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Abstract

This paper presents a method of pattern recognition whereby patterns can be enlarged, shrunk, rotated, sheared or mirrored. The program
generates a series of projections at different angles, then uses these projections to match images in the pattern database. Our algorithm
performs satisfactorily in a large paitern database and is also robust under noise. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Projection [2,6], first used in optical character recognition
[8], is important in binary image recognition because it can
be computed in real time [10}. Computer tomography [4,14]
also uses one-dimensional projections at different angles to
reconstruct the original two-dimensional image. When a
pattern is enlarged, shrunk, rotated or mirrored, human
beings can easily determine what happened to that pattern.
But this task is not trivial for a computer. We present a
method that can easily detect if the pattern has been
enlarged, shrunk or mirrored, and by how many degrees it
has been rotated [9]. On the other hand, our method can also
recognize the pattern from a set of patterns and is robust to
noise and shear.

There are other methods for shift, rotation and scale-
invariant pattern recognition [1]. Traditional machine vision
systems for pattern recognition are based on feature extrac-
tion followed by classification. Shepherd et al. [11] use
feature-based pattern recognition, using the shapes and
arrangement of local features to recognize patterns. Spir-
kovska and Reid [12] use higher-order neural networks,
which reduces the training time significantly. Flusser and
Suk [5] use affine moment invariants for pattern recogni-
tion. Stein and Medioni [13] proposed structural indexing
whereas Lamdan and Wolfson [7] proposed geometric hash-
ing for invariance recognition.

We know the computational time for feature extraction is
dependent on input image: the more complex the image, the
more computational time is required. Furthermore, the
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recognition time is not always fixed, and the descriptors of
features also vary. With neural networks, each modification
of the database requires additional training time and the
recognition time is not fixed. With the moment method,
there is the problem of sensitivity to noise. Our method is
superior to the preceding two methods because it fixes
recognition time, can fix the size of feature descriptors,
requires no training time and is robust to noise.

2. Projection

Projection is an important feature in this method. A pro-
jection is a histogram of the nonzero pixels of the image in
some parallel lines. For image u, the image size is H-pixel X
W-pixel, which is always fixed, and the pattern size is M (8)-
pixel X N, (8)-pixel, which depends on nonzero pixels and is
equal to the size of the bounding box after the pattern rotates
§ degrees counterclockwise from the x-axis as shown in
Fig. 1. In Fig. 1, our pattern is a rectangle of size m-pixel
X n-pixel. When 6 = 0°, we have M,(0°) = m and N,(0°) =
n. When 6 is nonzero, we have M,(8) = nlsin 6! + mlcos 6|
and N,(8) = nlcos 8l + mlsin §l. We assume M,(0°) = H,
N,(0°)<W, and thus we have M,(0) = \;HZ + W2,
N,(8) = \/H? + W2, for any image u.

Projection P,(6) is the projection along the line of 6°
counterclockwise from the x-axis. Degree 8 is the projection
angle and is defined from 0° to 180°. The number of projec-
tion cells is always equal to N,(6) rounded to the nearest
integer. The order of projection cells is defined from lower
left to upper right when 0° =< 8 < 90°, and from lower right
to upper left when 90° < § = 180° as shown in Fig. 2.
Projection cell p,(8, i) is the projection in the index i, as
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Fig. 1. The image size is always H-pixel X W-pixel, and the pattern size is
affected by image u and projection angle 6. (a) 8 = 0° (b) § # 0°.

shown in Fig. 3.

Pu(0)= {pu(e’ 1), pu(a’ 2)5 pu(oy 3, . pu(e» Nu(e))}
(1)
2.1. Property 1

Let P,(6) be the projection with the same projection cells
of P,(8) but with the order of the projection cells reversed:

Pu(o)z {pu(g’ Nu(o))’ pu(aa Nu(a) - 1),
pu(e’ Nu(e) - 2)9 suey pu(ea 1)} (2)

Property 1 is that when an image is rotated by 180° counter-
clockwise from the x-axis we have

P, (6 + 180°) = P, (6). (3)
Fig. 4 shows this property.

2.2. Property 2

As shown in Figs. 5-8, when an image is symmetric to
another image with respect to the y-axis (mirrored at the
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Fig. 2. The projection of an image along the line of § degrees counter-
clockwise from the x-axis.

