\prime}}, \overline{Y^{\prime}}\right\}=Q_{\min }$, which implies $\delta=3$. Suppose $T=$ $t_{1} t_{2} \ldots t_{6}$ and $M=m_{1} m_{2} \ldots m_{6} \in Q_{\text {min. }}$. We have $t_{3} t_{4} t_{5} t_{6} \neq 0000=m_{3} m_{4} m_{5} m_{6}$. Without loss of generality, we assume $t_{r}=1$, where $3 \leq r \leq 6$. We have $\left(y_{r} \oplus t_{r}\right)+\left(x_{r} \oplus t_{r}\right)+\left(\overline{t_{r}} \oplus x_{r}^{\prime}\right)+\left(\overline{t_{r}} \oplus y_{r}^{\prime}\right)=4$ and $\left(y_{r} \oplus m_{r}\right)+$ $\left(x_{r} \oplus m_{r}\right)+\left(\overline{m_{r}} \oplus x_{r}^{\prime}\right)+\left(\overline{m_{r}} \oplus y_{r}^{\prime}\right)=0$.

Recall that

$$
\begin{aligned}
& d_{\mathrm{H}}(Y, T)+d_{\mathrm{H}}(X, T)+d_{\mathrm{H}}\left(\bar{T}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{T}, Y^{\prime}\right) \\
= & \sum_{i=1}^{6}\left\{\left(y_{i} \oplus t_{i}\right)+\left(x_{i} \oplus t_{i}\right)+\left(\overline{t_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{t_{i}} \oplus y_{i}^{\prime}\right)\right\}, \text { and } \\
& d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right) \\
= & \sum_{i=1}^{6}\left\{\left(y_{i} \oplus m_{i}\right)+\left(x_{i} \oplus m_{i}\right)+\left(\overline{m_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{m_{i}} \oplus y_{i}^{\prime}\right)\right\} .
\end{aligned}
$$

Since $M \in Q_{\text {min }}$, we have $\left(y_{i} \oplus t_{i}\right)+\left(x_{i} \oplus t_{i}\right)+\left(\overline{t_{i}} \oplus x_{i}^{\prime}\right)+\left(\overline{t_{i}} \oplus y_{i}^{\prime}\right) \geq\left(y_{i} \oplus m_{i}\right)+\left(x_{i} \oplus m_{i}\right)+\left(\overline{m_{i}} \oplus x_{i}^{\prime}\right)+$ $\left(\overline{m_{i}} \oplus y_{i}^{\prime}\right)$ for all $1 \leq i \leq 6$. By Lemma 1, $d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)=2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+$ $f_{7}+f_{8}=4$. Hence $|P| \geq 4+4+3=11$.

Case 3.2.3. P contains two or more diameter links. By Lemma $9,|P| \geq \min \left\{d_{\mathrm{H}}\left(Y, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+3\right.$,
$\left.d_{\mathrm{H}}(Y, M)+d_{\mathrm{H}}(X, M)+d_{\mathrm{H}}\left(\bar{M}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{M}, Y^{\prime}\right)+6+\Delta\right\}$, where $M \in Q_{\text {min }}$ and $\Delta=1$ (because nodes (X, X) and ($\overline{X^{\prime}}, \overline{X^{\prime}}$) were removed). Further, by Lemma $1,|P| \geq \min \left\{2 f_{2}+2 f_{4}+f_{5}+f_{6}+f_{7}+f_{8}+3,2 f_{1}+2 f_{2}+2 f_{3}+f_{5}+f_{6}+f_{7}+f_{8}+\right.$ $7\}=11$.

Case 3.3. $k \geq 3$. Consider $I=(X, Y)$ and $I^{\prime}=\left(X^{\prime}, Y^{\prime}\right)$ with $f_{2}=k+1, f_{3}=k-1$, and $f_{4}=k$, and remove $2 k+3$ nodes $(X, X),\left(X, X^{\prime}\right),\left(X^{\prime}, X^{\prime}\right),(Y, X)$, and $\left(X, Y^{(i)}\right)$ for all $i \in F_{3} \cup F_{4}$ from the HCN(n). Let P be a path from $\left(X, Y^{(j)}\right)$ to I^{\prime} in the resulting $\operatorname{HCN}(n)$, where $j \in F_{2}$. It suffices to show $|P| \geq n+\lfloor n / 3\rfloor+2=4 k+2$.

Similar to Case 1.1, $|P| \geq 4 k+2$ if P contains no diameter link, and similar to Case 2, $|P| \geq \min \left\{d_{\mathrm{H}}\left(Y^{(j)}\right.\right.$, $\left.\left.Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+3, d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+3(\Delta=1)\right\}$ if P contains one or more diameter links. We have $d_{\mathrm{H}}\left(Y^{(j)}, Y^{\prime}\right)+d_{\mathrm{H}}\left(X, X^{\prime}\right)+3=4 k+4$ and $d_{\mathrm{H}}\left(Y^{(j)}, N\right)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+3 \geq\left(d_{\mathrm{H}}(Y\right.$, $N)-1)+d_{\mathrm{H}}(X, N)+d_{\mathrm{H}}\left(\bar{N}, X^{\prime}\right)+d_{\mathrm{H}}\left(\bar{N}, Y^{\prime}\right)+3 \geq 4 k+2$.

Combining Lemma 7 and Lemma 10, we have the following theorem, which is the main result of this paper.

Theorem 1. The worst-case length of a best container of width $n+1$, the $(n+1)$-wide diameter, and the n-fault diameter of the $\operatorname{HCN}(n)$ are $n+\lfloor n / 3\rfloor+3$ or $n+\lfloor n / 3\rfloor+4$.

