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Abstract 

An n-dimensional hierarchical cubic network (denoted by HCN(n)) contains 2
n
 n-dimensional 

hypercubes. The diameter of the HCN(n), which is equal to n+ (n+1)/3+1, is about two-thirds 

the diameter of a comparable hypercube, although it uses about half as many links per node. In 

this paper, a maximal number of node-disjoint paths are constructed between every two distinct 

nodes of the HCN(n). Their maximal length is bounded above by n+n/3+4, which is nearly 

optimal. The (n+1)-wide diameter and n-fault diameter of the HCN(n) are shown to be n+ 

n/3+3 or n+n/3+4, which are about two-thirds those of a comparable hypercube. Our results 

reveal that the HCN(n) has a smaller wide diameter and fault diameter than a comparable 

hypercube. 
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1 Introduction 

The hierarchical cubic network (HCN for short), which was proposed in [9] as an alternative to the hy-

percube, consists of 2n basic components named clusters. Each cluster is an n-dimensional hypercube 

(n-cube for short). If each cluster is viewed as a single node, then the HCN appears as a 2n-node complete 

graph. The HCN can emulate a hypercube of the same size in constant time, but with only about half as 

many links per node. The average internode distances in the HCN under random and localized traffic 

patterns are the same as a comparable hypercube. When message generation rates are moderate, the 

average message transit delays in the HCN are slightly better than a comparable hypercube. This is a 

consequence of the fact that the HCN has a smaller maximal routing distance than a comparable hy-

percube.  

Previous works related to the HCN can be found in the literature [3], [9], [18], [19]. A shortest-path 

routing algorithm was presented in [3], [18], [19]. A broadcasting algorithm appeared in [3]. Some par-

allel algorithms were designed in [9]. The diameter, which is about two-thirds the diameter of a com-

parable hypercube, was computed in [18], [19]. A Hamiltonian cycle was constructed in [3], [18]. 

Suppose that A and B are two distinct nodes of an interconnection network (network for short) W. 

An (A, B)-container in W is a set of disjoint paths between A and B. Throughout this paper, "disjoint 

paths" always means "internally node-disjoint paths". The width of a container is the number of paths it 

contains. The length of a container is the maximal length of paths it contains. A container is the best if its 

length is minimum.  

The length of a best (A, B)-container is the x-wide distance between A and B, where x is the width of 

the container. The maximal x-wide distance in W is the x-wide diameter of W. The maximal diameter in 

W with at most y nodes removed is the y-fault diameter of W. When x=1 (y=0), the x-wide diameter 

(y-fault diameter) is identical with the diameter. Apparently, the x-wide diameter is the maximal length of 

best containers of width x, and the y-fault diameter is bounded above by the (y+1)-wide diameter. 

The concepts of container, wide diameter, and fault diameter arose naturally from the study of 

routing (such as Rabin's Information Dispersal Algorithm (IDA) [15]), reliability, fault tolerance, and 

communication protocols (such as Byzantine algorithms) in parallel architectures and distributed com-

puter networks (see [10]). Containers can be used to accelerate the transmission rate and to enhance the 

transmission reliability. In [15], the IDA was proposed on the hypercube which involved the construction 
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of disjoint paths. The IDA has numerous potential applications to secure and fault-tolerant storage and 

transmission of information. 

On the other hand, the wide diameter and fault diameter are two generalizations of the diameter. 

For all pairs of nodes, the diameter measures the maximal length of shortest paths, while the wide di-

ameter measures the maximal length of best containers. In practical networks, node faults may happen. 

The fault diameter, which was first introduced in [12], estimates the maximal increment of the diameter 

when there are node faults. It is both practically and theoretically important to compute the wide diameter 

and fault diameter. Previous works related to container, wide diameter, and fault diameter can be found 

in the literature [2]-[8], [10]-[12], [14], [16], [17]. 

According to Menger’s theorem [1], there are kw disjoint paths between any two nodes of W, where 

kw denotes the connectivity of W. The x-wide diameter and y-fault diameter in W are infinity whenever 

x>kw and y>kw−1, respectively. For theoretical interest, most of previous works computed for W con-

tainers of width kw (e.g., [2], [3], [5]-[8], [11], [17]), kw-wide diameters (e.g., [7], [8], [11]), and 

(kw−1)-fault diameters (e.g., [3], [4], [7], [8], [11], [12], [16]). 

We use HCN(n) to represent the HCN that contains 2n n-cubes. The connectivity and diameter of 

the HCN(n) are n+1 (see [3]) and n+(n+1)/3+1 (see [19]), respectively. In [3], containers of width n+1 

were proposed in the HCN(n) whose lengths are 2n+6 at most. In this paper, we improve on the work of 

[3] by constructing new containers of width n+1 in the HCN(n) whose lengths are n+n/3+4 at most. The 

construction of new containers makes use of shortest paths of the HCN(n) and best containers of the 

hypercube. In addition, the (n+1)-wide diameter and n-fault diameter of the HCN(n) are shown to be n+ 

n/3+3 or n+n/3+4.  

In the next section, we formally define the HCN(n) in graph-theoretic terms. The shortest-path 

routing algorithm of the HCN(n) and best containers of the hypercube are reviewed. New containers are 

proposed in Section 3, and their lengths are analyzed in Section 4. In Section 5, a lower bound on the 

n-fault diameter is suggested and the main result of this paper is summarized. Finally, this paper con-

cludes with some remarks in Section 6. 

2 Preliminaries 

The following is a formal definition of the HCN(n) in graph-theoretic terms. 
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Definition 1. The node set of the HCN(n) is {(X, Y) | X and Y are binary sequences of length n}. Each 

node (X, Y) is adjacent to (1) (X, Y (k)) for all 1≤k≤n, where Y (k) differs from Y at the kth bit position, (2) (Y, 

X) if X≠Y, and (3) ( X , Y ) if X=Y, where X  and Y  are the bitwise complements of X and Y, respectively. 

The cluster where a node (X, Y) resides is denoted by X, and its location in the cluster is denoted by 

Y. Links (1) are inside clusters, whereas links (2) and (3) connect two clusters. Links (2) and (3) are re-

ferred to as nondiameter links and diameter links, respectively. The HCN(n) is regular of degree n+1. 

Since the HCN(1) and the HCN(2) are easy, we assume n≥3 throughout this paper. Refer to Figure 1 for 

the HCN(3). 

Suppose that I=(X, Y) and I'=(X', Y') are two distinct nodes of the HCN(n), where X≠X'. It was 

shown in [19] that any shortest path from I to I' contains (1) one nondiameter link (without diameter links) 

or (2) two nondiameter links (without diameter links) or (3) one diameter link. The shortest path for (1), 

denoted by 
*

1P , can be expressed as follows. 

*
1P :  (X, Y) ⇒* (X, X') → (X', X) ⇒* (X', Y'),  

where → denotes a link and ⇒* denotes a shortest path (inside a cluster). The length of 
*

1P , denoted by 

| *
1P |, is equal to dH(Y, X')+dH(X, Y')+1, where dH() is the Hamming distance function. 

Let P2 and P3 denote the paths for (2) and (3), respectively, which can be expressed as follows. 

P2: (X, Y) ⇒* (X, Z) → (Z, X) ⇒* (Z, X') → (X', Z) ⇒* (X', Y'); 

P3:  (X, Y) ⇒* (X, T) → (T, X) ⇒* (T, T) → (T , T ) ⇒* (T , X') → (X', T ) ⇒* (X', Y'), 

where Z ∉{X, X'}, (X, T) → (T, X) ⇒* (T, T) degenerates to (X, X) if T=X, and (T , T ) ⇒* (T , X') → (X', 

T ) degenerates to (X', X') if T= X' .  

If Z belongs to a shortest path from Y to Y' in the n-cube, then P2 is a shortest path for (2), denoted 

by 
*

2P . Clearly, | *
2P |=dH(Y, Y')+dH(X, X')+2. On the other hand, P3 is a shortest path for (3), denoted by 

*
3P , if T=T* can minimize |P3|. T* can be determined as described below.  

We have |P3|=dH(Y, T)+dH(X, T)+dH(T , X')+dH(T , Y')+δ, where δ=1 if T=X= X' , δ=2 if T ∈{X, 

X' } and X≠ X' , and δ=3 else. Define Qmin={T | dH(Y, T)+dH(X, T)+dH(T , X')+dH(T , Y') is minimum}. 

Let X=x1x2…xn, Y=y1y2…yn, X'=x'1x'2…x'n, Y'=y'1y'2…y'n, and T=t1t2…tn. Then dH(Y, T)+dH(X, T)+dH(T , 

X')+dH( T , Y')= ∑ =
⊕+⊕+⊕+⊕

n

i iiiiiiii y'tx'ttxty
1

)}()()(){( , where ⊕ performs an exclusive-OR 
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operation. We have T ∈Qmin if and only if ⊕+⊕+⊕ iiiii ttxty ()()( )() iii y'tx' ⊕+  is minimum for all 

1≤i≤n. According to [19], T*=X if X ∈Qmin, T*= X'  if X ∉Qmin and X' ∈Qmin, and T* can be any element of 

Qmin else. We have | *
3P |=dH(Y, T*)+dH(X, T*)+dH( *T , X')+dH( *T , Y')+δ. A shortest path from I to I' can 

be determined as the shortest one of 
*

1P , *
2P , and 

*
3P . 

In [19], bit patterns of X, Y, X', and Y' were examined in order to compute the diameter of the 

HCN(n). We use F1, F2, …, F8 to denote the sets of dimensions having the same bit patterns, where 

 F1={i | (xi, yi, x'i, y'i)=(0, 0, 0, 0) or (1, 1, 1, 1)};  F2={i | (xi, yi, x'i, y'i)=(0, 1, 1, 0) or (1, 0, 0, 1)};  

 F3={i | (xi, yi, x'i, y'i)=(0, 1, 0, 1) or (1, 0, 1, 0)};  F4={i | (xi, yi, x'i, y'i)=(0, 0, 1, 1) or (1, 1, 0, 0)};  

 F5={i | (xi, yi, x'i, y'i)=(0, 1, 0, 0) or (1, 0, 1, 1)};  F6={i | (xi, yi, x'i, y'i)=(0, 0, 0, 1) or (1, 1, 1, 0)};  

 F7={i | (xi, yi, x'i, y'i)=(0, 0, 1, 0) or (1, 1, 0, 1)};  F8={i | (xi, yi, x'i, y'i)=(0, 1, 1, 1) or (1, 0, 0, 0)}.  

Define fk=|Fk|, where 1≤k≤8. Clearly,  f1+f2+ … +f8=n. Fk and fk will be used to simplify the dis-

cussion in Sections 3, 4, and 5. The following lemma expresses dH(Y, X'), dH(X, Y'), dH(Y, Y'), dH(X, X'), 

dH(X, Y), dH(X', Y'), dH( X , Y'), dH(Y , X'), and dH(Y, T)+dH(X, T)+dH(T , X')+dH(T , Y'), in terms of fk. 

They will be used very often in the rest of this paper. 

Lemma 1. dH(Y, X')=f3+f4+f5+f7, dH(X, Y')=f3+f4+f6+f8, dH(Y, Y')=f2+f4+f5+f6, dH(X, X')=f2+f4+f7+f8, dH(X, 

Y)=f2+f3+f5+f8, dH(X', Y')=f2+f3+f6+f7, dH( X , Y')=f1+f2+f5+f7, dH(Y , X')=f1+f2+f6+f8, and dH(Y, T)+dH(X, 

T)+dH(T , X')+dH(T , Y')=2f1+2f2+2f3+f5+f6+f7+f8, where T ∈Qmin.  

Proof. We have dH(Y, X')= ∑ = ⊕n
i ii x'y1 )( =|F3|+|F4|+|F5|+|F7|=f3+f4+f5+f7. The computations for dH(X, Y'), 

dH(Y, Y'), dH(X, X'), dH(X, Y), dH(X', Y'), dH( X , Y'), and dH(Y , X') are all similar. On the other hand, we 

have 2)()()()( =⊕+⊕+⊕+⊕ iiiiiiii y'tx'ttxty  if  i ∈F1∪F2∪F3, 0 if  i ∈F4, and 1 if i ∈F5∪F6∪F7∪F8. 

Hence dH(Y, T)+dH(X, T)+dH(T , X')+dH(T , Y')= )}()()(){(
1 iiiiii

n

i ii y'tx'ttxty ⊕+⊕+⊕+⊕∑ =
= 2f1+ 

2f2+2f3+f5+f6+f7+f8.   

Next, the best container of the hypercube is reviewed. Suppose that A=a1a2…an and B=b1b2…bn are 

two distinct nodes of an n-cube. A best (A, B)-container of width n was proposed by Saad and Schultz 

[17]. Let C=A⊕B. There are dH(A, B) 1 bits contained in C. Assume c=dH(A, B), and let ui and vj be the 

positions of the ith 1 bit and jth 0 bit, respectively, from the left in C, where 1≤i≤c, 1≤j≤n–c, 1≤ui≤n, and 

1≤vj≤n. For example, if A=00001 and B=10011, then C=10010, (u1, u2)=(1, 4), and (v1, v2, v3)=(2, 3, 5). 
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Saad and Schultz's best (A, B)-container is shown in Figure 2, where both end nodes of a link labeled with 

ui (vj) differ at the uith (vjth) bit position. The upper c paths each of length c are obtained by cyclically 

shifting the vector (u1, u2, …, uc) left c–1 times. The other n–c paths each of length c+2 are obtained by 

prefixing and suffixing vj to the vector (u1, u2, …, uc). Saad and Schultz's best (A, B)-container has length 

dH(A, B) if dH(A, B)=n, and dH(A, B)+2 if dH(A, B)<n. 