P,(6)

1 i N,(6)

Fig. 3. Projection cell p, (8, i) is the projection of image « in the index i at
angle 8.

y-axis), horizontal projections remain the same (E = e),
vertical projections have a reverse order (A = 3), and diag-
onal projections are switched (B =h,C=g,D=f,F=d,
G = ¢, H = b). The equivalence relation is shown in Fig. 9.

Let circular projections, Q,(a, ¢), be defined as a set of
projections of image u in equally spaced angles. Degree a is
the initial angle and degree ¢ is the angle step. Also, we let p
be the size of the circular projections. Size p is always an
integer.

180°
o

¢= “)

Qu(a, $)={P,(a+0°), P(a+¢), Pa+29), ...
Pya+(p—1)¢)} %)

Now let Q,'(a, ¢) be Q,(a, ¢) with its elements in decreas-
ing order except for the first projection, and the order of the
first projection cells is in reversed order:

Q.'(a, $)={P,(a+0°), P,la+(p—1)9),
Pa+(p—2)¢), Pla+(p—3)9), ...
Pla+ )} (6)

o It

Fig. 4. When an image is rotated by 180°, the projection cells are the same
but the order of the projection cells is reversed.
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Fig. 5. An example image in eight projection directions: A, B,C,D,E,F,G
and H.

Thus, when the initial angle a = 0°,
Qu'(007 ¢)= {Pu(oo)’ Pu((p - 1)¢)’ Pu((p - 2)¢)a
Pa+(p—3)9), ..., P(D)]. 7

If image v is symmetric to image u with respect to the y-axis,
the following equation is true:

0,(0% &) ={P,(0), P.($), P,(29), ..., P,((p — 1)¢)}
={P.0%), P,((o — 1)®), P.A(p —2)¢),
Pllp—3)9), ..., P($)}=0,'(0°, ¢) ®)

Now we can arrive at Property 2: if image v is symmetric to
image u with respect to the y-axis, it is true that

Q,(0°, ¢)=0,'(0°, ¢), and Q.(a, $)=0Q,'(—a, ¢).

The situation Q,(a, ¢)=0,'( —a, ¢)is shown in Fig. 10. If
image v is rotated by a degrees, equivalently the symmetric
image u is rotated by —a degrees, and they are still sym-
metric with respect to the y-axis.

Define Q,(a, ¢) to be

Q.(a, &)={P,(a+0°), P,(a+¢), P,la+2d), ...,

Pla+(p— 1)} )]
Using Property 1, we also have
Q.(a+180°, ¢)=0Q,(a, ¢). (10)

If image r is symmetric to image u with respect to the x-axis,
then we have

0.(0°, $)=0,'(0°, ¢). an
If image u is symmetric to image r with respect to the x-axis,
every pixel (x, y) in image u is equal to pixel (—x, y) in
image r. Let image s be image u rotated by 180°. Now
every pixel (x, ¥) in image s is equal to pixel (—x, —y) in
image u and pixel (x, —y) in image r. Image s is symmetric

Fig. 6. This image is symmetric to the image in Fig. 5 with respect to the y-
axis. The eight projection directions are a, b, c, d, ¢, f, g and h.

Ao | e | e
e | o ol | U

Fig. 7. The eight projections (A, B, C, D, E, F, G and H) of the image in
Fig. 5.

to image r with respect to the y-axis. We get

0,(0° ¢)=0,'(0°, $)=0,'(0°, ¢). (12)
2.3. Property 3

If ¢ <2sin” ' {I/(VH*+W?)} and 0° < a < ¢/2, then
Q.,(0°, ¢)=Q,(a, ¢). When two circular projections of the
same image are taken at different initial angles, the max-
imum difference of these two circular projections will occur
at a= ¢/2 for a fixed angle step ¢. Fig. 11 shows this con-
dition, and the details will be explained in this section.

