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bstract. Mosaic images are captured by a single charge-coupled
evice/complementary metal-oxide-semiconductor (CCD/CMOS)
ensor with the Bayer color filter array. We present a new quality-
ffective zooming algorithm for mosaic images. First, based on
daptive heterogeneity projection masks and Sobel- and luminance-
stimation-based masks, more accurate gradient information is ex-
racted from the mosaic image directly. According to the extracted
radient information, the mosaic green �G� channel is first zoomed.
o reduce color artifacts, instead of directly moving the original red
R� value to its right position and the blue �B� value to its lower
osition, the color difference interpolation is utilized to expand the
-R and G-B color difference values. Finally, the zoomed mosaic R
nd B channels can be constructed using the zoomed G channel
nd the two expanded color difference values; afterward, the
oomed mosaic image is obtained. Based on 24 popular test mosaic
mages, experimental results demonstrate that the proposed zoom-
ng algorithm has more than 1.79 dB quality improvement when
ompared with two previous zooming algorithms, one by Battiato et
l. (2002) and the other by Lukac et al. (2005). © 2010 SPIE and

S&T. �DOI: 10.1117/1.3302126�
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1 Introduction

To reduce the manufacturing cost of digital cameras, in-
stead of using three CCD/CMOS sensors, most manufac-
turers use a single sensor array to capture the color infor-
mation based on the Bayer color filter array �CFA�
structure,1 which is depicted in Fig. 1. As a result, each
pixel in the mosaic image has only one color component.
Because the G channel is the most important factor to de-
termine the luminance of the color image, half of the pixels
in the Bayer CFA structure are assigned to the G channel;
the R and B channels share the remaining parts evenly.

Since the full-color image is required for the human vi-
sual system, the two missing color components for each
pixel in the mosaic image should be recovered as best as
possible and such a recovery is called the demosaicing
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rocess.2,3 Previously published demosaicing algorithms
ould be divided into two categories,4 namely, the nonheu-
istic demosaicing algorithms and the heuristic demosaicing
lgorithms. In the first category, these developed nonheu-
istic demosaicing algorithms include the minimum mean
quared error estimator method,5 the projection-onto-
onvex-set method,6 the linear hyper-plane method,7 the
ourier domain-based methods,8–10 the wavelet domain
ethod,11 and the Taylor expansion method.12 The second

ategory includes the bilinear interpolation method,13

hich is the simplest demosaicing method in which two
issing color components of each pixel are calculated by

veraging its proper adjacent pixels; the edge-sensing-
ased methods,14–21 which can preserve the detailed edge
nformation or limit the hue transitions; the color-
ifference-based hybrid methods4,22–29 in which these
ethods were developed by integrating the interpolation

stimation, edge-sensing scheme, and the color difference
echnique.

Besides the demosaicing issue, designing efficient
ooming algorithms for mosaic images has received grow-
ng attention. Because the optical hardware zooming ap-
roach costs too much, the software zooming approach is
referable. For gray images or full-color images, some ef-
cient zooming algorithms30–32 have been developed. How-
ver, these developed algorithms can not be applied to
oom mosaic images directly. Intuitively, the given mosaic
mage can be demosaiced first, and then one of these de-
eloped zooming algorithms is applied to the demosaiced
ull-color image; unfortunately, this intuitive approach must
tore an extra full-color image to be used in the later zoom-
ng process, so it is impractical due to the limited memory
onstraint of digital cameras.

Previously, several zooming algorithms for mosaic im-
ges were developed. All of them only use one array
emory with the same size of the zoomed image. Based on

he local adaptive zooming concept, Battiato et al.33 pre-
ented the first zooming algorithm. Based on the adaptive
dge-sensing mechanism, Lukac and Plataniotis34 Lukac et
l.35 presented two better zooming algorithms to improve
he zoomed image quality. Further, Lukac and Plataniotis36

resented a computation-saving interpolation method to
eet the real-time surveillance requirement. Note that the

revious zooming algorithms mentioned here enlarge the

B B

R

B B

GG

RR

GG

R G GR

G B G BG

R

G

G

G

G

B

B

G

B

G

G

R

G

R

G

RRR G GG R

RRR G GG R

i-3

i-2

i-1

i

i+1

i+2

i+3

j-3 j-1j-2 j j+1 j+2 j+3

Fig. 1 Bayer CFA structure.
ournal of Electronic Imaging 013005-

Downloaded from SPIE Digital Library on 13 Mar 2010 to 1
original mosaic image with size X�Y to the one with size
2X�2Y. In this paper, we follow the same size constraint.
Developing a zooming algorithm to enlarge the mosaic im-
age to the one with arbitrary size is still a challenging prob-
lem.