In the following, two properties of Saad and Schultz's containers are presented which will be used 

to show the disjoint property of the containers proposed in Section 3. 

Lemma 2. Suppose that A, B, and H are three distinct nodes of an n-cube. There is a shortest path from A 

to H that has non-A common nodes with only one path, denoted by P, of Saad and Schultz's best (A, B)- 

container (the shortest path should not pass through B). Furthermore, |P|=3 if dH(A, B)=1. 

Proof. Without loss of generality, suppose that A and H differ at the leftmost h bit positions, where h= 

dH(A, H). Let D=a1a2…ah⊕b1b2…bh contain d 1 bits, where A=a1a2…an and B=b1b2…bn. The shortest 

path from A to H that corresponds to (v1, v2, …, vh–d, u1, u2, …, ud) meets our requirement, where ui and vj 

have the same meanings as above. If dH(A, B)=1, then d=0 or 1. Since H≠B, we have h>d. Thus, a shortest 

path from A to H corresponds to (v1, v2, …, vh) if d=0 or (v1, v2, …, vh−1, u1) if d=1. Both these paths 

intersect the container path corresponding to (v1, u1, v1), i.e., |P|=3.    

Lemma 3. Suppose that A and B are two distinct nodes of an n-cube and dH(A, B)=c. The c shortest paths 

of Saad and Schultz's best (A, B)-container are disjoint with the n−c shortest paths of Saad and Schultz's 

best (A, B )-container. 

Proof. Suppose C=A⊕B. The c shortest paths of Saad and Schultz's best (A, B)-container can be obtained 

by cyclically shifting the vector (u1, u2, …, uc) left c–1 times, where ui and vj have the same meanings as 

above. The n−c shortest paths of Saad and Schultz's best (A, B )-container can be obtained by cyclically 

shifting the vector (v1, v2, …, vn−c) left n−c–1 times. Hence they are disjoint.   

3 Containers of width n+1 

Suppose that I=(X, Y) and I'=(X', Y') are two distinct nodes of the HCN(n). It is not easy to construct a best 

(I, I')-container because of diameter links and nondiameter links. In [3], an (I, I')-container was proposed 

whose length is not greater than n+5 if X=X', and 2n+6 if X≠X'. In this section, we improve on the work of 

[3] by constructing an (I, I')-container for X≠X' whose length is n+n/3+4 at most. The construction of 
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the (I, I')-container makes use of 
*

1P , *
2P , *

3P , and Saad and Schultz's best containers. Throughout this 

section, we assume that X≠X' and each (I, I')-container has width n+1. 

The construction of a best (I, I')-container is closely related to the construction of the shortest path 

from I to I'. As described in Section 2, three shortest paths, i.e., *
1P , *

2P , and 
*

3P , obeying some con-

straints need to be generated, in order to obtain the shortest path from I to I'. It appears impossible to 

construct a best (I, I')-container by a single construction method. The (I, I')-container to be proposed is 

obtained using a main construction method accompanied by six auxiliary construction methods. Actually, 

these construction methods correspond to 
*

1P , *
2P , and 

*
3P . The worst-case length of the (I, I')-container 

is nearly optimal.  

We use (A), (B), (C), (D), (E), and (F) to denote the six auxiliary construction methods. They are 

applicable under some conditions. In fact, the main construction method corresponds to 
*

2P . (A) and (B) 

correspond to 
*

1P  and 
*

3P , respectively. On the other hand, (C) is the combination of (A) and (B), (D) is 

the combination of the main construction method and (A), and (E) is the combination of the main con-

struction method and (B). (F) deals with a special situation for n=3. 

3.1 Main construction method 

Suppose that Y≠Y' and Q1, Q2, …, Qn are the n paths of Saad and Schultz's best (Y, Y')-container. Without 

loss of generality, we assume |Q1|≥|Q2|≥ … ≥|Qn|. If there exists Wi ∈Qi−{X, X', Y, Y'}, then let Ri be the 

path P2 with Z=Wi. Refer to Figure 3. The construction of Ri is in accordance with Qi. That is, the com-

bination of (X, Y) ⇒* (X, Wi) and (X', Wi) ⇒* (X', Y') is the same as Qi, disregarding X and X'. We have 

|Ri|=dH(X, X')+dH(Y, Y')+2 if i>n−dH(Y, Y'), and |Ri|=dH(X, X')+dH(Y, Y')+4 if i≤n−dH(Y, Y'). Ri and Rj are 

disjoint if i≠j. There are at least n−2 paths Qi such that Qi−{X, X', Y, Y'}≠φ. They are assumed to be Q1, 

Q2, …, Qn−2. From each of these paths we choose a Wi ∈Qi−{X, X', Y, Y'}. Further, we assume Qn−1−{X, 

X', Y, Y'}≠φ if Qn−1−{X, X', Y, Y'}≠φ or Qn−{X, X', Y, Y'}≠φ. So, when Qn−{X, X', Y, Y'}≠φ , R1, R2, …, Rn 

can be obtained. 

On the other hand, if Y=Y', then let Si be the path (X, Y) → (X, Y (i)) → (Y (i), X) ⇒* (Y (i), X') → (X', 

Y (i)) → (X', Y'), where Y (i)
 ∉{X, X'}. We have |Si|=dH(X, X')+4. Si and Sj are disjoint if i≠j. There are at least 

n−2 nodes Y (i)
 ∉{X, X'} in an n-cube, and they are assumed to be Y (1), Y (2), …, Y (n−2). If Y (n−1)

 ∉{X, X'} or 

Y (n)
 ∉{X, X'}, we assume Y (n−1)

 ∉{X, X'}. So, when Y (n)
 ∉{X, X'}, S1, S2, …, Sn can be obtained. 
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We use 
M

1P , M
2P , …, M

1+nP  to represent the n+1 disjoint paths that are obtained by the main con-

struction method. They can be constructed as follows. If Y≠Y', then let 
M

iP =Ri for all 1≤i≤n−2. If Y=Y', 

then let 
M

iP =Si for all 1≤i≤n−2. The construction of 
M

1−nP , M
nP , and 

M
1+nP  depends on whether X≠Y and 

X'≠Y' or not, as discussed below. 

Case 1. X≠Y and X'≠Y'. The construction further depends on whether X'≠Y, X≠Y', and Y≠Y' or not.  

 Case 1.1. X'≠Y, X≠Y', and Y≠Y'. If {Qn−1, Qn}={Y → X → Y', Y → X' → Y'}, then let M
1−nP = (X, Y) → (X, 

X') → (X', X) → (X', Y'), M
nP = (X, Y) → (X, X) → (X, Y') → (Y', X) ⇒* (Y', X') → (X', Y'), and M

1+nP = (X, Y) 

→ (Y, X) ⇒* (Y, X') → (X', Y) → (X', X') → (X', Y'). If {Qn−1, Qn}≠{Y → X → Y', Y → X' → Y'}, then let 

M
nP = (X, Y) → (Y, X) ⇒* (Y, X') → (X', Y) ⇒* (X', Y') and M

1+nP = (X, Y) ⇒* (X, Y') → (Y', X) ⇒* (Y', X') 

→ (X', Y'), where (X', Y) ⇒* (X', Y') and (X, Y) ⇒* (X, Y') are the same as Qn. M
1−nP  can be determined as 

follows. 

If Rn−1 exists, then let M
1−nP =Rn−1. If Rn−1 does not exist, then dH(Y, Y')=1, |Qn−1|=3, and either Qn−1= 

Y → X → X' → Y' or Qn−1= Y → X'→ X → Y'. M
1−nP  can be obtained in accordance with Qn−1 by letting 

M
1−nP = (X, Y) → (X, X) → (X, X') → (X', X) → (X', X') → (X', Y') if Qn−1= Y → X → X' → Y', and (X, Y) → 

(X, X') → (X', X) → (X', Y') if Qn−1= Y → X'→ X → Y'.  

We have | M
1−nP |≤dH(X, X')+dH(Y, Y')+2 if dH(Y, Y')>1, and | M

1−nP |≤dH(X, X')+dH(Y, Y')+4 if dH(Y, Y')= 

1. Both | M
nP | and | M

1+nP | are at most dH(X, X')+dH(Y, Y')+2. 

 Case 1.2. X'≠Y, X≠Y', and Y=Y'. We let M
1+nP = (X, Y) → (Y, X) ⇒* (Y, X') → (X', Y) (=(X', Y')). The 

construction of M
nP  and M

1−nP  depends on whether {Y (n−1), Y (n)}∩{X, X'} is empty or not. Recall that if 

there is one more adjacent node of Y that does not belong to {X, X'}, it is Y (n−1). If {Y (n−1), Y (n)}∩{X, X'} 

is empty, then let M
1−nP =Sn−1 and M

nP =Sn. If Y (n−1)
 ∉{X, X'} and Y (n)=X, then let M

1−nP =Sn−1 and M
nP = (X, Y) 

→ (X, X) ⇒* (X, X') → (X', X) → (X', Y'), where (X, X) ⇒* (X, X') does not contain (X, Y (1)), (X, Y (2)), …, 

(X, Y (n−1)). If Y (n−1)
 ∉{X, X'} and Y (n)=X', then let M

1−nP =Sn−1 and M
nP = (X, Y) → (X, X') → (X', X) ⇒* (X', 

X') → (X', Y').  
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If Y (n−1)=X and Y (n)=X', then dH(X, X')=2 and there exists Z≠Y so that dH(X, Z)=1 and dH(X', Z)=1. 

Let M
1−nP = (X, Y) → (X, X) → (X, Z) → (Z, X) → (Z, Z) → (Z, X') → (X', Z) → (X', X') → (X', Y) and M

nP = 

(X, Y) → (X, X') → (X', X) → (X', Y). The discussion is similar if Y (n−1)= X' and Y (n)=X.  

We have | M
1−nP |, | M

nP |, and | M
1+nP | at most max{8, dH(X, X')+4}.  

 Case 1.3. X'≠Y and X=Y' (Y≠Y' is implied because X≠Y). Wn−1 can be determined and we let M
1−nP =Rn−1. 

By Lemma 2, there is a shortest path from Y to X' that intersects with Qr for some 1≤r≤n, but does not 

intersect with Qj for all 1≤j≤n and j≠r.  

If Rn does not exist, then either Qn= Y → X' → Y' or Qn= Y → Y'. If Qn= Y → X' → Y', then let M
nP = 

(X, Y) → (Y, X) ⇒* (Y, X') → (X', Y) → (X', X') → (X', Y') and M
1+nP = (X, Y) → (X, X') → (X', X) (=(X', Y')). 

If Qn= Y → Y', then let 
M

nP = (X, Y) → (Y, X) ⇒* (Y, X') → (X', Y) → (X', Y') and M
1+nP = (X, Y) ⇒* (X, X') 

→ (X', X) (=(X', Y')), where (X, Y) ⇒* (X, X') is the same as the shortest path from Y to X' above. Since 

M
1+nP  and 

M
rP  conflict, M

rP  is changed as follows. By Lemma 2, we have |Qr|=3. Without loss of generality, 

we assume Qr= Y → Y (s) → Y' (s) → Y', where 1≤s≤n. M
rP  is changed as (X, Y) → (X, Y') → (X, Y' (s)) → 

(Y' (s), X) ⇒* (Y' (s), X') → (X', Y' (s)) → (X', Y') whose length is dH(X, X')+5=dH(X, X')+dH(Y, Y')+4.  

If Rn exists, then let 
M

nP =Rn. The construction of M
1+nP  is the same as above (Qn= Y → Y'), and 

M
rP  is 

changed as (X, Y) → (Y, X) ⇒* (Y, X') → (X', Y) ⇒ (X', Y'), where ⇒ denotes a path (inside a cluster) and 

(X', Y) ⇒ (X', Y') is the same as Qr.  

We have | M
1−nP | and | M

nP | at most dH(X, X')+dH(Y, Y')+4, and | M
1+nP |=dH(Y, X')+1≤dH(Y, X)+dH(X, X')+ 

1=dH(Y, Y')+dH(X, X')+1.  

 Case 1.4. X'=Y and X≠Y' (Y≠Y' is implied because X'≠Y'). Similar to Case 1.3. 

 Case 1.5. X'=Y and X=Y' (Y≠Y' is implied because X≠Y). Wn−1 can be determined and we let M
1−nP =Rn−1. 

Let 
M

1+nP = (X, Y) → (Y, X) (=(X', Y')). If dH(Y, Y')>1, then Wn can be determined and we let M
nP =Rn. If dH(Y, 

Y')=1, then let M
nP = ((X, Y)=) (Y', Y) → (Y', Y') → (Y' , Y' ) → (Y' , Y ) → (Y , Y' ) → (Y , Y ) → (Y, Y) → 

(Y, Y') (=(X', Y')). We have | M
1−nP |, | M

nP |, and | M
1+nP | at most max{7, dH(X, X')+dH(Y, Y')+4}. 