For comparison, let us look at the difference between two
vertical projections. The other projections have the same
following characteristic: after a pattern of width W and
height H rotates with respect to its center it will be within
a radius of (v/H? + W?)/2 pixels. Let A be the image pixels
projected to the projection cell at x = 0 and let the cell have
domain [ — 0.5, 0.5]. If this image has an initial angle of ¢/
2, we know that pixel set A will be rotated to pixel set B. If
we want these two pixel sets, A and B, to have the same
projection value at x = 0, we must have

0.5 VH? + W2

> (13)
L)
sin £ 2
Then we get
1
¢ <2sin! (14)

/H2 + W2.
If ¢ >2sin '"{1/v/H?+ W2}, some pixels of pixel set B
will not be projected to the cell at x = O after pixel set A is

MO | e
k| o | i |

Fig. 8. The eight projections (a, b, ¢, d, e, f. g and h) of the image in Fig. 6.
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Fig. 9. The equivalence relation between the projections in Figs. 5 and 6.

rotated to pixel set B. We define the difference rate ¢% to be
the number of these pixels that are not projected to the cell
at x = 0 after the rotation divided by the total number of
pixels in pixel set A. If we can have ¢% difference rate, we
have

0.5 /(\/H2 n W2/2) = (1 - e%). (15)

in &
sin %

The equation becomes

¢ <2sin"! (16)

1
VHZ + W21 — %)

On the other hand, if we fix angle step ¢, we get the
following characteristic. The pixels near the rotation
center have a low difference rate, and the pixels far
from the rotation center have a high difference rate. This
phenomenon is shown in Fig. 12. When the projection cell
is far off the origin, the value of the projection cell is
always less than y/H?+ W?, and we can have a larger
angle step ¢.

2.4. Scaling, shearing and projection

When two patterns have the following feature, we say
these two patterns have different scales. The feature is: for
every pixel (x,, y,) in image u, there is one and only one
pixel (x,, y,) =(Sx, + Cy, Syy, +C,)) in image v which
will match, where S,, §,, C, and C, are the constants.
(The same holds true if images # and v are interchanged.)
If we calculate the projections of images u and v, the projec-
tions are so different in size and amplitude that it is difficult
to match their projections. A better way is to normalize
these two patterns into a fixed and predefined size, after

y

-a a

Fig. 10. If image v is symmetric to image « with respect to the y-axis, we get
0O.(a, &)=0,'(—a, ¢). If image v is rotated by a degrees, equivalently,
the symmetric image u is rotated by —a degrees, and they are still sym-
metric with respect to the y-axis.

Fig. 11. When two circular projections of the same image are taken at
different initial angles, the maximum difference of these two circular pro-
jections will occur at a = ¢/2.

which it is easy to match their projections. If the normal-
ization process is perfect, we can get the same projections.
In practice, we always get some difference in their projec-
tions due to quantization and noise, but their difference is
trivial and will not affect the recognition.

When two patterns have the following feature, we say
these two patterns have different sheared degrees. The fea-
ture is: for every pixel (x,, y,) in image u, there is one and
only one pixel (x,, »,)=(x, +y, tanf,, y, +x, tan §,) in
image v which will match, where 8, and 6, are the constants.
(The same holds true if images u and v are interchanged.) If

>
v

High difference
rate

Low
difference R
NN

Fig. 12. When we fix angle step ¢, the difference rate is affected by the
distance from the pixel to the rotation center.
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6,= —0,=0, we have

(-xw .yV) = (xu +yll tan 0}" ylA +xu tan OX)

_  x, cos(—8)+y, sin(-8) y, cos 6+x, sin
- cos( — 8) ’ cos @

= _L(x, cos 8 —y,sin8, y, cos 8 +x, sin6). (17)

cos 6

When 6, = — 6, =0, we know that image v is the image u
rotated by a degree i and scaled by a factor of 1l/cos 6.
When we calculate the projection of a pattern, we
care about the displacement of the x-coordinate but not
the y-coordinate. If —10°=¢,=10° we have
x, —0.1763y, =x, =x,+0.1763y,, where tan10°=
0.176327. When we recognize a pattern, we do not use
each individual projection cell, but average some projection
cells into a new projection cell. The displacement of shear-
ing does not greatly affect our recognition approach. On the
other hand, when a pixel moves outside this projection cell,
another pixel may move into this projection cell. Small
shearing does not affect the recognition accuracy much.

3. Method

Fig. 13 is our algorithm. After inputting an image u, there
are four main steps to manipulate input image u. They are
image generation, normalization process, weighted pro-
jection, and matching process. They are explained in the
following paragraphs.