In this paper, a new quality-effective zooming algorithm
for mosaic images is presented. Utilizing the adaptive het-
erogeneity projection masks and the Sobel- and luminance-
estimation-based �SL-based� masks,29 more accurate gradi-
ent information can be extracted from the input mosaic
image directly. Then, based on the color difference concept
and the extracted gradient information, the proposed
quality-effective mosaic image zooming algorithm is pre-
sented. Based on 24 test mosaic images, the proposed
zooming algorithm has more than 1.79 dB of quality im-
provement when compared with two previous zooming al-
gorithms, one by Battiato et al.33 and the other by Lukac et
al.35

The remainder of this paper is organized as follows.
Section 2 presents the adaptive heterogeneity projection
masks and the SL-based masks used to extract gradient
information from the mosaic image. In Sec. 3, combining
the extracted gradient information and the color difference
concept, the proposed quality-effective zooming algorithm
for mosaic images is presented. Section 4 demonstrates
some experimental results to show the quality advantage of
the proposed zooming algorithm. Finally, some concluding
remarks are addressed in Sec. 5.

2 Extracting Gradient Information from Mosaic
Images

In this section, we describe the adaptive heterogeneity pro-
jection masks and the SL-based masks,29 which are used to
extract gradient information from the mosaic image di-
rectly. As shown in Fig. 1, the R, G, and B color pixels
located at position �i , j� in the input mosaic image are de-
noted by Imo

r �i , j�, Imo
g �i , j�, and Imo

b �i , j�, respectively.
Based on the concept of adaptive heterogeneity

projection,29 Table 1 shows three possible heterogeneity
projection masks with different sizes adopted in this paper.
In Table 1, the terms N and Mhp�N� denote the mask size
and the corresponding heterogeneity projection mask, re-
spectively. Given a mosaic image Imo, the horizontal het-
erogeneity projection map HPH-map and the vertical hetero-
geneity projection map HPV-map can be obtained by

HP = �I � M �N�T� ,

Table 1 Three possible heterogeneity projection masks

N Mhp�N�

5 �1 −2 0 2 −1�

7 �1 −4 5 0 −5 4 −1�

9 �1 −6 14 −14 0 14 −14 6 −1�
H−map mo hp
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PV−map = �Imo � Mhp�N�T� , �1�

here the symbol � denotes the 1-D convolution operator,
·| denotes the absolute value operator, and the operator T
enotes the transpose operator. According to the statistical
nalysis, N=5 is a good choice to gather accurate horizon-
al and vertical edge information of the current pixel; it can
lso reduce the computation time for calculating Eq. �1�.
or exposition, the determined N�=5� is called NH.

To normalize the masks with different sizes, the normal-
zation factor 1 /QNH

is used to normalize the coefficients of
he mask where the value of QNH

is defined as the sum of
ositive coefficients covered by the mask with size NH. As

result, the heterogeneity projection mask �1 −2 0 2
1�T would be normalized to �1 −2 0 2 −1�T /3. To reduce

he estimation error, we use the low-pass filter to tune the
eterogeneity projection maps. For HPH-map and HPV-map
he horizontal and vertical heterogeneity projection values
t position �i , j� are denoted by HPH�i , j� and HPV�i , j�, re-
pectively. The tuned HPH�i , j� and HPV�i , j� can be com-
uted by using the following two low-pass filters:
PH� �i , j�= �1 /10��k=−4

4 �kHPH�i , j+k� and HPV��i , j�
�1 /10��k=−4

4 �kHPV�i+k , j�, respectively, where �k=2 if
=0; �k=1, otherwise. The two tuned heterogeneity projec-

ion values of the current pixel at position �i , j� are used to
etermine the interpolation direction of the current pixel.

To extract gradient information from the mosaic image,
e further embed the luminance estimation technique8 into

he Sobel operator;37 the two normalized SL-based masks29

re shown in Fig. 2. After running two SL-based masks on
he 5�5 mosaic subimage centered at position �i , j�, the
orizontal gradient response �Idm

H �i , j� and the vertical gra-
ient response �Idm

V �i , j� can be obtained. The obtained gra-
ient responses are used to determine the interpolation
eights for the neighboring pixels of the current pixel. In

ddition, from the hardware viewpoint in camera design,
erforming one multiplication requires more computational
oad and greater power consumption than that required us-
ng shift operation. We thus want to decrease the number of
sed multiplications when running the SL-based masks on
he mosaic subimage. After examining two SL-based masks
s shown in Fig. 2, we observe that only five numbers, 2, 4,
, 8, and 12, are considered. Based on this observation, it
equires only two multiplications, three shift operations, 19
dditions, and 10 absolute-value operations rather than 20
ultiplications, 19 additions, and 10 absolute-value opera-

ions to obtain one response by running the mask on the
�5 mosaic subimage.

�� �� � �

�� �� � �

�� ��� �� �

�� �� � �

�� �� � �

�� �� �� �� ��

�� �� ��� �� ��

� � �� � �

� � � � �

ig. 2 Two normalized SL-based masks: �a� the horizontal and �b�
he vertical SL-based mask.
ournal of Electronic Imaging 013005-

Downloaded from SPIE Digital Library on 13 Mar 2010 to 1
3 Proposed Zooming Algorithm for Mosaic
Images

The proposed quality-effective zooming algorithm consists
of two stages: �1� zooming the mosaic G channel Imo

g with
size X�Y to obtain the zoomed mosaic G channel Zmo

g with
size 2X�2Y; �2� zooming the mosaic R channel Imo

r and
mosaic B channel Imo

b to obtain the zoomed mosaic R chan-
nel Zmo

r and zoomed mosaic B channel Zmo
b . Finally, the

zoomed mosaic image Zmo can be obtained.

