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ABSTRACT 
 
The field of super-resolution has a wide area of 
applications. In order to display relatively low-quality 
content on high-resolution displays, the need for super 
resolution algorithms has become an urgent market 
priority. A method of super-resolution based on project-
onto-convex-sets (POCS) is proposed in this thesis. In 
the super-resolution process, a set of low-quality images 
is given, and a single improved-resolution image is 
desired. We adopt frequency-domain method to estimate 
motion and enhance the result of high-resolution image 
by logarithmic image processing model. 
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1. INTRODUCTION 
 
Super-Resolution (SR) image reconstruction is a branch 
of image fusion for bandwidth extrapolation beyond the 
limits of traditional imaging systems [14]. It is a 
function procedure a high-resolution (HR) image from 
several low-resolution (LR) images which are sub-pixel 
shifted from each other covering similar region in the 
world [3]. 

Problems of super-resolution in a number of imaging 
fields, such as satellite surveillance pictures and remote 
monitoring, where the size of the CCD (Charge-Coupled 
Device) array used for imaging may introduce physical 
limitations on the resolution of the image data. Medical 
diagnosis may be made more accurately if data from a 
number of scans can be combined into a single more 
detailed image. A clear, high-quality image of a region 
of interest in a video sequence may be useful for facial 
recognition algorithms, car number plate identification, 
or for producing a “print-quality” picture for the press. 

In this paper, we propose a super resolution method 
that generates a high-resolution image four low-
resolution images. This method uses four sub-pixel shift 
low-resolution images from image sequence and applies 

motion estimation and logarithmic image processing 
model to enhance high-resolution image. 

The field of super-resolution has a wide area of 
application [3]. Although the concept of super-
resolution is the same, the techniques of achieving HR 
imagery may not be the same for each application. For 
some applications such as real-time video surveillance 
or target detection, computational time is very important 
and requires a super-resolution technique with high 
accuracy and low computational cost. On the other hand, 
for certain applications such as astronomical imaging or 
text recognition, computational time is not a constraint 
and thus such applications can implement super-
resolution techniques with high accuracy and a higher 
computational cost. 

To name a few applications of super-resolution both 
in civilian and military domains: medical Imaging, 
remote sensing, target detection and recognition, radar 
imaging, forensic science, surveillance systems. 
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Fig. 1: (a) Satellite surveillance image [10]. (b) Image 
fusion with NMR (Nuclear Magnetic Resonance 

Spectroscopy) and SPECT (Single Photon Emission 
Computed Tomography) [6]. (c) Low-resolution image. 

(d)High-resolution image. 

2. RELATED WORK 
It is possible to have reconstruction-based super-
resolution due to the reason that each low-resolution 
image contains sub-pixel different functions of the 
original scene. Sub-pixel registration differences or blur 
differences have contributed to this effect [14]. We can 
treat it as an observation model. Then, we can super-
resolution as an inverse problem that need us to reverse 
the decimation and blur. 

Each low-resolution pixel can be used as the integral 
of the high-resolution image if we employ a particular 
blur function. We can assume that the pixel locations in 
the high-resolution frame are not previously determined, 
along with the point-spread function that describes how 
the blur behaves [14]. Due to the reason that pixels are 
not continuous, this integral in the high-resolution frame 
is modelled as a weighted sum of high-resolution pixel 
values, and the Point-Spread Function (PSF) kernel will 
provide the weights. 

Every low-resolution pixel contains some 
information of the world. The set of constraints will not 
be redundant if we have a set of low-resolution images 
with different sub-pixel registrations with respect to the 
high-resolution frame, or with different blurs. Each 
additional image will have contribute information to the 
estimate of the high-resolution image. We must account 
these factors for in a super-resolution model. Thus, the 
full picture of the process of generating a low-resolution 
image from high-resolution image generates a low-
resolution image set [14]. 

 
2.1. Observation Model 
 

The digital imaging system is not without problem 
due to the limitations of hardware, acquiring images 
with various kinds of degradations [12]. As always 
happened in sports photography or videos, the finite 
aperture time leads to motion blur. The finite sensor size 
will result in sensor blur, and aliasing effects due to the 
limited sensor density. These degradations are modeled 
fully or partially in different SR techniques. 