Algorithm

Input image u
I

Rotate image u by angle i¢

to generate image u(ig)
fori=0,1,2,..,p-1

[

Calculate pattern size
M, (i9) x Ny (ig)

fori=01,2, .. p-1

Image generator

] Normalization
Normalize the pattern size process
My(ig) x Ny (id) to the image
size H x W for every image u(ig)
[
Calculate the weighted projection .
P,(i¢) for every image u(i¢) Wel_ght?d
and we get o projection
.0, 4)
Use matching rules Matching
process

to match image # to
image v in pattern database

Pattern

database

Fig. 13. Our algorithm.

3.1. Image generation

It is hard to calculate the projections directly from the
input image from different angles. Using the equivalent
method, we rotate the image through different angles [3]
and then calculate the vertical projections. After we have
rotated the input image, the pattern size may be larger than
the image size. So we must put the rotated pattern in a larger
frame. After this step, we can get image u(0°) to image
u((p — 1)¢). Let u(jo) be the image rotated by j¢ degrees
counterclockwise from the x-axis, where j ranges from 0 to
p — L. An example is shown in Fig. 14.

3.2. Normalization process

If we now calculate the vertical projections for image
u(0%) to image u((p — 1)¢), the number of projection cells
may vary, making the matching process very difficult. A
better method is to normalize the size of the pattern,
M (0)-pixel X N (0)-pixel, to some fixed size. We set this
fixed size to equal the image size, H-pixel X W-pixel. The
algorithm is shown below.

For every pixel (i, j) in the normalized image calculate
the pixel value at (®-D @1 Y in the pattern
where the normalized image coordinate is in
0, 1,2, ., H-1)X(©,1,2,..,W—-1) and the
pattern coordinate is in (0, 1, 2, ..., M, (6) — 1) X
0, 1,2, ..., N - D).

Let &(j¢) be the normalized image u(j¢) where j ranges
from 0 to p — 1. We can get images #(0°), a(¢),
i2¢), ..., i((p — 1)¢). After the normalization process,
the number of projection cells is W. In our experiments,
the image size is H-pixel X W-pixel = 128-pixel X 128-
pixel. After the normalization process, we always get a fixed
number of projection cells. When we want to compare two
projections, having the same number of projection cells will
make the comparison easy. But when the pattern is enlarged
or shrunk, the normalization process will leave the pattern
unchanged. Thus we can get the same projections. Although
partial occlusion affects our normalization method, our
recognition method is robust to partial occlusion. If the
occlusion is not great, say 5% of the pattern area disappears,
we consider the occlusion as noise. After the normalization
process, the pattern will have the same scale and be invar-
iant in scaling. An example is shown in Fig. 15. Property 3
still holds true after the normalization process.

3.3. Weighted projection

From Property 3, we can define different weights of
pixels when we calculate vertical projections. The pixels
near the rotation center have a high weight, and the pixels
far from the rotation center have a low weight. We choose
the origin (i.e. the center of the image) to be the rotation
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Fig. 14. An example is shown after image generation in which p = 16 and ¢ = 11.25°

center. The weight values in our experiments are shown in
Table 1.

We select the projection size p to be 16, so we can get the
angle step ¢ equal to 11.25°. When the number of projec-
tions is a power of two, we can always divide the projections
into two sections and then divide each section into two
smaller sections and so on. A number of projections which
is a power of two is more convenient than a number of pro-
Jections which is not a power of two. Eight projections are not
sufficient, 16 projections are sufficient, but 32 projections are
too time consuming. So we selected 16 projections.

Table 1

The weights in our experiments

Distance from center (< pixels) Weight
0=d=5 1.45
S5<d=15 1.40
15<d=125 1.35
85 <d =95 1.00

From Property 3, we have 0.5/(sin 5.625°) = 5.10 and 1.0/
(sin 5.625°) = 10.20. So the innermost part has a radius of 5
pixels, whereas the other parts are increased by 10 pixels
from inner to outer. We made the weight of the pixels
farthest from the center equal to 1.00, and we did not lose
much information from these pixels. We also did not want to
make the pixels nearest the center have too high a weight;
otherwise, these pixels would dominate the weight projec-
tions. A weight of 1.45 or 1.50 is a good choice. But if the
weight is 1.50, then the increase in volume will be 0.5/9. So
we chose the pixels nearest to the center to have a weight of
1.45, with the increase in volume being 0.05.