Case 2. X=Y and X'≠Y'. M
1−nP , M

nP , and M
1+nP

 
can be obtained according to the value of dH(Y, Y').  
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 Case 2.1. dH(Y, Y')=0. We have Y (n−1)
 ∉{X, X'}. Let M

1−nP =Sn−1. If dH(Y, X')=1, then let M
nP = (X, Y) → (X, 

X') → (X', X) (=(X', Y')) and M
1+nP = ((X, Y)=) (X, X) → ( X , X ) → ( X , X' ) → ( X' , X ) → ( X' , X' ) → 

(X', X') → (X', X) (=(X', Y')).  

If dH(Y, X')>1, then Y (n)
 ∉{X, X'} and let M

nP =Sn. Also let M
1+nP = ((X, Y)=) (X, X) → (X, X 

(r)) ⇒* (X, 

X') → (X', X) (=(X', Y')), where dH(X, X')=1+dH(X 
(r), X') for some 1≤r≤n. Since M

1+nP
 
and M

rP  conflict, M
rP  

is changed as ((X, Y)=) (X, X) → ( X , X ) → ( X , )(rX ) → ( )(rX , X ) → ( )(rX , )(rX ) → (X 
(r), X 

(r)) ⇒* 

(X 
(r), X') →(X', X 

(r)) → (X', X) (=(X', Y')) if dH(X, X')<n, and ((X, Y)=) (X, X) → ( X , X ) (=(X', X')) ⇒* 

(X', X 
(r)) → (X', X) (=(X', Y')) if dH(X, X')=n. The new 

M
rP  has length not greater than n+5.  

We have | M
1−nP | and | M

nP | at most dH(X, X')+4, and | M
1+nP |=max{6, dH(X, X')+1}. 

 Case 2.2. dH(Y, Y')=1. We have |Qn−1|=3. Without loss of generality, suppose Qn−1= Y → U → V → Y', 

where U≠X' and V≠X'. If X ≠X' and Y' ≠X', then let M
1−nP = (X, Y) → (X, Y') → (X, V) → (V, X) ⇒* (V, X') 

→ (X', V) → (X', Y') and 
M

nP = (X, Y ) → (X, U) → (U, X) ⇒* (U, X') → (X', U) → (X', Y) → (X', Y'). 

Besides, let M
1+nP  be the shorter one of the following two paths: ((X, Y)=) (X, X) → ( X , X ) → ( X , Y' ) → 

(Y' , X ) → (Y' , Y' ) → (Y', Y') ⇒* (Y', X') → (X', Y') and ((X, Y)=) (X, X) → ( X , X ) ⇒* ( X , Y') → (Y', 

X ) ⇒* (Y', X') → (X', Y'), where X ≠Y' because dH(X, Y')=dH(Y, Y')=1. The former has length dH(Y', X')+ 

6≤dH(Y', X)+dH(X, X')+6=dH(X, X')+dH(Y, Y')+6, and the latter has length dH( X , Y')+dH( X , X')+3.  

If X =X' or Y' =X', then let M
1−nP = (X, Y ) → (X, Y' ) → (Y', X) ⇒* (Y', X') → (X', Y') and M

nP = (X, Y ) 

→ (X, U) → (U, X) ⇒* (U, X') → (X', U) → (X', Y) → (X', Y'). Besides, let M
1+nP = ((X, Y)=) (X, X) → ( X , 

X ) (=(X', Y )) ⇒* (X', V) → (X', Y') if X =X' , and ((X, Y)=) (X, X) → ( X , X ) → ( X , Y' ) → (Y' , X ) 

(=(X', Y )) ⇒* (X', V) → (X', Y') if Y' =X'. M
1+nP  is disjoint with 

M
1P , M

2P , …, M
nP  provided (X', Y ) ⇒* (X', 

V) is disjoint with Q1, Q2, …, Qn−2 and does not contain Y and U. They are true because dH(Y , V)=n−2, 

dH(Y , U)=n−1, dH(Y , Y (i))=n−1, and dH(Y , Y' (i))≥dH(Y , Y')−1=n−2 for all 1≤i≤n.  

We have | M
1−nP | and | M

nP | at most dH(X, X')+dH(Y, Y')+4, and | M
1+nP | at most max{n+2, min{dH(X, 

X')+dH(Y, Y')+6, dH( X , Y')+dH(Y , X')+3}}, where dH(Y , X')=dH( X , X').  
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 Case 2.3. dH(Y, Y')=2. Wn−1 can be determined and we let M
1−nP =Rn−1. We have |Qn|=2. If Qn= Y → X' → 

Y', then let M
nP = (X, Y) → (X, X') → (X, Y') → (Y', X) ⇒* (Y', X') → (X', Y') and M

1+nP = ((X, Y)=) (X, X) → 

( X , X ) → ( X , X' ) → ( X' , X ) → ( X' , X' ) → (X', X') → (X', Y').  

Otherwise (Qn≠ Y → X' → Y'), Wn can be determined and we let M
nP =Rn. If X ≠X' and Y' ≠X', then 

let M
1+nP  be the shorter one of the following two paths: ((X, Y)=) (X, X) → ( X , X ) ⇒* ( X , Y' ) → (Y' , X ) 

⇒* (Y' , Y' ) → (Y', Y') ⇒* (Y', X') → (X', Y') and ((X, Y)=) (X, X) → ( X , X ) ⇒* ( X , Y') → (Y', X ) ⇒* 

(Y', X') → (X', Y'), where X ≠Y' because dH(X, Y')=dH(Y, Y')=2 and n≥3. The former has length dH( X , 

Y' )+dH( X , Y' )+dH(Y', X')+4=dH(Y', X')+8≤dH(Y', X)+dH(X, X')+8=dH(X, X')+dH(Y, Y')+8 (dH( X , Y' )=2 

because X=Y and dH(Y, Y')=2), and the latter has length dH( X , Y')+dH( X , X')+3. 

If X =X' or Y' =X', then by Lemma 2 there is a shortest path from Y  to Y' that intersects with Qr for 

some 1≤r≤n, but does not intersect with Qj for all 1≤j≤n and j≠r. Let M
1+nP = ((X, Y)=) (X, X) → ( X , X ) 

(=(X', Y )) ⇒* (X', Y') if X =X', and ((X, Y)=) (X, X) → ( X , X ) (=(Y , Y )) ⇒* (Y , Y' ) → (Y' , Y ) 

(=(X', Y )) ⇒* (X', Y') if Y' =X', where (X', Y ) ⇒* (X', Y') is the same as the shortest path from Y  to Y' 

above. M
rP  is changed as (X, Y) ⇒ (X, Y') → (Y', X) ⇒* (Y', X') → (Y', X'), where (X, Y) ⇒ (X, Y') is the 

same as Qr.  

We have | M
1−nP |=| M

nP |=dH(X, X')+dH(Y, Y')+2, and | M
1+nP |≤max{n+2, min{dH(X, X')+dH(Y, Y')+8, 

dH( X , Y')+dH(Y , X')+3}, where dH(Y , X')=dH( X , X'). 

 Case 2.4. dH(Y, Y')≥3. Wn−1 can be determined and we let M
1−nP =Rn−1. Suppose, without loss of gener-

ality, that Qn= Y → U ⇒* Y' does not contain X' and U ≠X'. Then Wn≠U (Wn ∈Qn−{X, Y, X', Y'}) can be 

determined and we let M
nP =Rn. If X =X', then M

1+nP  can be obtained all the same as the situation of X =X' 

in Case 2.3. 

If X ≠X', then let M
1+nP  be the shorter one of the following two paths: ((X, Y)=) (X, X) → ( X , X ) → 

( X , U ) → (U , X ) → (U , U ) → (U, U) ⇒* (U, Y') →(Y', U) ⇒* (Y', X') → (X', Y') and ((X, Y)=) (X, 

X) → ( X , X ) ⇒* ( X , Y') → (Y', X ) ⇒* (Y', X') → (X', Y'), where ( X , X ) ⇒* ( X , Y') → (Y', X ) ⇒* 

(Y', X') is replaced with ( X , X ) ⇒* ( X , X') if X =Y'. The former has length dH(U, Y')+dH(U, X')+7≤ 

dH(Y, Y')+dH(X, X')+7 (because dH(Y, Y')=1+dH(U, Y') and dH(X, X')=dH(U, X')±1), and the latter has 
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length dH( X , Y')+dH( X , X')+3. We have | M
1−nP |=| M

nP |=dH(X, X')+dH(Y, Y')+2, and | M
1+nP |=min{dH(X, X')+ 

dH(Y, Y')+7, dH( X , Y')+dH(Y , X')+3}, where dH(Y , X')=dH( X , X').  

Case 3. X≠Y and X'=Y'. Similar to Case 2. 

Case 4. X=Y and X'=Y'. Since X≠X', we have Y≠Y'. Wn−1 can be determined and we let M
1−nP =Rn−1. If dH(Y, 

Y')=1, then let M
nP = ((X, Y)=) (X, X) → (X, X') → (X', X) → (X', X') (=(X', Y')). If dH(Y, Y')≥2, then Wn can 

be determined and we let M
nP =Rn. Also, let M

1+nP = ((X, Y)=) (X, X) → ( X , X ) ⇒* ( X , X' ) → ( X' , X ) 

⇒* ( X' , X' ) → (X', X') (=(X', Y')) if X ≠X', and (X, X) → ( X , X ) (=(X', Y')) if X =X'. We have | M
1−nP |, 

| M
nP |, and | M

1+nP | at most dH(X, X')+dH(Y, Y')+4. 

3.2 Construction method (A) 

The construction method (A) can be applied when f2≥2. According to Lemma 1, we have dH(X, Y)≥2, 

dH(X', Y')≥2, and dH(Y, Y')≥2. We use 
A

1P , A
2P , …, A

1+nP  to denote the resulting n+1 disjoint paths. Let 

Pi, j= (X, Y) → (X, Y 
(i)) → (Y 

(i), X) ⇒* (Y 
(i), Y' (j)) → (Y' (j), Y 

(i)) ⇒* (Y' (j), X') → (X', Y' (j)) → (X', Y') (refer 

to Figure 4), where 1≤i≤n, 1≤j≤n, and {Y 
(i), Y' (j)}∩{X, X', Y, Y'} is empty. If Y 

(i)=Y' (j), then (Y 
(i), X) ⇒* 

(Y 
(i), Y' (j)) → (Y' (j), Y 

(i)) ⇒* (Y' (j), X') is replaced with (Y 
(i), X) ⇒* (Y' (j), X'). 

11, jiP  and 
22 , jiP  are disjoint if 

{ )( 1iY , )( 1jY }∩{ )( 2iY , )( 2jY } is empty. We have |Pi, j|=dH(X, Y' (j))+dH(X', Y 
(i))+5≤dH(X, Y')+dH(X', Y)+7 if 

Y 
(i)≠Y' (j), and dH(X, X')+4≤dH(X, Y' (j))+dH(X', Y 

(i))+4<dH(X, Y')+dH(X', Y)+7 if Y 
(i)=Y' (j). When i ∈F4 and 

j ∈F4, we have |Pi, j|=dH(X, Y')+dH(X', Y)+3 because xj≠y'j implies dH(X, Y' (j))=dH(X, Y')−1 and x'i≠yi 

implies dH(X', Y 
(i))=dH(X', Y)−1. 

A
1P , A

2P , …, A
nP  can be obtained, depending on whether dH(X, Y')≠1 and dH(X', Y)≠1 or not. If dH(X, 

Y')≠1 and dH(X', Y)≠1, then {Y 
(i), Y' (j)}∩{X, X', Y, Y'} is empty for all 1≤i≤n and 1≤j≤n. For all 1≤k≤n, 

we let A
kP =Pk,u if Y 

(k)=Y' (u) for some 1≤u≤n, and 
A

kP =Pk,k otherwise. If dH(X, Y')≠1 and dH(X', Y)=1, then 

X'=Y 
(r) for some 1≤r≤n. We let A

rP = (X, Y) → (X, X') → (X', X) ⇒* (X', Y' (r)) → (X', Y'), and for all k ∈{1, 

2, …, n}−{r}, let 
A

kP =Pk,u if Y 
(k)=Y' (u) for some 1≤u≤n, and 

A
kP =Pk,k otherwise. If dH(X, Y')=1 and dH(X', 

Y)≠1, the discussion is similar. If dH(X, Y')=1 and dH(X', Y)=1, then X'=Y 
(s) and X=Y' (t) for some 1≤s≤n 

and 1≤t≤n. We let 
A

sP = (X, Y) → (X, X') → (X', X) → (X', Y'), A
tP =Pt,s if t≠s, and for all k ∈{1, 2, …, 
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n}−{s, t}, A
kP =Pk,u if Y 

(k)=Y' (u) for some 1≤u≤n, and 
A

kP =Pk,k otherwise. These paths have lengths at 

most dH(X, Y')+dH(X', Y)+7. 
A

1+nP  can be obtained, depending on whether X'≠Y and X≠Y' or not. If X'≠Y and X≠Y', then let 
A

1+nP = 

(X, Y) → (Y, X) ⇒* (Y, Y') → (Y', Y) ⇒* (Y', X') → (X', Y'). If X'≠Y and X=Y', then let 
A

1+nP = (X, Y) → (X, 

Y 
(q)) ⇒* (X, X') → (X', X) for some 1≤q≤n, which conflicts with 

A
qP . A

qP  is changed as (X, Y) → (Y, X) 

⇒* (Y, Y' (q)) → (Y' (q), Y) ⇒* (Y' (q), X') → (X', Y' (q)) → (X', Y') whose length is at most dH(X, Y')+dH(Y, 

X')+5. The discussion is similar if X'=Y and X≠Y'. If X'=Y and X=Y', then let 
A

1+nP = (X, X') → (X', X). We 

have | A
1+nP |≤dH(X, Y')+dH(X', Y)+5. 