Fig. 2 shows how a typical observation model 
relates HR image to LR image [12]. We input 
continuous real scenes to the imaging system, and they 
are well approximated as band-limited signals. We can 
generate the high-resolution digital image through 
sampling the continuous signal beyond the Nyquist rate 
(a) real scenes we desired. In super-resolution setting, 
there usually exists some kind of motion between the 
scene to capture and the camera. Multiple frames of the 
scene become the inputs to the camera are, connected by 
possibly local or global shifts, leading to image (b). 
Going through the camera, several kinds of blur will be 
incurred by these motion-related high resolution frames, 
such as optical blur and motion blur. These blurred 
images (c) are then down-sampled at the image sensors 
(e.g. CCD detectors) into pixels, by an integral of the 
image falling onto each sensor area. The sensor noise 



and color filtering noise will affect these down-sampled 
images. In the end, blurred, decimated frames and noisy 
versions of the underlying true scene are captured by the 
low-resolution imaging system.  
 

 
                                          

 
Fig. 2: The observation model of an imaging system 
relating a high-resolution image to the low-resolution 

observation frames [12]. 
 

 
2.2. Down-Sampling 
 

The HR image is as stated ideally sampled at 
Nyquist frequency [13]. The sampling at high resolution 
can be said as an image covered by fine grid. One pixel 
at a certain gray level is represented by each cell in the 
grid. When down-sampling, a coarser grid is placed 
upon this fine grid. The cells in this new grid will each 
cover more than one cell in the fine grid. The result is 
the loss of the fidelity within the cell as it can only 
contain one gray level. The gray level is generated as 
being the level of one of the pixels x = 1, … , L1; y = 
1, … , L2 denoted as phase. If the motion is regarded as 
global, i.e. no local changes in the picture the phase is 
set to the same when creating every LR pixel. We show 
the principle is shown in Figure 3, in which an HR 
image is down-sampled by a factor of 2. It is possible to 
create an ordered set of LR images that have all the 
information at phases suited for easy reconstruction in a 
simulated scenario. 

 
Fig. 3: An example of down-sampling [13]. 

 
2.2. Sub-Pixel Shift 

 
In some circumstances, we get some images from the 

same scene. For example, one camera captures a scene 

many times or some cameras capture a scene one time. 
Sub-pixel shift are the multi-frames that have some 
different perspectives of the same scene. These low-
resolution images with different sample-scene are 
important to restore high-frequency detail. 
Sub-pixel shift estimation is identifying the shift in the x 
and y directions between two patches wherein, we can 
say that they have already been aligned in such a way 
that there are no integer shifts between them [7]. 
Traditionally, this problem has been solved by the 
resolution pyramids in which the sub-pixel shift problem 
is posed as an integer shift problem in higher resolution. 
However, the interpolation algorithm used for increasing 
the resolution limits such a technique. 

 
Fig. 4: Sub-pixel shift. 

 
3. STATE-OF-THE-ART SR METHODS 

 
3.1. Frequency Domain Methods 
 
Frequency-domain SR methods typically rely on familiar 
Fourier transform properties, specifically the shifting 
and sampling theorems, for the removal of alias [15]. 
Tsai and Huang [17] were the first to explain the 
concept of multi-frame SR re-construction. They 
proposed a frequency domain observation model, by 
disregarding the image fusion: algorithms and 
applications effects of blurring and observation noise 
during image acquisition. The observed images were 
modeled as under-sampled images of a static, unknown 
scene with continuous spatial variables, which was 
subject to global translational motion. They assume 
ideal impulse sampling, but there is a sampling rate 
below the Nyquist rate. The shift and aliasing properties 
were used to formulate a system of equations that is 
related the aliased Discrete Fourier Transform (DFT) 
coefficients of the observed images to samples of the 
Continuous Fourier Transform (CFT) of the unknown 
scene. The observations were derived from the unknown 
scene. 