The number of projection cells was equal to W, and this
was so large that the matching process resulted in data-
heavy calculations. Averaging several projection cells into
one new projection cell was a good method to speed up the
computation. On the one hand it shortened the calculation
time, and on the other hand it suppressed the noise in the
image. In our experiments, W was equal to 128, and we
chose to average every 8 projection cells and got 16 new
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Fig. 15. An example of the normalization process is shown in which
H=W=128.

projection cells. Sixteen prajection cells were sutficient. We
also 1ed 1o average 30 projecnon cedls o 3 new projec-
tion cells, ‘out tnts performed poorlty ‘vecause the numiver of
preiectian cells was (g few o distiaguistt staudac gaceras.
In a weighted proiection, projection p (8, k) was the sum of
the weights of nonzero pixels instead of the number of non-
zero pixes in column £ at 6°. After a weighted projection the
shearing operation does not affect projection much, so our
recognition method is robust to shearing. An example is
shown n Fig. 1%.

3.4. Matching process
The main rufe is least-square difference, but there are

other rules to enhance the matching process. Define the
circular projections difference Q,(0°, ¢) — Q, (i, ¢) to be

p—1 W
0.(0°, ) — (i, d)= . D (Ip.(0), k)
J=0k=1
~py(di+&j, B (18)

Let the projection difference, pd, (8, 8;), between image u

at @,° and image v at 6,° be
w

pduv(Bi’ BZ)= Z (lpu(els k) —pv(eb k)l)2 (19)

k=1
Then the image difference E(u, v) is the least-square differ-
ence of images u and v:

E(u, v)= min{ min ,_q |, .. ,-1[Q.0° @)
—Qu(di, )], min ;g 1 . ,—1[Q.(0° )
—0,(i, @), min ;_g 1, . ,-1[Q.0° &)
— Q. (¢1, )], min ;_¢ | . ,-1[0.0° @)

- Q,' (91, 9)]}. (20)

(b)

Fig. 16. An example is shown after the weighted projection. (a) Weighted
projections with 128 projection cells. (b) Average weighted projections
with 16 projection cells.

The first term is the difference of images u and v with the
initial angle of image v less than 180°. The second term is
the difference of images u and v with the initial angle of
image v more than 180°, so Q,(¢i, ¢) is used. The third term
is the difference of images 1 and v’ which is symmetric to
image v with respect to the y-axis with the initial angle less
than 180°, so Q,'(¢i, ¢) is used. The fourth term is the
difference of images u and v’ which is symmetric to
image v with respect to the y-axis with the initial angle
more than 180°, so Q,'(¢i, ¢) is used.

3.4.1. Rule 1
Let A(ii(0)) be the area of pattern in a normalized image u
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(a) (b)

() ()

(€) (f)

(®) (h)

Fig. 17. When the pattern is a square, and we enlarge the square X 2 in the
x-axis direction and do not change it in the y-axis direction, then the square
becomes a rectangle. Now we normalize the square and the rectangle, and
they are similar. But when we rotate them and normalize them, they are
very different. (a) The input image is a square. (b) The square becomes a
rectangle. (c) Normalized square. (d) Normalized rectangle. (¢) Rotated
square. (f) Rotated rectangle. (g) Normalized rotated square. (h) Normal-
ized rotated rectangle.

at 6°. For input image u# and any image v in our pattern
database, if IA(G(6))) — A(P(8))| < A(D(6;)) X 10%, then
we calculate the projection difference pd, (8, 8,) between
image u at §,° and image v at 6,°. Otherwise, we do not
calculate the projection difference.

The weighted projections are projections with position
information. The position near the rotation center has a
high weight and the position far from the rotation center
has a low weight. It is possible that the weighted projections
are similar, but the patterns are very different. Thus we
add another feature to distinguish them. We select the
feature to be the area of the pattern. For input image
u and any image v in our pattern database, if
IA((8))) — A(9(8,))] = A(9(6,)) X 10%, then we calculate
their projection difference, pd,(6,, #,). Otherwise, we do
not have to calculate the projection difference. If the differ-
ence of the areas of these two images is too large, then these
two images should never be matched together.