3.3 Construction method (B) 

The construction method (B) can be applied when f4≥2. By 
B

1P , B
2P , …, B

1+nP  we denote the resulting n+1 

disjoint paths. First we determine M as follows: M=Y if X=Y, M=Y'  if X'=Y', and M is an arbitrary element 

of Qmin else. Suppose X=x1x2…xn, Y=y1y2…yn, X'=x'1x'2…x'n, Y'=y'1y'2…y'n, and M=m1m2…mn. When 

X=Y, we have 2)()()()( ≤⊕+⊕+⊕+⊕ iiiiiiii y'mx'mmxmy  if mi=yi, and ≥2 if mi≠yi, where 1≤i≤n. 

Hence M=Y ∈Qmin. Similarly, when X'=Y', we have M=Y' ∈Qmin. 

For all 1≤i≤n, let B
iP  be the path P3 with T=M 

(i). Refer to Figure 5. As a consequence of Saad and 

Schultz's best (Y, M)-container (refer to Figure 2), there are n disjoint shortest paths from (X, Y) to (X, M 
(1)), 

(X, M 
(2)), …, (X, M 

(n)) (and from (X', )1(M ), (X', )2(M ), …, (X', )(nM ) to (X', Y')), respectively. We have  

 | B
iP | ≤ dH(Y, M 

(i))+dH(X, M 
(i))+dH( )(iM , X')+dH( )(iM , Y')+3 

  = dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+3+∆,  

where ∆=0 if i ∈F1∪F2∪F3, ∆=4 if i ∈F4, and ∆=2 if i ∈F5∪F6∪F7∪F8. 
B

1+nP  whose length is at most dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+5 can be obtained, de-

pending on whether X≠Y and X'≠Y' or not.  

Case 1. X≠Y and X'≠Y'. The construction further depends on whether Y ∉{M 
(1), M 

(2), …, M 
(n)} and Y' ∉ 

{ )1(M , 
)2(M , …, )(nM } or not. 
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 Case 1.1. Y ∉{M 
(1), M 

(2), …, M 
(n)} and Y' ∉{ )1(M , )2(M , …, )(nM }. Let 

B
nP 1+ = (X, Y) → (Y, X) ⇒* 

(Y, M) → (M, Y) ⇒* (M, M) → ( M , M ) ⇒* ( M , Y') → (Y', M ) ⇒* (Y', X') → (X', Y'). When M=Y, (Y, 

M) → (M, Y) ⇒* (M, M) is replaced with (Y, Y). When M =Y', ( M , M ) ⇒* ( M , Y') → (Y', M ) is re-

placed with (Y', Y').  

Arbitrarily determine 1≤r≤n so that dH(Y, X)=dH(Y, X 
(r))+1. When M=X and M ≠X', (X, Y) → (Y, X) 

⇒* (Y, M) → (M, Y) ⇒* (M, M) is replaced with (X, Y) ⇒* (X, X 
(r)) → (X, X), which conflicts with 

B
rP . 

B
rP  is changed as (X, Y) → (Y, X) → (Y, X 

(r)) → (X 
(r), Y) ⇒* (X 

(r), X 
(r)) → ( )(rX , )(rX ) ⇒* ( )(rX , X') → 

(X', )(rX ) ⇒* (X', Y') whose length is at most (dH(Y, X)−1)+(dH( X , X')+1)+(dH( X , Y')+1)+5=dH(Y, X)+ 

dH( X , X')+dH( X , Y')+6 (<dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+7). The discussion is similar if 

M≠X and M =X'. 

When M=X and M =X', (X, Y) → (Y, X) ⇒* (Y, M) → (M, Y) ⇒* (M, M) is replaced with (X, Y) 

⇒* (X, X 
(r)) → (X, X) and ( M , M ) ⇒* ( M , Y') → (Y', M ) ⇒* (Y', X') → (X', Y') is replaced with (X', 

X') → (X', X' (r)) ⇒* (X', Y'). B
rP  is changed as (X, Y) → (Y, X) → (Y, X 

(r)) → (X 
(r), Y) ⇒* (X 

(r), X 
(r)) → 

( )(rX , )(rX ) (=(X' (r), X' (r))) ⇒* (X' (r), Y') → (Y', X' (r)) → (Y', X') → (X', Y') whose length is at most dH(Y, 

X)+dH(X', Y')+7 (≤dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+7). 

 Case 1.2. Y ∈{M 
(1), M 

(2), …, M 
(n)} and Y' ∉{ )1(M , )2(M , …, )(nM }. Let 

B
1+nP = (X, Y) → (X, M) → (M, 

X) ⇒* (M, M) → ( M , M ) ⇒* ( M , Y') → (Y', M ) ⇒* (Y', X') → (X', Y'). When M=X, (X, M) → (M, X) 

⇒* (M, M) is replaced with (X, X). When M =Y', ( M , M ) ⇒* ( M , Y') → (Y', M ) is replaced with (Y', 

Y'). When M =X', ( M , M ) ⇒* ( M , Y') → (Y', M ) ⇒* (Y', X') → (X', Y') is replaced with (X', X') → (X', 

X' (s)) ⇒* (X', Y') for some s ∈{1, 2, …, n}−F4. B
sP  is changed as (X, Y) ⇒* (X, )(sX' ) → ( )(sX' , X) ⇒* 

( )(sX' , )(sX' ) → (X' (s), X' (s)) ⇒* (X' (s), Y') → (Y', X' (s)) → (Y', X') → (X', Y') whose length is dH(Y, 
)(sX' )+dH(X, )(sX' )+dH(X' (s), Y')+5≤dH(Y, X' )+dH(X, X' )+dH(X', Y')+6 (=dH(Y, M)+dH(X, M)+dH( M , 

X')+dH( M , Y')+6). 

 Case 1.3. Y ∉{M 
(1), M 

(2), …, M 
(n)} and Y' ∈{ )1(M , )2(M , …, )(nM }. Similar to Case 1.2. 
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 Case 1.4. Y ∈{M 
(1), M 

(2), …, M 
(n)} and Y' ∈{ )1(M , )2(M , …, )(nM }. Let 

B
1+nP = (X, Y) → (X, M) → 

(M, X) ⇒* (M, M) → ( M , M ) ⇒* ( M , X') → (X', M ) → (X', Y'). When M=X, (X, M) → (M, X) ⇒* (M, 

M) is replaced with (X, X). When M =X', ( M , M ) ⇒* ( M , X') → (X', M ) is replaced with (X', X'). 

Case 2. X=Y and X'≠Y'. The construction depends on whether Y' ∈{ )1(M , )2(M , …, )(nM } or not (Y=M 

because X=Y). If Y' ∈{ )1(M , )2(M , …, )(nM }, then let 
B

nP 1+ = ((X, Y)=) (Y, Y) → (Y , Y ) ⇒* (Y , X') → 

(X', Y ) → (X', Y'). When Y =X', (Y , Y ) ⇒* (Y , X') → (X', Y ) is replaced with (Y , Y ).  

If Y' ∉{ )1(M , )2(M , …, )(nM }, then let 
B

1+nP = ((X, Y)=) (Y, Y) → (Y , Y ) ⇒* (Y , Y') → (Y', Y ) 

⇒* (Y', X') → (X', Y'). When Y =Y', (Y , Y ) ⇒* (Y , Y') → (Y', Y ) ⇒* (Y', X') is replaced with (Y ,Y ) 

⇒* (Y , X'). When Y =X', (Y , Y ) ⇒* (Y , Y') → (Y', Y ) ⇒* (Y', X') → (X', Y') is replaced with (X', X') 

→ (X', X' (t)) ⇒* (X', Y'), where 1≤t≤n and dH(X', Y')=1+dH(X' (t), Y'). B
tP  is changed as ((X, Y)=) (Y, Y) 

→ (Y, Y 
(t)) → (Y 

(t), Y) → (Y 
(t), Y 

(t)) → ( )(tY , )(tY ) (=(X' (t), X' (t))) ⇒* (X' (t), Y') → (Y', X' (t)) → (Y', X') → 

(X', Y') whose length is at most dH(X', Y')+6 (<dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+7).  

Case 3. X≠Y and X'=Y'. Similar to Case 2. 

Case 4. X=Y and X'=Y'. If Y' ∈{ )1(M , )2(M , …, )(nM }, then let 
B

1+nP = ((X, Y)=) (Y, Y) → (Y , Y ) ⇒* (Y , 

Y') → (Y', Y ) → (Y', Y') (=(X', Y')). If Y' ∉{ )1(M , )2(M , …, )(nM } and Y=Y' , then let 
B

1+nP = ((X, Y)=) (Y, 

Y) → (Y', Y') (=(X', Y')). If Y' ∉{ )1(M , )2(M , …, )(nM } and Y≠Y' , then let 
B

1+nP = ((X, Y)=) (Y, Y) → (Y , 

Y ) ⇒* (Y , Y') → (Y', Y ) → (Y', )(uY ) ⇒* (Y', Y') (=(X', Y')), where 1≤u≤n and dH(Y , Y')=1+dH( )(uY , 

Y'). B
uP  is changed as ((X, Y)=) (Y, Y) → (Y, Y 

(u)) ⇒* (Y, Y' ) → (Y' , Y) ⇒* (Y' , Y' ) → (Y', Y') (=(X', Y')) 

whose length is at most dH(Y, Y' )+dH(Y, Y' )+2 (<dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+7 because 

Y=M). 

For all 1≤i≤n and 1≤j≤n, B
iP  and 

B
jP  with i≠j are disjoint provided {M 

(i), M 
(j)}∩{X', Y', X , Y } is 

empty, and 
B

iP  and 
B

1+nP  are disjoint provided {M, M 
(i)}∩{X', Y', X , Y } is empty. Since M ∈Qmin, the 

following lemma assures that 
B

1P , B
2P , …, B

1+nP  are disjoint. 

Lemma 4. Suppose M ∈Qmin. {M, M (i)}∩{ X , Y , X', Y'} is empty if f4≥2 or f4=1 and i ∈{1, 2, …, n}−F4.  

Proof. Suppose X=x1x2…xn, Y=y1y2…yn, X'=x'1x'2…x'n, Y'=y'1y'2…y'n, and M=m1m2…mn. If f4=1, then 
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F4={r} for some 1≤r≤n. We have xr=yr= rx' = ry' . Further, M ∈Qmin implies mr=xr=yr. Hence M and M 
(i) 

differ from X , Y , X', and Y' at the rth bit position for all i ∈{1, 2, …, n}−{r}. On the other hand, if f4≥2, 

then assume {u, v} ⊆ F4, where 1≤u≤n, 1≤v≤n, and u≠v. Similarly, we have mu=xu=yu= ux' = uy'  and mv= 

xv=yv= vx' = vy' . Hence, M ∉{ X , Y , X', Y'},  M 
(u) differs from X , Y , X', and Y' at the vth bit position, 

and M 
(k) differs from X , Y , X', and Y' at the uth bit position for all k ∈{1, 2, …, n}−{u}.  

Lemma 4 (the situation of f4=1) will be used again in Section 3.4. 

3.4 Construction method (C) 

The construction method (C) can be applied when  f2≥1,  f4≥1,  f2+f4≥3,  f3+f4≥2, and {X, X'}∩{Y, Y'} is 

empty. We use 
C

1P , C
2P , …, C

1+nP  to denote the resulting n+1 disjoint paths. Let 
C

iP =Pi, i for all i ∈F4 

whose length is dH(X', Y)+dH(X, Y')+3. Recall that Pi,i requires {Y 
(i), Y' (i)}∩{X, X', Y, Y'} empty, which 

holds as a consequence of i ∈F4, f3+f4≥2, and f2+f4≥3. 

Then, determine M=m1m2…mn so that mk= ky  if k ∈F8 and mk=yk if k ∈{1, 2, …, n}−F8. It is not 

difficult to see M ∈Qmin. When f8=0, we have M=Y. Let 
C
jP = B

jP  for all j ∈{1, 2, …, n}−F4 whose length 

is dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+3 if j ∈F1∪F2∪F3, and dH(Y, M)+dH(X, M)+dH( M , X')+ 

dH( M , Y')+5 if j ∈F5∪F6∪F7∪F8. C
jP 's are disjoint for the following reason. Recall that B

jP 's are disjoint 

provided M (j) ∉{ X , Y , X', Y'}. The latter holds by Lemma 4 because f4≥1 and j ∉F4 (the construction 

method (B) requires f4≥2).  
C

iP  and 
C
jP  are disjoint provided (1) (X, Y) → (X, Y 

(i)) and (X, Y) ⇒* (X, M 
(j)) are disjoint, (2) (X', 

Y' (i)) → (X', Y') and (X', )( jM ) ⇒* (X', Y') are disjoint, and (3) {Y 
(i), Y' (i)}∩{M 

(j), )( jM } is empty. Since 

i ∈F4, we have yi=mi. According to the construction of Saad and Schultz's best (Y, M)-container (refer to 

Figure 2), we have (X, Y) ⇒* (X, M 
(i)) = (X, Y) → (X, Y 

(i)) ⇒* (X, M 
(i)), which is disjoint with (X, Y) ⇒* (X, 

M 
(j)). Hence (1) is true. Similarly, we have y'i= im  (because i ∈F4) and (X', )(iM ) ⇒* (X', Y') = (X', )(iM ) 

⇒* (X', Y' (i)) → (X', Y'), which is disjoint with (X', )( jM ) ⇒* (X', Y'). Hence (2) is also true.  