Starting from the original continuous scene z(x,y), 
global translational motion yields K shifted images: 



z(k)(x,y) = f (x + Δx(k) ,y + Δy(k) ) with k ∈ {1, 2, ..., K}. 
The CFT of the scene is given by Z (u,v) and that of the 
translations by Z(k) (u,v). The shifted images are impulse 
sampled to yield K observed LR images: y(k) [ m,n ] = 
z(mTx + Δx(k) , nTy + Δy(k) ), where Tx and Ty denote the 
sampling periods in the x and y dimensions, respectively. 
The K corresponding 2-D DFTs are denoted by Y(k) [u, 
v] . The CFT of the scene and the DFT of the shifted and 
sampled images are related via aliasing by  

 
Due to the shifting property of the Fourier transform, 
spatial shifting appears as phase shifting: 

 
If z(x,y) is band-limited, there exists Ωx,Ωy ∈ N such 
that Z(u,v) → 0 for | u | ≧ Ωx/Tx and | v | ≧ Ωy/Ty and 
the infinite summations in Eq. (3.1.1) are reduced to 
finite sums. Using the shifting property of Eq. (3.1.2) the 
relationship in Eq. (3.1.1) obtains the following matrix 
form:  

 
where Y is a K × 1 vector; the k-th element of which 
contains the DFT coefficients Y(k)[ u,v ] of the observed 
frame y(k) [ m,n ]; andψ is a matrix that relates the DFTs 
of the observed frames to the samples of the unknown 
CFT of z(x,y) contained in vector Z. 
 
3.2. Spatial Domain Methods 
 
Many super-resolution spatial-domain methods are 
proposed in the past couple of years [12]. Since the HR 
image and LR images are related in a sparse linears 
system, spatial-domain methods overcome the 
difficulties of the frequency-domain methods. Prior 
knowledge might be used to constrain or regularize the 
super-resolution problem. We can apply many flexible 
estimators to the SR reconstruction. 

The spatial-domain methods contain interpolation, 
deterministic regularized techniques, stochastic methods, 
iterative back projection, and projection onto convex 
sets among others. 
 
3.2.1. Bicubic Interpolation 
Given a sampled signal, its continuous counterpart can 
be approximated using some suitable interpolation 
kernel [2]. By applying successively 1D kernel 
interpolation on horizontal and vertical directions, we 
can 2D interpolation. For uniformly spaced data, we can 
the continuous-domain signal Y(u,v) as,: 

 
where (Δ u,Δ v) are sampling intervals, h() is the 
interpolation kernel and {y(k,l)} represent the pixel 
array in the low-resolution grid. The SR signal is 
obtained by resampling (Eq. 3.2.1) on a finer grid.  The 
cubic convolution kernel is given as, 

 
 
3.2.2. Iterative Back-Projection Techniques 
Irani and Peleg considered the Super-resolution of 
monochrome and color low-resolution image sequences 
[8]. Based on computer-aided tomography [3], they 
derived an iterative back-projection algorithm. The 
algorithm starts with an initial guess (X0) for the output 
high-resolution image and the imaging process (A) is 
simulated to generate low-resolution images (bsim) based 
on the initial guess. These simulated low-resolution 
images are then compared with the observed ones (B) 
and the error generated between them is back-projected 
onto the initial guess via back-projection operator (Abp), 
so to minimize the error iteratively.  

 
Though the algorithm is about translational and 

rotational motion, the authors propose that other 
motions can also use the same concept. They look into 
multiple motion analysis including occlusion and 
transparency. The algorithm solves the issue of blur and 
noise successfully. However, the technique is unable to 
generate a unique solution because of the ill-posed 
nature of super-resolution. 
 
3.2.1. Projection Onto Convex Sets 
The constraint sets, in the POCS formulation, are used 
to define the feasible solution space for the super-
resolution restoration [4]. Constraints are defined as 
convex sets in the vector space 1 2N N×  which represents 
the space containing all super-resolution images. Sets 
that represent desirable characteristics of the solution are 
defined on this space. These sets encapsulate constraints 
such as fidelity to the observed data, positivity, bounded 
energy, smoothness, and so on. The solution space of the 
super-resolution restoration problem is, by design, the 
intersection of the convex constraint sets. POCS is an 
iterative procedure which, given any point in the vector 
space, locates a point which simultaneously satisfies all 
the constraint sets. 