We do not use every area of the input image at different
rotation angles for matching. We choose the image at 0° and
90°, because the areas of the image at 0° and 90° stay
unchanged even if the image is scaled in either the x or
the y direction, thanks to normalization in both directions.
For example, when the input image is a square, and we
enlarge the square X 2 in the x direction and do not
make any changes in the y direction, then the square
becomes a rectangle. Now we normalize the square and
the rectangle at 0°, and they are similar. But when we rotate
them 6°, @ # 90°, and normalize them, they are very differ-
ent, as shown in Fig. 17. The changed scales are in the x'-
axis and the y'-axis, and the normalization process changes
the scales in the x-axis and the y-axis. When the rotation
angle is equal to 90°, the area of the pattern also stays
unchanged.

3.4.2. Rule 2

From Rule 1, we know the projections at 0° and 90° stay
unchanged. Thus, when we accumulate projection differ-
ences, the projection differences at 0° and 90° have higher
weights. In our experiments, the projection differences at 0°
and 90° have a weight of 4, and the others have a weight of
1. We fix the projection differences that are not at 0° and 90°
to have a weight of 1, and change the weight of the projec-
tion differences at 0° and 90°. Weight 4 is better and is
chosen from the experimental results.

4. Experimental results

Fig. 18 is our pattern database with 387 patterns. The
input image size is 128 pixels X 128 pixels. We enlarge
or shrink, rotate, mirror and shear our patterns, and then
match these distorted patterns to our pattern database.
There are seven parameters affecting the input patterns:
scale x, scale y, shear x, shear y, rotation angle 6, mirror,
and noise. Scales x and y are the scales in the x-axis and the
y-axis respectively. When scale x = 2 and scale y = 0.5, the
size of the pattern is enlarged X 2 in the x direction and is
shrunk X 2 in the y direction. Shears x and y are the sheared
angles in the x direction and the y direction respectively.
When shear x = 10° and shear y = 5°, every pixel (x, y) in
the pattern will move to pixel (x + y tan 5°, y + x tan 10°).
For example, when the pattern is a rectangle and shear x =
10° and shear y = 5°, the rectangle will become a parallelo-
gram, as shown in Fig. 19. Our experiments show that our
algorithm can tolerate a shear of 10°.

Rotation angle @ means to rotate the pattern 6° counter-
clockwise from the x-axis. Mirror means whether the pattern
is mirrored with respect to the y-axis. When mirror is *Y’, it
means the pattern is mirrored with respect to the y-axis.
When mirror is ‘N’, it means the pattern is not mirrored at
all. Noise indicates whether noise is added to the pattern. In
some experiments, we add a square of 5% area of the pattern
in the frame of the pattern size to be the noise.
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Fig. 18. The pattern database with 387 patterns.

We now show an example in Fig. 20. When we enlarge,
shrink, rotate or mirror the pattern, we can still recognize the
pattern, as shown in Fig. 20(a). But in some conditions we
may recognize the pattern incorrectly, as shown in

1y 1

=T 1
x LPJ x

(a) (b)

Fig. 19. When the pattern is a rectangle and shear x = 10° and shear y = 5°,
the rectangle will become a parallelogram. (a) A rectangle. (b) The sheared
rectangle becomes a parallelogram.

Table 2

685

The parameters of patterns in Fig. 20. We first rotate, then scale, and finally
shear the patterns

Label Scale Shear Rotation Mirror
angle 0

x y x y
1,C Original pattern
2 1.00 1.00 o 0° 20° N
3 1.00 1.00 10° 10° 40° N
4 1.25 1.00 0° 0° 100° N
5 1.00 1.25 100 10° 140° N
6 1.00 1.00 0° o° o° Y
7 1.00 0.75 10° -10° 160° Y
8 1.50 1.25 0° 0° 200° Y
9 1.00 1.50 10° 10° 280° N
A 1.00 1.25 10° 10° 40° N
B incorrectly matched pattern of label A
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Fig. 20. (a) Some examples of correct recognition. (b) An example of incorrect recognition where A is incorrectly matched to B instead of C.