(1) and (2) can assure Y 
(i)≠M 

(j) and Y' (i)≠ )( jM , respectively. It is easy to see yk=mk for all k ∈F2∪ 

F4. Since f2+f4≥3, there exists s ∈F2∪F4−{i, j} so that Y 
(i) and 

)( jM  differ at the sth bit position, i.e., Y 
(i)≠ 
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)( jM . Similarly, we have y'k≠mk for all k ∈F2∪F4, and f2+f4≥3 can assure the existence of t ∈F2∪F4−{i, j} 

so that Y' (i) and M 
(j)

 differ at the tth bit position, i.e., Y' (i)≠M 
(j). Hence (3) is true. 

The construction of C
1+nP  depends on whether Y ∉{M 

(1), M 
(2), …, M 

(n)} and Y' ∉{ )1(M , )2(M , …, 

)(nM } or not. If Y ∉{M 
(1), M 

(2), …, M 
(n)} and Y' ∉{ )1(M , )2(M , …, )(nM }, then let 

C
1+nP = (X, Y) → (Y, X) 

⇒* (Y, Y') → (Y', Y) ⇒* (Y', X') → (X', Y') whose length is dH(X, Y')+dH(Y, X')+3. C
1+nP  is disjoint with 

C
iP  

provided {Y, Y'}∩{Y 
(i), Y' (i)} is empty, and disjoint with 

C
jP  provided {Y, Y'}∩{M 

(j), )( jM } is empty. 

Since  f2+f4≥3, we have dH(Y, Y')≥3, which implies {Y, Y'}∩{Y 
(i), Y' (i)} empty. Lemma 4 assures that {Y, 

Y'}∩{M 
(j), )( jM } is empty. 

If Y ∈{M 
(1), M 

(2), …, M 
(n)} or Y' ∈{ )1(M , )2(M , …, )(nM }, then let C

1+nP = B
1+nP . Since f2≥1, we 

have M ∉{X, X' }. Hence no change of 
C

sP  for some s ∈{1, 2, …, n}−F4 is necessary (refer to Section 

3.3). We have | C
1+nP |=dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+5 if Y≠M and Y'≠ M , and dH(Y, M)+ 

dH(X, M)+dH( M , X')+dH( M , Y')+3 if Y=M or Y'= M . C
1+nP  and 

C
jP  are disjoint for the following reason. 

Recall that B
1+nP  and 

B
jP  are disjoint provided {M, M (j)}∩{ X , Y , X', Y'} is empty. The latter holds by 

Lemma 4 because f4≥1 and j ∉F4. On the other hand, C
1+nP  is disjoint with 

C
iP  provided {Y, Y'}∩{Y 

(i), Y' (i)} 

is empty and {M, M }∩{Y 
(i), Y' (i)} is empty. Since f2+f4≥3, we have dH(Y, Y')≥3 which implies {Y, Y'}∩ 

{Y 
(i), Y' (i)} is empty. Now that i ∈F4, M ( M ) differs from Y 

(i) (Y' (i)) at the ith bit position. Since f2+f4≥3, 

there exists t ∈F2∪F4−{i} so that M ( M ) differs from Y' (i) (Y 
(i)) at the tth bit position. Hence {M, M }∩ 

{Y 
(i), Y' (i)} is empty. 

According to the discussion above, C
1P , C

2P , …, C
1+nP  have lengths at most max{dH(Y, M)+dH(X, 

M)+dH( M , X')+dH( M , Y')+3, dH(X', Y)+dH(X, Y')+3} if f5+f6+f7+f8=0 (Y=M is implied because f8=0), 

and max{dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+5, dH(X', Y)+dH(X, Y')+3} if f5+f6+f7+f8≠0.  

3.5 Construction method (D)  

The construction method (D) can be applied when f1=0, f2+f3≥2, f3+f4≥2, n>dH(Y, Y')≥1, and {X, X'}∩{Y, 

Y'} is empty. We use 
D

1P , D
2P , …, D

1+nP  to denote the resulting n+1 disjoint paths. Suppose that dH(Y, Y')= 

k and Q1, Q2, …, Qn are the n paths of Saad and Schultz's best (Y, Y')-container, where 1≤k≤n−1 and |Q1|≥ 
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|Q2|≥ … ≥|Qn| is assumed. By Lemma 1 (dH(Y, Y')=f2+f4+f5+f6), F2∪F4∪F5∪F6 contains the k bit posi-

tions where Y and Y' differ. Without loss of generality, assume F1∪F3∪F7∪F8={1, 2, …, n−k} and let 

Qi = Y → Y 
(i) ⇒* Y' (i) → Y', where 1≤i≤n−k. We have {Y 

(i), Y' (i)}∩{Y, Y'} empty. 

We let D
iP =Pi, i for all 1≤i≤n−k, and D

jP = M
jP  for all n−k+1≤j≤n+1. We have dH(X, Y')≥2, dH(X, Y)≥ 

2, dH(X', Y)≥2, and dH(X', Y')≥2, as a consequence of f2+f3≥2 and f3+f4≥2. Hence {Y 
(i), Y' (i)}∩{X, X'} is 

empty (recall that Pi, i requires {Y 
(i), Y' (i)}∩{X, X', Y, Y'} empty). D

iP  has length dH(X, Y')+dH(Y, X')+3 if 

i ∈F3 and dH(X, Y')+dH(Y, X')+5 if i ∈F7∪F8 (F1 is empty). D
jP  has length at most dH(X, X')+dH(Y, Y')+ 

2. These n+1 paths have lengths at most max{dH(X, X')+dH(Y, Y')+2, dH(X', Y)+dH(X, Y')+3} if f7+f8=0, 

and at most max{dH(X, X')+dH(Y, Y')+2, dH(X', Y)+dH(X, Y')+5} if f7+f8≠0. 
D

iP  and D
jP  are disjoint provided {Y 

(i), Y' (i)}∩{Y, Y'} is empty and Qj does not contain Y 
(i) and Y' (i). 

The former is true because i ∈F1∪F3∪F7∪F8 can assure Y≠Y' (i) and Y'≠Y 
(i). The latter is true because i≠j 

and Qi contains Y 
(i) and Y' (i). 

3.6 Construction method (E) 

The construction method (E) can be applied when f4≥1, f5+f6+f7+f8=0, n≥4, dH(Y, Y')<n, and {X, X'}∩{Y, 

Y'} is empty. By 
E

1P , E
2P , …, E

1+nP  we denote the resulting n+1 disjoint paths. Suppose that dH(Y, Y')=k 

and Q1, Q2, …, Qn are the n paths of Saad and Schultz's best (Y, Y')-container (f4≥1 can assure Y≠Y'), 

where 1≤k≤n−1 and |Q1|≥|Q2|≥ … ≥|Qn| is assumed. By Lemma 1, F2∪F4∪F5∪F6 contains the k bit po-

sitions where Y and Y' differ. Without loss of generality, assume F1∪F3∪F7∪F8={1, 2, …, n−k}. We let 

Qi = Y → Y 
(i) ⇒* Y' (i) → Y' for all 1≤i≤n−k. E

1P , E
2P , …, E

1+nP  can be obtained, depending on whether k= 

n−1 or not. 

Case 1. k=n−1. For all 2≤j≤n, let E
jP =Rj whose length is at most dH(X, X')+dH(Y, Y')+2, where Wj ∉{X, 

X', Y, Y'} can be determined for the following reason. Since n≥4, we have dH(Y, Y')≥3. Now that f5+f6+f7+ 

f8=0, we have dH(Y, Y')=f2+f4=dH(X, X') by Lemma 1. Hence dH(X, X')≥3. 

We determine M=Y'  (f5+f6+f7+f8=0 can assure Y' ∈Qmin), and let 
E

1P = B
1P  and E

1+nP = B
1+nP . We have 

| E
1P |≤dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+3 (1 ∈F1∪F3∪F7∪F8=F1∪F3), and | E

1+nP |≤dH(X, M)+ 
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dH(X', Y')+4=dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+3 (Y= )1(Y' =M 
(1) and Y'= M ). No change of 

E
sP  for some s ∈{1, 2, …, n}−F4 is necessary because M =Y'≠X'. 

E
1+nP  and E

1P  are disjoint because B
1+nP  and B

1P  are disjoint (refer to Section 3.4 where it was shown 

that B
1+nP  is disjoint with 

B
rP  for all r ∈{1, 2, …, n}−F4). E

1P  and E
jP  are disjoint provided )1(M  → Y' is 

disjoint with Qj and Wj ∉{M 
(1), )1(M }. The former is true because 

)1(M =Y' (1) and j≠1. We have Wj≠M 
(1)

 

because Wj≠Y=M 
(1), and Wj≠ )1(M  because Wj ∈Qj and )1(M ∉Qj. E

1+nP  and E
jP  are disjoint provided Y → 

M is disjoint with Qj and Wj ∉{M, M }. Since M=Y' , the former holds as a consequence of Lemma 3 (let 

A=Y and B=Y'). We have Wj≠M and Wj≠ M , similarly.  

Case 2. k<n−1. We determine M=Y (f5+f6+f7+f8=0 assures Y ∈Qmin), and let E
iP = B

iP  for all 1≤i≤n−k and 

E
jP = M

jP  for all n−k+1≤j≤n+1. We have | E
iP |≤dH(X, M)+dH(Y, M)+dH(X', M )+dH(Y', M )+3 and | E

jP |≤ 

dH(X, X')+dH(Y, Y')+2. E
iP 's are disjoint because B

iP 's are disjoint (refer to Section 3.4 where it was 

shown that 
B

rP 's are disjoint for all r ∈{1, 2, …, n}−F4). E
iP  and E

jP  are disjoint provided 
)(iM  ⇒* Y' is 

disjoint with Qj and Qj does not contain M 
(i) and 

)(iM . By Lemma 3 (let A=Y' and B=Y), Y  ⇒* Y' and Qj 

are disjoint, which means that )(iM  (= )(iY ) ⇒* Y' and Qj are disjoint. Besides, we have 
)(iM ≠Y' because 

dH( M , Y')=dH(Y , Y')=n−k>1. Hence 
)(iM ∉Qj. Since M 

(i)
 ∈Qi, M 

(i)=Y 
(i)≠Y', and i≠j, we have M 

(i)
 ∉Qj. 

3.7 Construction method (F) 

The construction method (F) can be applied when n=3, dH(X, X')=3, dH(Y, Y')=2, and {X, X'}∩{Y, Y'} is 

empty. By 
F

1P , F
2P , F

3P , and 
F

4P  we denote the resulting four disjoint paths. We have dH(X, Y), dH(X, Y'), 

dH(X', Y), and dH(X', Y') all equal to 1 or 2. We assume dH(X, Y)=1. The discussion for dH(X, Y)=2 is very 

similar.  

We have dH(X, Y')=1, dH(X', Y)=2, and dH(X', Y')=2, because dH(X, Y)+dH(X, Y') ∈{2, 4}, dH(X, Y)+ 

dH(X', Y)≥dH(X, X')=3, and dH(X, Y')+dH(X', Y')≥dH(X, X')=3, respectively. Also we have dH(X', Y' )=3− 

dH(X', Y')=1, dH(X', Y )=3−dH(X', Y)=1, and dH(Y, Y' )=dH(Y , Y')=3−dH(Y, Y')=1. Hence there are two 

paths Y → X → Y' and Y→ Y'  → X' → Y  → Y' from Y to Y' in a 3-cube. Suppose that Y → T → Y' is the 
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other shortest path from Y to Y', where T≠X. The three paths from Y to Y' are disjoint, because X ∉{Y' , Y }, 

T ∉{Y' , Y }, and T≠X' (a consequence of dH(Y', T)=1 and dH(Y', X')=2). 

Let 
F

1P = (X, Y) → (X, X) → ( X , X ) (=(X', X')) → (X', Y ) → (X', Y'), F
2P = (X, Y) → (X, Y' ) → (X, 

X') → (X', X) → (X', Y'), F
3P = (X, Y) → (X, T) → (X, Y') → (Y', X) ⇒* (Y', X') → (X', Y'), and 

F
4P = (X, Y) 

→ (Y, X) ⇒* (Y, X') → (X', Y) → (X', T) → (X', Y'), which were obtained according to the three paths 

from Y to Y' above. They have lengths 4, 4, 7, and 7, respectively.  

3.8 An (I, I')-container 

At most seven (I, I')-containers can be obtained by the main construction method and six auxiliary con-

struction methods. The (I, I')-container we desire is determined as the one with minimal length. For 

example, when I=(0000, 1100) and I'=(1111, 0011), all auxiliary construction methods but (F) can be 

applied. The containers obtained by the main construction method and auxiliary construction methods 

(A), (B), (C), (D), and (E) have lengths 10, 9, 11, 7, 10, and 10, respectively. Hence the container ob-

tained by (C) is desired. The following are the five disjoint paths it contains. 