6 Concluding remarks

In this paper, containers of width $n+1$ whose lengths are $n+\lfloor n / 3\rfloor+4$ at most were constructed in the $\operatorname{HCN}(n)$. This improves on containers of [3] whose lengths are $2 n+6$ at most. In addition, the ($n+1$)-wide diameter and n-fault diameter of the $\operatorname{HCN}(n)$ were shown to be $n+\lfloor n / 3\rfloor+3$ or $n+\lfloor n / 3\rfloor+4$. Since the $2 n$-wide diameter and (2n-1)-fault diameter of the $2 n$-cube are $2 n+1$, the HCN has a smaller wide diameter and fault diameter than a comparable hypercube.

It is practically important to construct containers because they can be used to accelerate the transmission rate and to enhance the transmission reliability. Usually, the construction of best containers is closely related to the construction of shortest paths. As described in Section 2, the computation of shortest paths in the HCN involved three shortest paths P_{1}^{*}, P_{2}^{*}, and P_{3}^{*} obeying some constraints. Consequently, it is rather difficult to obtain best containers of the HCN by using a single construction method. The main construction method cannot produce containers of relatively small lengths everywhere, which is the reason why six auxiliary construction methods are needed.

On the other hand, a network with a low wide diameter and fault diameter gains the advantages of efficient parallel transmission and high fault-tolerant capability. A network with connectivity k is called strongly resilient if its ($k-1$)-fault diameter exceeds the diameter by a constant [12]. A strongly resilient network is superior in fault tolerance because of the slow increment of transmission delay caused by node faults. According to Theorem 1, the HCN is strongly resilient.

The HCN uses almost half as many links as a comparable hypercube and yet has a smaller diameter, wide diameter, and fault diameter. The use of diameter links is the main cause. But, at the same time, they make the topology of the HCN more complex. It becomes difficult to explore topological properties, e.g., shortest path, diameter, container, wide diameter, and fault diameter, of the HCN. We are going to explore other topological properties such as hamiltonicity and embedding of the HCN.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, 1990.
[2] C. C. Chen and J. Chen, "Optimal parallel routing in star networks," IEEE Transactions on Computers, vol. 46, no. 12, pp. 1293-1303, 1997.
[3] W. K. Chiang and R. J. Chen, "Topological properties of hierarchical cubic networks," Journal of Systems Architecture, vol. 42, pp. 289-307, 1996.
[4] K. Day and A. E. Al-Ayyoub, "Fault diameter of k-ary n-cube networks," IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 9, pp. 903-907, 1997.
[5] K. Day and A. Tripathi, "Characterization of node disjoint paths in arrangement graphs," Technical Report TR 91-43, Computer Science Department, University of Minnesota, Minneapolis, MN, 1991.
[6] M. Dietzfelbinger, S. Madhavapeddy, and I. H. Sudborough, "Three disjoint path paradigms in star networks," Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing, 1991, pp. 400-406.
[7] D. R. Duh and G. H. Chen, "Topological properties of WK-recursive networks," Journal of Parallel and Distributed Computing, vol. 23, no. 3, pp. 468-474, 1994.
[8] D. R. Duh, G. H. Chen, and D. F. Hsu, "Combinatorial properties of generalized hypercube graphs," Information Processing Letters, vol. 57, pp. 41-45, 1996.
[9] K. Ghose and K. R. Desai, "Hierarchical cubic networks," IEEE Transactions on Parallel and

Distributed Systems, vol. 6, no. 4, pp. 427-435, 1995.
[10] D. F. Hsu, "On container width and length in graphs, groups, and networks," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, vol. E77-A, pp. 668680, 1994.
[11] H. L. Huang and G. H. Chen, "Combinatorial properties of two-level hypernet networks," IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 11, pp. 1192-1199, 1999.
[12] M. S. Krishnamoorthy and B. Krishnamurthy, "Fault diameter of interconnection networks," Computers and Mathematics with Applications, vol. 13, no. 5+6, pp. 577-582, 1987.
[13] S. Latifi, "Combinatorial analysis of the fault-diameter of the n-cube," IEEE Transactions on Computers, vol. 42, no. 1, pp. 27-33, 1993.
[14] S. C. Liaw, G. J. Chang, F. Cao, and D. F. Hsu, "Fault-tolerant routing in circulant networks and cycle prefix networks," Annals of Combinatorics, vol. 2, pp. 165-172, 1998.
[15] M. O. Rabin, "Efficient dispersal of information for security, load balancing, and fault tolerance," Journal of the ACM, vol. 36, no. 2, pp. 335-348, 1989.
[16] Y. Rouskov and P. K. Srimani, "Fault diameter of star graphs," Information Processing Letters, vol. 48, pp. 243-251, 1993.
[17] Y. Saad and M. H. Schultz, "Topological properties of hypercubes," IEEE Transactions on Computers, vol. 37, no. 7, pp. 867-872, 1988.
[18] S. K. Yun and K. H. Park, "The optimal routing algorithm in hierarchical cubic network and its properties," IEICE Transactions on Information and Systems, vol. E78-D, no. 4, pp. 436-443, 1995.
[19] S. K. Yun and K. H. Park, "Comments on hierarchical cubic Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 4, pp. 410-414, 1998.
— - — - diameter link
nondiameter link

Figure 1. The $\mathrm{HCN}(3)$.

Figure 2. Saad and Schultz's best (A, B)-container.

(b)

Figure 3. The construction of R_{i} from $Q_{i .}$ (a) Q_{i}. (b) R_{i}.

Figure 4. $P_{i, j}$.

Figure 5. $P_{i}{ }^{\mathrm{B}}$.