Table 3

An example of rotation angle estimate

Rotation angle ~ 0.0° 20.0° 40.0° 60.0°
180.0° 200.0° 220.0° 240.0°

Estimated angle  0.00° 0.00° 45.00° 67.50°
180.00° 180.00° 225.00° 247.50°

80.0° 100.0° 120.0° 140.0° 160.0°
260.0° 280.0° 300.0° 320.0° 340.0°
78.75° 101.25° 123.75° 146.25° 157.50°
258.75° 281.25° 303.75° 326.25° 337.50°

Fig. 20(b). The parameters of the patterns in Fig. 20 are
shown in Table 2. It is hard for the matching process to
distinguish patterns A and B in Fig. 20(b), because they
are similar in areas and projections. In addition, the shapes
are similar, We also use only 16 projections and 16 projec-
tion cells, and the rotation angle is not a multiple of angle
steps.

We also show an example for estimating rotation angle
and scale. The rotation angle estimate is shown in Table 3.
The input image is in our pattern database at the first row
and the tenth column. We can see that when the rotation
angle is equal to 20° and 200° our algorithm performs
poorly. The circular projections on initial angles 0° and

Table 4
Some examples of scale estimate

20° are similar and difficult to distinguish. We also show
some examples of scale estimates in Table 4. The rotation
angle estimate will affect the scale estimate. The better the
rotation angle estimates, the better the scale estimates.

Table 5 shows our experimental results on the first 29
patterns in the pattern database. The output result of recog-
nition is shown in three columns: No. of images, Correct,
Incorrect. The first column, No. of images, is the number of
test images. The second column, Correct, and third column,
Incorrect, are the numbers and percentages of correct and
incorrect matches.

In our experiments, we need 16 X 16 (the circular projec-
tions) +4 X 16 (the areas) +2 (the scales) bytes =

Rotation angle Rotation angle

Rotation angle Rotation angle

Scale x Scale y Scale x Scale y Scale x Scale y Scale x Scale y
Input 0.00° 140.00° 220.00° 20.00°

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.25
Estimate 0.00° 135.00° 225.00° 23.50°

1.00 1.00 1.10 1.11 1.09 1.12 1.12 1.26
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Table 5
Experimental results

Scale Shear Rotation angle 6 Mirror No. of images Correct Incorrect

x y X v

no noise

1.00 1.00 0° 0° 0°,20°,40°%, ..., 340° 29 506 (96.93%) 16 (3.07%)
no noise

1.25 1.00 0° 0° 0°, 20°,40° ..., 340° 29 499 (95.59%) 23 (4.41%)
no noise

1.00 1.25 10° —10° 0°, 20°,40°, ..., 340° 29 473 (90.61%) 49 (9.39%)
no noise

1.50 1.25 0° 10° 0°,20°,40°, ..., 340° 29 459 (87.93%) 63 (12.07%)
no noise

0.75 1.00 5° 5° 0°,20°,40°, ..., 340° 29 443 (84.87%) 79 (15.13%)
noise of square of 5% pattern area added

1.00 1.00 0° 0° 0°,20°,40° ..., 340° 29 466 (89.27%) 56 (10.73%)
322 bytes to store a pattern datum in a pattern database, and References

do not need to store the image of the pattern. On average we
need about 36 s to recognize an input pattern on a 486/DX2-
80 PC. In the sixth row of Table 5, we randomly add a
square of 5% pattern area in the frame of pattern size to
be the noise. The square noise may or may not change the
patterns because the square is located randomly. In the sixth
row, 27 patterns are changed, and two patterns are
unchanged because they by chance overlap the noise square.
If we take projections at 32 angles, we can get about 2-3%
better accuracy and need about 57 s for recognition.

5. Conclusion

We present a method of pattern recognition and also esti-
mate the parameters of the distorted pattern. We can esti-
mate the rotation angle, scales in the x and the y directions,
and mirror symmetry. We can also tolerate some noise on
patterns. The number of projections and the number of pro-
jection cells will affect parameter estimate and recognition.
When we add the number of projections and the number of
projection cells, we can recognize more patterns and get a
higher accuracy in estimating rotation angle and scale, but
the matching process is more time consuming. On the other
hand, we can rotate the input pattern by an initial angle that
is larger than 0° and less than the angle step divided by 2, ¢/
2, and we can aiso get a high accuracy of estimating the
rotation angle. If we get a bad angle estimate, it will be
difficult to obtain a scale estimate.
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