C
1P = (0000, 1100) → (0000, 0100) → (0100, 0000) → (0100, 0100) → (1011, 1011) → (1011, 1111) → 

(1111, 1011) → (1111, 0011). 
C

2P = (0000, 1100) → (0000, 1000) → (1000, 0000) → (1000, 1000) → (0111, 0111) → (0111, 1111) → 

(1111, 0111) → (1111, 0011). 
C

3P = (0000, 1100) → (0000, 1110) → (1110, 0000) → (1110, 0001) → (0001, 1110) → (0001, 1111) → 

(1111, 0001) → (1111, 0011). 
C

4P = (0000, 1100) → (0000, 1101) → (1101, 0000) → (1101, 0010) → (0010, 1101) → (0010, 1111) → 

(1111, 0010) → (1111, 0011). 
C

5P = (0000, 1100) → (1100, 0000) → (1100, 0001) → (1100, 0011) → (0011, 1100) → (0011, 1110) → 

(0011, 1111) → (1111, 0011). 
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4 An upper bound on the lengths of the best containers 

In this section, the length of the (I, I')-container that was obtained in Section 3 was analyzed. We use LM(I, 

I'), LA(I, I'), LB(I, I'), LC(I, I'), LD(I, I'), LE(I, I'), and LF(I, I') to represent the worst-case lengths of the (I, 

I')-containers that were obtained by the main construction method and auxiliary construction methods 

(A), (B), (C), (D), (E), and (F), respectively. We have  

 LM(I, I') = max{n+5, dH(X, X')+dH(Y, Y')+4, min{dH(X, X')+dH(Y, Y')+8, dH( X , Y')+dH(Y , X')+3}} if  

  (X=Y and X'≠Y') or (X≠Y and X'=Y'), dH(X, X')+dH(Y, Y')+2 if dH(Y, Y')=n and {X, X'}∩{Y, 

   Y'} is empty, and max{8, dH(X, X')+dH(Y, Y')+4} else.  

 LA(I, I') = dH(X, Y')+dH(X', Y)+7.  

 LB(I, I') = dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+7, where M ∈Qmin.  

 LC(I, I') = max{dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+3, dH(X, Y')+dH(X', Y)+3} if f5+f6+f7+ 

  f8=0, and max{dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+5, dH(X, Y')+dH(X', Y)+3} if 

   f5+f6+f7+f8≠0, where M ∈Qmin.  

 LD(I, I') = max{dH(X, X')+dH(Y, Y')+2, dH(X, Y')+dH(X', Y)+3} if f5+f6+f7+f8=0, and max{dH(X, X')+ 

   dH(Y, Y')+2, dH(X, Y')+dH(X', Y)+5} if f5+f6+f7+f8≠0.  

 LE(I, I') = max{dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+3, dH(X, X')+dH(Y, Y')+2}, where M ∈ 

  Qmin.  

 LF(I, I') = 7.  

By Lemma 1, we have 

LM(I, I') = max{n+5, 2f2+2f4+f5+f6+f7+f8+4, min{2f2+2f4+f5+f6+f7+f8+8, 2f1+2f2+f5+f6+f7+f8+3}}  

    if (X=Y and X'≠Y') or (X≠Y and X'=Y'),  

  2f2+2f4+f5+f6+f7+f8+2 if dH(Y, Y')=n and {X, X'}∩{Y, Y'} is empty, and  

  max{8, 2f2+2f4+f5+f6+f7+f8+4} else. 

 LA(I, I') = 2f3+2f4+f5+f6+f7+f8+7. 

 LB(I, I') = 2f1+2f2+2f3+f5+f6+f7+f8+7. 

 LC(I, I') = max{2f1+2f2+2f3+3, 2f3+2f4+3} if f5+f6+f7+f8=0, and  

  max{2f1+2f2+2f3+f5+f6+f7+f8+5, 2f3+2f4+f5+f6+f7+f8+3} if f5+f6+f7+f8≠0. 

 LD(I, I') = max{2f2+2f4+2, 2f3+2f4+3} if f5+f6+f7+f8=0, and  

  max{2f2+2f4+f5+f6+f7+f8+2, 2f3+2f4+f5+f6+f7+f8+5} if f5+f6+f7+f8≠0. 
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 LE(I, I') = max{2f1+2f2+2f3+3, 2f2+2f4+2}. 

 LF(I, I') = 7. 

The following two lemmas together show that the (I, I')-container of Section 3 has length not 

greater than n+n/3+4. 

Lemma 5. When {X, X'}∩{Y, Y'} is not empty, the (I, I')-container of Section 3 has length at most n+5. 

Proof. Four cases are discussed below.  

Case 1. X≠Y and X'≠Y'. We have X=Y' or X'=Y. We assume X=Y', which implies f3=f4=f6=f8=0 by Lemma 

1. Hence f1+f2+f5+f7=n. If f2≥2, then there is an (I, I')-container obtained from the construction method (A) 

whose length is at most 2f3+2f4+f5+f6+f7+f8+7=f5+f7+7=(n−f1−f2)+7≤n+5. If f2≤1, then there is an (I, I')- 

container obtained from the main construction method whose length is at most max{8, 2f2+2f4+f5+f6+f7+ 

f8+4}≤n+5. The discussion for X'=Y is similar. 

Case 2. X=Y and X'≠Y'. By Lemma 1 we have f2=f3=f5=f8=0. Hence f1+f4+f6+f7=n. If f1≥f4−1, then there is 

an (I, I')-container obtained from the main construction method whose length is at most max{n+5, 2f2+ 

2f4+f5+f6+f7+f8+4, min{2f2+2f4+f5+f6+f7+f8+8, 2f1+2f2+f5+f6+f7+f8+3}}=max{n+5, 2f4+f6+f7+4, min{2f4+ 

f6+f7+8, 2f1+f6+f7+3}}≤n+5, because min{2f4+f6+f7+8, 2f1+f6+f7+3}=2f4+f6+f7+8 if f1≥f4+3, and 2f1+f6+ 

f7+3 if f4−1≤f1≤f4+2. On the other hand, if f1≤f4−2, then f4≥2 and there is an (I, I')-container obtained from 

the construction method (B) whose length is at most 2f1+2f2+2f3+f5+f6+f7+f8+7≤n+5.  

Case 3. X≠Y and X'=Y'. Similar to Case 2. 

Case 4. X=Y and X'=Y'. By Lemma 1 we have f2=f3=f5=f6=f7=f8=0. Hence f1+f4=n. If f1≥f4−1, then there is 

an (I, I')-container obtained from the main construction method whose length is at most max{8, 2f2+2f4+ 

f5+f6+f7+f8+4}≤n+5. If f1≤f4−2, then there is an (I, I')-container obtained from the construction method (B) 

whose length is at most 2f1+2f2+2f3+f5+f6+f7+f8+7≤n+5.       

Lemma 6. When {X, X'}∩{Y, Y'} is empty, the (I, I')-container of Section 3 has length at most n+n/3+4. 

Proof. There are four cases discussed below.  

Case 1. f1=0 and f5+f6+f7+f8=0. We have f2+f3+f4=n. Three cases are discussed below. 

 Case 1.1. f3≥f4. Three cases are further discussed below. 
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Case 1.1.1. f3≥f2. We have 3f3≥f2+f3+f4=n, which implies f3≥n/3. By Lemma 1, dH(Y, Y')=f2+f4= 

n−f3≤2n/3<n. There is an (I, I')-container obtained from the main construction method whose length is 

at most max{8, 2f2+2f4+f5+f6+f7+f8+4}≤n+n/3+4. 

Case 1.1.2. f3=f2−1 or f2−2. We have f3≥(n−2)/3≥1, similarly. Also, f2≥(n+2)/3≥1 because f2≥ 

f3+1≥f4+1. We have 1≤f2≤dH(Y, Y')=n−f3<n. When f3+f4≥2, there is an (I, I')-container obtained from the 

construction method (D) whose length is at most max{2f2+2f4+2, 2f3+2f4+3}<n+n/3+4.  

When f3+f4<2, we have f3=1 and f4=0, which implies f2=n−1. If n≥4, then f2≥3 and there is an (I, I')- 

container obtained from the construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7≤n+ 

n/3+4. If n=3, then dH(Y, Y')=n−f3=2. There is an (I, I')-container obtained from the main construction 

method whose length is at most max{8, 2f2+2f4+f5+f6+f7+f8+4}=8=n+n/3+4. 

Case 1.1.3. f3≤f2−3. We have f2≥n/3+2≥3 because f2≥f3+3≥f4+3. There is an (I, I')-container ob-

tained from the construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7<n+n/3+4. 

Case 1.2. f3=f4−1 or f4−2. Three cases are discussed below. 

Case 1.2.1. f4≥f2+2. We have f3≥(n−2)/3≥1 and f4≥n/3+1≥2, similarly. Then dH(Y, Y')=n−f3<n. 

If n≥4, then there is an (I, I')-container obtained from the construction method (E) whose length is at most 

max{2f1+2f2+2f3+3, 2f2+2f4+2}≤n+n/3+4. If n=3, then f4=2 and f3=1. There is an (I, I')-container ob-

tained from the main construction method whose length is at most max{8, 2f2+2f4+f5+f6+f7+f8+4}=8=n+ 

n/3+4.  

Case 1.2.2. f2−1≤f4≤f2+1. We have f2≥(n−1)/3≥1, f3≤(n−1)/3, and f4≥n/3≥1, similarly. If n≥4, 

then f4≥2. There is an (I, I')-container obtained from the construction method (C) whose length is at most 

max{2f1+2f2+2f3+3, 2f3+2f4+3}≤n+n/3+4. If n=3, then f3=0 and dH(Y, Y')=n−f3=n. There is an (I, 

I')-container obtained from the main construction method whose length is at most 2f2+2f4+f5+f6+f7+f8+2= 

8=n+n/3+4.  

Case 1.2.3. f4≤f2−2. We have f2≥(n−1)/3+2. There is an (I, I')-container obtained from the con-

struction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7≤n+n/3+4. 

Case 1.3. f3≤f4−3. Three cases are discussed below. 
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Case 1.3.1. f4≥f2+2. We have f4≥(n−1)/3+2. There is an (I, I')-container obtained from the con-

struction method (B) whose length is at most 2f1+2f2+2f3+f5+f6+f7+f8+7≤n+n/3+4. 

Case 1.3.2. f2−1≤f4≤f2+1. We have f2≥(n+1)/3≥2 and f4≥(n+2)/3≥2. There is an (I, I')-container 

obtained from the construction method (C) whose length is at most max{2f1+2f2+2f3+3, 2f3+2f4+3}<n+ 

n/3+4.  

Case 1.3.3. f4≤f2−2. We have f2≥(n+1)/3+2≥3. There is an (I, I')-container obtained from the 

construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7<n+n/3+4. 

Case 2. f1=0 and f5+f6+f7+f8>0. Suppose f5+f6+f7+f8=k≥1. We have f2+f3+f4=n−k. Two cases are discussed 

below. 

Case 2.1. f3≥f4−1. Four cases are further discussed below. 

Case 2.1.1. f2≥f3+3. We have f2≥(n−k+2)/3+1. There is an (I, I')-container obtained from the 

construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7=2(n−k−f2)+k+7≤n+n/3+4. 

Case 2.1.2. f2=f3+1 or f3+2. We have f2≥(n−k+1)/3 and f3≥(n−k)/3−1. When f2+f4=1 or (f2+f4=2 

and n≥4), there is an (I, I')-container obtained from the main construction method whose length is at most 

max{8, 2f2+2f4+f5+f6+f7+f8+4}≤n+n/3+4.  

When f2+f4=2 and n=3, we have dH(Y, Y')≥2 by Lemma 1. If dH(Y, Y')=2, then f5+f6=0, f7+f8=k=1, 

and dH(X, X')=f2+f4+f7+f8=3. There is an (I, I')-container obtained from the construction method (F) 

whose length is 7<n+n/3+4. If dH(Y, Y')=3, then there is an (I, I')-container obtained from the main 

construction method whose length is 2f2+2f4+f5+f6+f7+f8+2=7<n+n/3+4.  

When f2+f4≥3, we have n≥4 and dH(Y, Y')≥3. Since f2≥f4, we have f2≥2. If dH(Y, Y')<n and f3+f4≥2, 

then there is an (I, I')-container obtained from the construction method (D) whose length is at most 

max{2f2+2f4+f5+f6+f7+f8+2, 2f3+2f4+f5+f6+f7+f8+5}≤n+n/3+4. If dH(Y, Y')<n and f3+f4≤1, then there is 

an (I, I')-container obtained from the construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+ 

f8+7≤n+n/3+4. If dH(Y, Y')=n, then there is an (I, I')-container obtained from the main construction 

method whose length is at most 2f2+2f4+f5+f6+f7+f8+2≤n+n/3+4. 