Given k convex constraint sets in 1 2N N×  such that the 
intersection of the sets is nonempty, POCS projects a 
point in the vector space onto each constraint set in turn. 
Repeat the process until a point is reached which lies in 
the intersection of the k sets [3]. This iteration converges, 
provided that the constraint sets are convex. 

POCS has attracted much attention in recent years in 
a multitude of image restoration and reconstruction 
applications. Three reasons for this stand out: 
• Simplicity: 

POCS is very intuitive and generally simple to 
implement. The only potential source of difficulty 
is in determining the projection operators. 
 



• Flexible spatial-domain observation model: 
Because the POCS method is typically formulated 
in the spatial domain, very general motion and 
observation models may be used. The complexity 
of the motion and observation model has little 
impact on the POCS solution procedure. 
 

• Powerful inclusion of a-priori information: 
Perhaps the most useful aspect of the POCS 
formulation is the ease with which a-priori 
information may be included. It is generally 
simple to define convex constraint sets which 
incorporate desired solution characteristics. These 
sets may impose restrictions such as positivity or 
bounded energy which is difficult to represent in 
terms of cost function. 

 
4. OUR METHOD 

 
Our super-resolution method is based on the project-

onto-convex-set method. We use a frequency domain 
motion estimation method to estimate the shift and rotate 
between those low-resolution frames [18]. 

Moreover, we use POCS methods to reconstruct high-
resolution image from low-resolution images. The 

POCS method often causes aliasing at the edges of the 
result images. Therefore, we also adopt logarithmic 

image processing model method to improve the result of 
high-resolution image. The flow of our proposed 

algorithm is as follows: 

 
Fig. 5: The flowchart of our proposed algorithm. 

 
 
4.1. Motion Estimation 
 

We use a frequency domain method to estimate the 
motion between the reference image and each of the 

other images [18]. The motion can be described as a 
function of s three parameters: horizontal and vertical 
shifts, Δx1 and Δx2, and a planar rotation angle φ. 

This frequency domain approach estimates the 
horizontal shifts, vertical shifts, and rotations separately. 
Assume the reference signal as f1(x) and f2(x) as shifted 
and rotated version. 

This frequency domain approach estimates the 
horizontal shifts, vertical shifts, and rotations separately. 
Assume the reference signal as f1(x) and f2(x) as shifted 
and rotated version.
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In Fourier domain, the above equation can be 
expressed as: 

 
where F2(u) is the Fourier transform of f2(x), and 

'x x x= + ∆  is the coordinate transformation. The 
relation between the amplitudes of the Fourier 
transforms can be computed as: 

  
2 1( ) ( )F u F Ru= , 

where |F1(u)| is rotated version of |F2(u)| as the spatial 
domain (Fig. 6). 

 
(a) 

 
(b) 

Fig. 6: Rotation estimation [18]. (a) Frequency values of 
the reference image. (b) Frequency values of the rotated 

image (φ = 25 degrees). 
Magnitudes |F1(u)| and |F2(u)|do not depend on the 

shift value x∆  because the spatial domain shift only 
affects the phase values of the Fourier transforms. Thus, 
we can estimate the rotation angle φ from the amplitudes 
of the Fourier transforms 

 
|F1(u)| and |F2(u)| first. Also, 

we can compute shift value x∆  from the phase 



difference between F1(u) and F2(u) after compensation 
for the rotation. 

In our method, we use the center area (50 x 50 pixels) 
only of selected images to improve the efficiency of 
computation.  

 
4.3. Project onto Convex Sets 
 
The four main steps of our POCS method are listed as 
follows: 

1. Up-sample the low-resolution images.  
2. Align low-resolution images to reference images.  
3. Combine up-sampled images.  
4. Use linear filtering on combined image and  

iterate until it converges.  
 