Case 2.1.3. f2=f3 and f3=f4−1. We have n−k≥1, f2=(n−k−1)/3, and f4=(n−k−1)/3+1. When k=n−1, we 

have f2=0 and f4=1. There is an (I, I')-container obtained from the main construction method whose length 

is at most max{8, 2f2+2f4+f5+f6+f7+f8+4}≤n+n/3+4. When k≤n−2, we have f2≥1 and f4≥2. There is an (I, 
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I')-container obtained from the construction method (C) whose length is at most max{2f1+2f2+2f3+f5+f6+ 

f7+f8+5, 2f3+2f4+f5+f6+f7+f8+3}≤n+n/3+4.  

Case 2.1.4. (f2=f3 and f3>f4−1) or f2<f3. We have n−k=f2+f3+f4<f3+f3+(f3+1)=3f3+1. Hence, f3≥ 

(n−k)/3. There is an (I, I')-container obtained from the main construction method whose length is at 

most max{8, 2f2+2f4+f5+f6+f7+f8+4}≤n+n/3+4. 

Case 2.2. f3≤f4−2 (hence f4≥2). Three cases are discussed below. 

Case 2.2.1. f4≥f2+2. We have f4≥(n−k+1)/3+1. There is an (I, I')-container obtained from the 

construction method (B) whose length is at most 2f1+2f2+f3+f5+f6+f7+f8+7≤n+n/3+4.  

Case 2.2.2. f4=f2 or f2+1 (hence f2≥1). We have f4≥(n−k+2)/3. There is an (I, I')-container ob-

tained from the construction method (C) whose length is at most max{2f1+2f2+2f3+f5+f6+f7+f8+5, 2f3+f4+ 

f5+f6+f7+f8+3}≤n+n/3+4. 

Case 2.2.3. f4≤f2−1 (hence f2≥3). We have f2≥(n−k+1)/3+1. There is an (I, I')-container obtained 

from the construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7≤n+n/3+4. 

Case 3. f1>0 and f5+f6+f7+f8=0. We have dH(Y, Y')<n and f1+f2+f3+f4=n. Three cases are discussed below. 

Case 3.1. f3≥f4−f1+1. Two cases are further discussed below. 

Case 3.1.1. f2≤f3+1. We have f3≥(n−2f1)/3. There is an (I, I')-container obtained from the main 

construction method whose length is at most max{8, 2f2+2f4+f5+f6+f7+f8+4}=max{8, 2(n−f1−f3)+4}≤n+ 

n/3+4.  

Case 3.1.2. f2≥f3+2. We have f2≥(n−2f1+2)/3+1. There is an (I, I')-container obtained from the 

construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7<n+n/3+4. 

Case 3.2. f4−f1−2≤f3≤f4−f1. Three cases are discussed below. 

Case 3.2.1. f4≥f1+f2+1. We have f3≥(n−2f1)/3−1 and f4≥(n+f1+1)/3. If n≥4, then there is an (I, I')- 

container obtained from the construction method (E) whose length is at most max{2f1+2f2+2f3+3, 2f2+ 

2f4+2}=max{2(n−f4)+3, 2(n−f3−f1)+2}≤n+n/3+4. If n=3, then f1=1, f2=f3=0, and f4=2. There is an (I, 

I')-container obtained from the main construction method whose length is max{8, 2f2+2f4+f5+f6+f7+f8+ 

4}=8=n+n/3+4. 
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Case 3.2.2. f4=f1+f2−1 or f1+f2 (hence f4≥f2 because f1≥1). We have f2≥(n−2f1)/3 and f4≥ 

(n+f1−1)/3. If f2=0, then f1≥f4 which implies f4≤n/2. There is an (I, I')-container obtained from the 

main construction method whose length is max{8, 2f2+2f4+f5+f6+f7+f8+4}≤n+n/3+4. If f2=1 and f4=1, 

then there is an (I, I')-container obtained from the main construction method whose length is at most 

max{8, 2f2+2f4+f5+f6+f7+f8+4}=8≤n+n/3+4. If (f2=1 and f4>1) or f2>1, then there is an (I, I')-container 

obtained from the construction method (C) whose length is at most max{2f3+2f4+3, 2f1+2f2+2f3+3}= 

max{2(n−f1−f2)+3, 2(n−f4)+3}<n+n/3+4.  

Case 3.2.3. f4≤f1+f2−2. We have f2≥(n−2f1+1)/3+1. Since f4≥f1+f3, we have f2≥f3+2. There is an (I, 

I')-container obtained from the construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7≤ 

n+n/3+4. 

Case 3.3. f3≤f4−f1−3 (hence f4≥4). Three cases are discussed below. 

Case 3.3.1. f4≥f2+f1+2. We have f4≥(n+f1+2)/3+1. There is an (I, I')-container obtained from the 

construction method (B) whose length is at most 2f1+2f2+2f3+f5+f6+f7+f8+7<n+n/3+4. 

Case 3.3.2. f2+f1−1≤f4≤f2+f1+1. We have f2≥(n+1−2f1)/3 and f4≥(n+f1+2)/3. We have f2≥f4−f1− 

1≥(f3+3)−1=f3+2. There is an (I, I')-container obtained from the construction method (C) whose length is 

at most max{2f3+2f4+f5+f6+f7+f8+3, 2f1+2f2+2f3+f5+f6+f7+f8+3}<n+n/3+4.  

Case 3.3.3. f4≤f2+f1−2. We have f2≥f4−f1+2≥(f3+3)+2=f3+5. There is an (I, I')-container obtained 

from the construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7<n+n/3+4. 

Case 4. f1>0 and f5+f6+f7+f8>0. Suppose f5+f6+f7+f8=k≥1. We have f1+f2+f3+f4=n−k. Two cases are dis-

cussed below. 

Case 4.1. f3≥f4−f1−1. Three cases are further discussed below 

Case 4.1.1. f2≥f3+2. We have f2≥(n−2f1−k)/3+1. There is an (I, I')-container obtained from the 

construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7≤n+n/3+4.  

Case 4.1.2. f2=f3+1 and f3=f4−f1−1. We have f2=(n−2f1−k+1)/3 and f4=(n+f1−k+1)/3. There is an (I, 

I')-container obtained from the construction method (C) whose length is at most max{2f1+2f2+2f3+f5+f6+ 

f7+f8+5, 2f3+2f4+f5+f6+f7+f8+3}≤n+n/3+4.  
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Case 4.1.3. (f2=f3+1 and f3>f4−f1−1) or f2<f3+1. We have n−k=f1+f2+f3+f4<f1+(f3+1)+f3+(f3+f1+1)= 

2f1+3f3+2. Hence we have f3≥(n−2f1−k−1)/3. There is an (I, I')-container obtained from the main con-

struction method whose length is at most max{8, 2f2+2f4+f5+f6+f7+f8+4}≤n+n/3+4. 

Case 4.2. f3≤f4−f1−2 (hence f4≥3). Three cases are discussed below. 

Case 4.2.1. f4≥f2+f1+2. We have f4≥(n+f1−k+1)/3+1. There is an (I, I')-container obtained from 

the construction method (B) whose length is at most 2f1+2f2+2f3+f5+f6+f7+f8+7≤n+n/3+4.  

Case 4.2.2. f2+f1≤f4≤f2+f1+1 (hence f2≥f4−f1−1≥f3+1). We have f2≥(n−2f1−k)/3 and f4≥ 

(n+f1−k+2)/3. There is an (I, I')-container obtained from the construction method (C) whose length is at 

most max{2f3+2f4+f5+f6+f7+f8+3, 2f1+2f2+2f3+f5+f6+f7+f8+5}<n+n/3+4.  

Case 4.2.3. f4≤f2+f1−1 (hence f2≥f4−f1+1≥f3+3). We have f2≥(n−2f1−k+1)/3+1. There is an (I, I')- 

container obtained from the construction method (A) whose length is at most 2f3+2f4+f5+f6+f7+f8+7≤n+ 

n/3+4.      

It was shown in [3] that when X=X', there is an (I, I')-container whose length is at most n+5. Ac-

cording to Lemma 5 and Lemma 6, we have the following lemma.  

Lemma 7. Suppose that I=(X, Y) and I'=(X', Y') are two distinct nodes of the HCN(n), where n≥3. A best 

(I, I')-container of width n+1 has length not greater than n+n/3+4.  

5 A lower bound on the fault diameter and the main result 

In this section we show that the n-fault diameter of the HCN(n) is n+n/3+3 at most. For this purpose we 

need to estimate the minimal length of a path when it contains nondiameter links and/or diameter links. 

The following two lemmas serve the purpose. 

Lemma 8. Suppose that I=(X, Y) and I'=(X', Y') are two distinct nodes of the HCN(n) and P is a path from 

I to I' that contains c>0 nondiameter links (without diameter links), where X≠X'. Then, |P|≥dH(Y, Y')+ 

dH(X, X')+c if c is even, and |P|≥dH(Y, X')+dH(X, Y')+c if c is odd. 

Proof. If c is odd, then P can be expressed as (X, Y) ⇒* (X, Z1) → (Z1, X) ⇒* (Z1, Z2) → (Z2, Z1) ⇒* (Z2, 

Z3) → (Z3, Z2) ⇒* … ⇒* (Zc−2, Zc−1) → (Zc−1, Zc−2) ⇒* (Zc−1, X') → (X', Zc−1) ⇒* (X', Y'). We have  
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 |P| = dH(Y, Z1)+1+dH(X, Z2)+1+ ∑ −

= + +
3

1 2H }1) ,({c

i ii ZZd +dH(Zc−2, X')+1+dH(Zc−1, Y') 

  = (dH(Y, Z1)+ ∑
−∈

+
}4,...,5,3,1{

2H ) ,(
ci

ii ZZd +dH(Zc−2, X'))+(dH(X, Z2)+ ∑
−∈

+
}3,...,6,4,2{

2H ) ,(
ci

ii ZZd +dH(Zc−1, Y'))+c 

   ≥ dH(Y, X')+dH(X, Y')+c. 

The discussion is similar for even c.      

Lemma 9. Suppose that I=(X, Y) and I'=(X', Y') are two distinct nodes of the HCN(n) and P is a path from 

I to I' that contains d>0 diameter links, where X≠X'. Then, |P|≥dH(Y, Y')+dH(X, X')+2d−1 if d is even, and 

|P|≥dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+2d+∆ if d is odd, where M ∈Qmin and ∆ can be deter-

mined as follows: 

(1) ∆ = 1 if P contains neither of the two links (X, X) → ( X , X ) and (X', X') → ( X' , X' ); 

(2) ∆ ∈{0, 1} if P contains (X, X) → ( X , X ) or (X', X') → ( X' , X' ) but not both; 

(3) ∆ ∈{−1, 0, 1} else. 

Proof. Since a lower bound on the length of P is concerned, P can be expressed as (X, Y) ⇒* (X, T1) → 

(T1, X) ⇒* (T1, T1) → ( 1T , 1T ) ⇒* ( 1T , T2) → (T2, 1T ) ⇒* (T2, T2) → ( 2T , 2T ) ⇒* … ⇒* (Td, Td) → 

( dT , dT ) ⇒* ( dT , X') → (X', dT ) ⇒* (X', Y'), where (X, T1) → (T1, X) ⇒* (T1, T1) and ( dT , dT ) ⇒* ( dT , 

X') → (X', dT ) degenerate to (X, X) and (X', X') if T1=X and dT =X', respectively. We have |P|=dH(Y, T1)+ 

dH(X, T1)+2 ) ,( 1
1

1 H +
−

=∑ i
d

i i TTd +dH( dT , X')+dH( dT , Y')+2d+∆, where ∆=1 if T1≠X and dT ≠X', ∆=0 if T1=X 

or dT =X' but not both, and ∆= −1 if T1=X and dT =X'. 

If d is odd, then  

  dH(Y, T1)+dH(X, T1)+2 ) ,( 1
1

1 H +
−

=∑ i
d

i i TTd  

  = (dH(Y, T1)+ ∑
−∈

+
}2,...,5,3,1{

1) ,(
di

iiH TTd + ∑
−∈

+
}1,...,6,4,2{

1) ,(
di

iiH TTd )+(dH(X, T1)+ 

   ∑
−∈

+
}2,...,5,3,1{

1) ,(
di

iiH TTd + ∑
−∈

+
}1,...,6,4,2{

1) ,(
di

iiH TTd ) 

≥ dH(Y, Td)+dH(X, Td).  
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Hence |P|≥dH(Y, Td)+dH(X, Td)+dH( dT , X')+dH( dT , Y')+2d+∆≥dH(Y, M)+dH(X, M)+dH( M , X')+ 

dH( M , Y')+2d+∆, where M ∈Qmin and ∆ ∈{1, 0, −1}. If P contains neither of (X, X) → ( X , X ) and (X', 

X') → ( X' , X' ), then {T1, Td}∩{X, X , X', X' } is empty, which implies ∆=1. If P contains (X, X) → ( X , 

X ) or (X', X') → ( X' , X' ) but not both, then {T1, Td}∩{X, X } or {T1, Td}∩{X', X' } is empty, which 

implies ∆ ∈{0, 1}. Otherwise, we have ∆ ∈{−1, 0, 1}. 

If d is even, then dH(Y, T1)+dH(X, T1)+2 ) ,( 1
1

1 H +
−

=∑ i
d

i i TTd ≥dH(Y, dT )+dH(X, dT ), similarly. Hence 

|P|≥dH(Y, dT )+dH(X, dT )+dH( dT , X')+dH( dT , Y')+2d+∆≥dH(Y, Y')+dH(X, X')+2d−1.     

In Lemma 9, when d is odd, the computation of ∆ is with the purpose of getting a more accurate 

lower bound on |P|. It is crucial to the main result in Section 5. 

Lemma 10. The n-fault diameter of the HCN(n) is n+n/3+3 at least. 

Proof. To prove this lemma, we show two nodes I=(X, Y) and I'=(X', Y') whose distance can increase to 

n+n/3+3 or more if at most n nodes are removed, where X≠X'. According to Lemma 8 and Lemma 9, 

there are lower bounds on the lengths of four categories of paths from I to I'. We use l1, l2, l3, and l4 to 

denote the lower bounds. I and I' are intended to minimize |{li | li<n+n/3+3 and 1≤i≤4}| and maximize li 

for each li<n+n/3+3.  

For each li<n+n/3+3, the nodes to be removed are intended to increase li to n+n/3+3 or more. 

When |{li | li<n+n/3+3 and 1≤i≤4}|<4, removing fewer than n nodes can result in a lower bound of n+ 

n/3+3 on the lengths of paths from I to I'. Three cases: (1) n=3k+1, (2) n=3k+2, and (3) n=3k are dis-

cussed below, where k≥1. 

Case 1. n=3k+1. Consider I=(X, Y) and I'=(X', Y') with f2=k+1 and f3=f4=k (hence X≠ X'  and f1=f5=f6=f7= 

f8=0), and remove 2k+2 nodes (X, X'), (Y, X), and (X, Y 
(i)) for all i ∈F3∪F4 from the HCN(n). Let P be a 

path from (X, Y 
(j)) to I' in the resulting HCN(n), where j ∈F2. Since every path from I to I' has (X, Y 

(j)) as 

the second node, it suffices to show |P|≥n+n/3+2=4k+3. Two cases are discussed below. 

Case 1.1. P contains no diameter link. Since node (X, X') was removed, P contains two or more 

nondiameter links. According to Lemma 8, |P|≥min{dH(Y 
(j), Y')+dH(X, X')+2, dH(Y 

(j), X')+dH(X, Y')+3}= 

min{(dH(Y, Y')−1)+dH(X, X')+2, (dH(Y, X')+1)+dH(X, Y')+3} (because j ∈F2), which is equal to min{2f2+ 

2f4+f5+f6+f7+f8+1, 2f3+2f4+f5+f6+f7+f8+4}=min{4k+3, 4k+4}=4k+3 by Lemma 1. 
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Case 1.2. P contains d>0 diameter links. According to Lemma 9, if d is even, then |P|≥dH(Y 
(j), Y')+ 

dH(X, X')+3=4k+4. If d is odd, then |P|≥dH(Y 
(j), N)+dH(X, N)+dH( N , X')+dH( N , Y')+2d+∆, where N 

belongs to Qmin with Y replaced by Y 
(j). Since X≠X' and X≠ X' , links (X, X) → ( X , X ) and (X', X') → 

( X' , X' ) are distinct. Hence, when d=1, we have ∆ ∈{0, 1} and hence 2d+∆≥2. When d≥3, we have 2d+ 

∆≥6+(−1)=5. Since dH(Y 
(j), N)≥dH(Y, N)−1 and dH(Y, N)+dH(X, N)+dH( N , X')+dH( N , Y')≥2f1+2f2+2f3+ 

f5+f6+f7+f8 (by Lemma 1), we have |P|≥2f1+2f2+2f3+f5+f6+f7+f8+(2−1)=4k+3. 

Case 2. n=3k+2. Consider I=(X, Y) and I'=(X', Y') with f2=f3=k and f4=k+2, and remove 2k+3 nodes (X, X), 

(X', X'), (Y, X), and (X, Y 
(i)) for all i ∈F2∪F3 from the HCN(n). Let P be a path from (X, Y 

(j)) to I' in the 

resulting HCN(n), where j ∈F4. It suffices to show |P|≥n+n/3+2=4k+4. 

Similar to Case 1, we have |P|≥min{dH(Y 
(j), Y')+dH(X, X')+2, dH(Y 

(j), X')+dH(X, Y')+1}=min{4k+5, 

4k+4}=4k+4 if P contains no diameter link, and |P|≥min{dH(Y 
(j), Y')+dH(X, X')+3, dH(Y 

(j), N)+dH(X, N)+ 

dH( N , X')+dH( N , Y')+2+∆} if P contains one or more diameter links, where N has the same meaning as 

in Case 1.2. We have dH(Y 
(j), Y')+dH(X, X')+3=4k+6. Since nodes (X, X) and (X', X') were removed, we 

have ∆=1. In the following, we show dH(Y 
(j), N)=dH(Y, N)+1. Hence, dH(Y 

(j), N)+dH(X, N)+dH( N , X')+ 

dH( N , Y')+2+∆=dH(Y, N)+dH(X, N)+dH( N , X')+dH( N , Y')+(3+1)≥2f1+2f2+2f3+f5+f6+f7+f8+4=4k+4. 

Suppose X=x1x2…xn, Y=y1y2…yn, X'=x'1x'2…x'n, Y'=y'1y'2…y'n, and N=n1n2…nn. We have  

dH(Y 
(j), N)+dH(X, N)+dH( N , X')+dH( N , Y') 

=  )}()()(){(
}{},...,2,1{ 

iiiiii
jni

ii y'nx'nnxny ⊕+⊕+⊕+⊕∑
−∈

+ 

( )()()()( jjjjjjjj y'nx'nnxny ⊕+⊕+⊕+⊕ ), 

where )()()()( iiiiiiii y'nx'nnxny ⊕+⊕+⊕+⊕  and )()()()( jjjjjjjj y'nx'nnxny ⊕+⊕+⊕+⊕  are 

required to be minimum. Since j ∈F4, we have xj=yj= jx' = jy' , which implies +⊕+⊕ )()( jjjj nxny  

)()( jjjj y'nx'n ⊕+⊕ =1 if nj=yj, and 3 if nj= jy . Consequently, we have nj=yj and hence dH(Y 
(j), N)= 

dH(Y, N)+1. 

Case 3. n=3k. Three cases are discussed below. 

Case 3.1. k=1. Consider I=(X, Y)=(000, 110) and I'=(X', Y')=(111, 001), and remove three nodes (X, 

X)=( X' , X' ), (X, X')=(X, Y 
(3)), and (Y, X) from the HCN(n). We have F2={1, 2} and F4={3}. Let P be a 
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path from (X, Y 
(j)) to I' in the resulting HCN(n), where j ∈F2. It suffices to show |P|≥n+n/3+2=6. 

Similar to Case 1.1, |P|≥6 if P contains no diameter link, and similar to Case 2, |P|≥min{dH(Y 
(j), 

Y')+dH(X, X')+3, dH(Y 
(j), N)+dH(X, N)+dH( N , X')+dH( N , Y')+3 (∆=1)} if P contains one or more diameter 

links. We have dH(Y 
(j), Y')+dH(X, X')+3=8 and dH(Y 

(j), N)+dH(X, N)+dH( N , X')+dH( N , Y')+3≥(dH(Y, N)− 

1)+dH(X, N)+dH( N , X')+dH( N , Y')+3≥6. 

Case 3.2. k=2. Consider I=(X, Y)=(000000, 110000) and I'=(X', Y')=(101111, 011111), and remove 

four nodes (X, X), (Y, Y), ( X' , X' ), and (Y' , Y' ) from the HCN(n). We have F2={1}, F3={2}, F4={3, 4, 5, 

6}, and Qmin={000000, 110000, 010000, 100000}={X, Y, X' , Y' }. Let P be a path from I to I' in the 

resulting HCN(n). It suffices to show |P|≥n+n/3+3=11. Three cases are discussed below. 

Case 3.2.1. P contains no diameter link. By Lemma 8, |P|≥min{dH(Y, Y')+dH(X, X')+2, dH(Y, X')+ 

dH(X, Y')+1}=11.  

Case 3.2.2. P contains one diameter link. We have |P|≥dH(Y, T)+dH(X, T)+dH(T , X')+dH(T , Y')+δ , 

where (T, T) → (T , T ) is the diameter link (refer to Section 2 for P3). Since nodes (X, X), (Y, Y), ( X' , 

X' ), and (Y' , Y' ) were removed, we have T ∉{X, Y, X' , Y' }=Qmin, which implies δ=3. Suppose T= 

t1t2…t6 and M=m1m2…m6 ∈Qmin. We have t3t4t5t6≠0000=m3m4m5m6. Without loss of generality, we as-

sume tr=1, where 3≤r≤6. We have 4)()()()( =⊕+⊕+⊕+⊕ rrrrrrrr y'tx'ttxty  and +⊕ )( rr my  

0)()()( =⊕+⊕+⊕ rrrrrr y'mx'mmx . 

Recall that  

  dH(Y, T)+dH(X, T)+dH(T , X')+dH(T , Y') 

  = )}()()() {(6

1 iiiiiiii i y'tx'ttxty ⊕+⊕+⊕+⊕∑ =
, and 

   dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y') 

  = )}()()( ){(6

1 iiiiiii ii y'mx'mmxmy ⊕+⊕+⊕+⊕∑ =
. 

Since M ∈Qmin, we have +⊕+⊕+⊕≥⊕+⊕+⊕+⊕ )()()()()()()( iiiiiiiiiiiiii x'mmxmyy'tx'ttxty  

)( ii y'm ⊕  for all 1≤i≤6. By Lemma 1, dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')=2f1+2f2+2f3+f5+f6+ 

f7+f8=4. Hence |P|≥4+4+3=11. 

Case 3.2.3. P contains two or more diameter links. By Lemma 9, |P|≥min{dH(Y, Y')+dH(X, X')+3, 
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dH(Y, M)+dH(X, M)+dH( M , X')+dH( M , Y')+6+∆}, where M ∈Qmin and ∆=1 (because nodes (X, X) and 

( X' , X' ) were removed). Further, by Lemma 1, |P|≥min{2f2+2f4+f5+f6+f7+f8+3, 2f1+2f2+2f3+f5+f6+f7+f8+ 

7}=11. 

Case 3.3. k≥3. Consider I=(X, Y) and I'=(X', Y') with f2=k+1, f3=k−1, and f4=k, and remove 2k+3 nodes 

(X, X), (X, X'), (X', X'), (Y, X), and (X, Y 
(i)) for all i ∈F3∪F4 from the HCN(n). Let P be a path from (X, Y 

(j)) 

to I' in the resulting HCN(n), where j ∈F2. It suffices to show |P|≥n+n/3+2=4k+2.  

Similar to Case 1.1, |P|≥4k+2 if P contains no diameter link, and similar to Case 2, |P|≥min{dH(Y 
(j), 

Y')+dH(X, X')+3, dH(Y 
(j), N)+dH(X, N)+dH( N , X')+dH( N , Y')+3 (∆=1)} if P contains one or more diameter 

links. We have dH(Y 
(j), Y')+dH(X, X')+3=4k+4 and dH(Y 

(j), N)+dH(X, N)+dH( N , X')+dH( N , Y')+3≥(dH(Y, 

N)−1)+dH(X, N)+dH( N , X')+dH( N , Y')+3≥4k+2.      

Combining Lemma 7 and Lemma 10, we have the following theorem, which is the main result of 

this paper. 

Theorem 1. The worst-case length of a best container of width n+1, the (n+1)-wide diameter, and the 

n-fault diameter of the HCN(n) are n+n/3+3 or n+n/3+4.  

6 Concluding remarks 

In this paper, containers of width n+1 whose lengths are n+n/3+4 at most were constructed in the 

HCN(n). This improves on containers of [3] whose lengths are 2n+6 at most. In addition, the (n+1)-wide 

diameter and n-fault diameter of the HCN(n) were shown to be n+n/3+3 or n+n/3+4. Since the 

2n-wide diameter and (2n−1)-fault diameter of the 2n-cube are 2n+1, the HCN has a smaller wide di-

ameter and fault diameter than a comparable hypercube. 

It is practically important to construct containers because they can be used to accelerate the 

transmission rate and to enhance the transmission reliability. Usually, the construction of best containers 

is closely related to the construction of shortest paths. As described in Section 2, the computation of 

shortest paths in the HCN involved three shortest paths 
*

1P , *
2P , and 

*
3P  obeying some constraints. 

Consequently, it is rather difficult to obtain best containers of the HCN by using a single construction 

method. The main construction method cannot produce containers of relatively small lengths everywhere, 

which is the reason why six auxiliary construction methods are needed.  
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On the other hand, a network with a low wide diameter and fault diameter gains the advantages of 

efficient parallel transmission and high fault-tolerant capability. A network with connectivity k is called 

strongly resilient if its (k−1)-fault diameter exceeds the diameter by a constant [12]. A strongly resilient 

network is superior in fault tolerance because of the slow increment of transmission delay caused by node 

faults. According to Theorem 1, the HCN is strongly resilient. 

The HCN uses almost half as many links as a comparable hypercube and yet has a smaller diameter, 

wide diameter, and fault diameter. The use of diameter links is the main cause. But, at the same time, they 

make the topology of the HCN more complex. It becomes difficult to explore topological properties, e.g., 

shortest path, diameter, container, wide diameter, and fault diameter, of the HCN. We are going to ex-

plore other topological properties such as hamiltonicity and embedding of the HCN. 
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