First, we up-sample by factor of 2. Based on the 
results of motion estimation, we can compute the shift of 
the up-sampled low-resolution images separately. 
Therefore, we are able to align those images with 
reference to low-resolution images. 

Due to the sub-pixel shift, those images will have 
slight differences. 

 
(a) 

 
(b) 

Fig. 7: Image aligned based on the motion 
estimation 

 
 After we align up-sampled images, we will obtain 

four up-sampled images with slight differences. We 
combine them together to fill some zero pixels with 
values. Then, we adopt linear filtering on all pixels to 
obtain high-resolution image. Meanwhile we determine 
if I∆  is greater than threshold, if yes it will go back to 
Step 3. 

Otherwise, the high-resolution image is the result 
that we expect. The definition of I∆ is: 

I∆ = norm (Imagei – Imagei-3) / norm (Imagei), 
where Imagei denotes the result image of the i-th 
iteration. 
 
4.4. Image Enhancement 
 

We enhance the result of high-resolution image by 
the logarithmic image processing model [5]. The 
algorithm can be implemented by:  

'log( ( , )) log( ( , )) [log( ( , ) log( ( , ))]f i j a i j f i j a i jα β= + −
where f  is the transformation of a gray tone function f : 

  1 ff
M

= − , 

where ( , )f i j  is the original gray tone function; ' ( , )f i j  
is the enhanced gray tone function; and ( , )a i j  is 
averaged image with window size (n x n) pixels. 

The parameter α governs the contrast of the image, 
and β governs the sharpness of the image. 

 
 

  
5. EXPERIMENTAL RESULTS 

 

 
(a) 

 

 
(b) 



 
(c)  

 
                              (d) 

Fig. 8: Lena image. (a) Original.  (b) IBP: PSNR: 
19.1dB, 1 vote. (c) Bi-cubic interpolation: PSNR: 

20.1dB, 8 votes. (d) Our method: PSNR: 22.1dB, 12 
votes. 

 

   
(a)                  (b)                     (c) 

Fig. 9: Lena image details. (a) IBP. (b) Bi-cubic (c) 
Our method. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10: Child image. (a) Original. (b) IBP: PSNR: 
19.1dB, 2 votes. (c) Bi-cubic interpolation: PSNR: 
20.1dB, 4 votes. (d) Our method: PSNR: 23.2dB, 15 
votes. 

 

   
  (a)                         (b)                         (c) 

Fig. 11: Child image details. (a) IBP. (b) Bi-cubic 
(c) Our method. 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12: image. (a) Original. (b) IBP: PSNR: 16.51dB, 7 
votes. (c) Bi-cubic interpolation: PSNR: 19.18dB, 2 
votes. (d) Our method: PSNR: 22.64dB, 12 votes. 

 

   
Fig. 13: Stair image details. (a) IBP. (b) Bi-cubic (c) 
Our method. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 14: Taipei 101 image. (a) Original. (b) Normalized 
convolution: PSNR: 27.75dB, 9 votes, execution time: 

19s. (c) Our method: PSNR: 27.95dB, 12 votes, 
execution time: 1.1s.  

 



  
(a)                    (b) 

Fig. 16: Taipei 101 image details. (a) Normalized 
convolution. (b) Our method. 

 
6. CONCLUSION AND FUTURE WORK 

 
Super resolution is a challenging problem due to ill-pose. 
In our work, we propose a method on POCS method and 
combine interpolation to improve linear filtering. 
Moreover, we adopt logarithmic image processing 
model to enhance the super-resolution results. Our 
results show that the proposed method outperforms 
iterative-back-projection and interpolation methods in 
PSNR and subjective visual voting. Also, the execution 
time of our proposed method is better than structure-
adaptive-normalized-convolution and have almost equal 
PSNR.  

The result of our method in fence pattern and high-
density texture sometimes may cause incorrect result 
which requires further improvement. Moreover image 
alignment is also imperfect. The boundary of result 
image has some black border.  

Furthermore, we can try to use input low-resolution 
images which have different zoom. It may contain more 
information to cover real-scene, so that we can recover 
high-resolution image better. 
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