3.1 Stage 1: Zooming the Mosaic G Channel

Initially, the original mosaic image is expanded by the fol-
lowing rule:

Zmo�2i,2j� = Imo�i, j� ,

ZHPd��2i,2j� = HPd��i, j� ,

�Zdm
d �2i,2j� = �Imo

d �i, j� , �2�

where for all d� �H ,V�, i� �0,1 ,2 , . . . ,X−1�, and j
� �0,1 ,2 , . . . ,Y −1�; ZHPd��i� , j�� and �Zdm

d �i� , j�� denote
the tuned adaptive heterogeneity projection value and the
gradient response at position �i� , j�� in the zoomed mosaic
image Zmo, respectively. After expanding Imo, Fig. 3 illus-
trates the pattern of the obtained Zmo. The zooming process
for the mosaic G channel consists of two steps: �1� estimat-
ing the G values of the pixels in �1

g= ��4m ,4n+2� , �4m�
+2,4n�� � ∀m ,m� ,n ,n��Z ,0�4m ,4m�+2�2X−1,0
�4n+2,4n��2Y −1�; �2� estimating the G values of the
pixels in �2

g= ��m ,n� � ∀m ,n�odd,0�m�2X−1,0�n
�2Y −1�. For exposition, the pixels in �1

g and �2
g are de-

noted by symbols � and � in Fig. 4, respectively. The
detailed descriptions for the two steps are demonstrated in
Secs. 3.1.1 and 3.1.2, respectively.
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Fig. 3 Pattern of the obtained Zmo after expanding Imo.
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.1.1 Step 1 in stage 1: estimating the G values of
the pixels in Ω1

g

rom Fig. 3, it is observed that for each pixel at position
x ,y���1

g, the G value can be estimated from its four
eighboring G pixels with movement �n1

g

��x� ,y�� � �x� ,y��= �x�2,y� , �x ,y�2��. Figure 5 is the
epresentative to explain how to estimate the G value

mo
g �x ,y�. Considering the neighboring G pixel located at

ocation �x−2,y�, if the vertical G gradient response
Zdm

V �x−2,y� is large, it means that there is a horizontal
dge passing through it. Based on the color difference
oncept,22,23 this case reveals that the G value of this pixel
akes less contribution to the estimation of the G value for

ixel Zmo
g �x ,y�; otherwise, the G value of this pixel makes

ore contribution to the estimation of the G value for pixel

mo
g �x ,y�. Further, to reduce the estimation error, the two
ertical G gradient responses �Zdm

V �x ,y� and �Zdm
V �x

4,y� are also considered. Combining the preceding analy-
is, the weight of the pixel at location �x−2,y� can be
iven by wg�V ,x−2,y�=1 / �1+ ��Zdm

V �x ,y�+2�Zdm
V �x
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−2,y�+�Zdm
V �x−4,y���. Following the similar discussion,

the weights of the four neighboring G pixels can be ex-
pressed by wg�V ,x−2,y�=1 / �1+ ��k=0

2 �k�Zdm
V �x−2k ,y���,

wg�V ,x+2,y�=1 / �1+ ��k=0
2 �k�Zdm

V �x+2k ,y���, wg�H ,x ,y
−2�=1 / �1+ ��k=0

2 �k�Zdm
H �x ,y−2k���, and wg�H ,x ,y+2�

=1 / �1+ ��k=0
2 �k�Zdm

H �x ,y+2k���, where �k=2 if k=1; �k

=1, otherwise.
In addition, based on the horizontal and vertical hetero-

geneity projection values of the current pixel at position
�x ,y� ,ZHPH� �x ,y� and ZHPV��x ,y�, the interpolation estima-
tion scheme for G channel should consider three cases,
namely �1� horizontal variation as shown in Fig. 6�a�, �2�
vertical variation as shown in Fig. 6�b�, and �3� the other
variations as shown in Fig. 6�c�. The arrows in Fig. 6 de-
note the relevant data dependence. Consequently, the value
of Zmo

g �x ,y� can be estimated by

Zmo
g �x,y� = Zmo

r �x,y� +

�
�d,x�,y����g

wg�d,x�,y��Dg�x�,y��

�
�d,x�,y����g

wg�d,x�,y��
,

�g = 	�1 if ZHPV��x,y� � 	ZHPH� �x,y�
�2 if ZHPH� �x,y� � 	ZHPV��x,y�
�1 � �2 otherwise,


 �3�

where �1= ��V ,x�2,y�� and �2= ��H ,x ,y�2��; if
�d ,x� ,y����1, Dg�x� ,y��=Zmo

g �x� ,y��− �Zmo
r �x�+2,y��

+Zmo
r �x�−2,y��� /2, if �d ,x� ,y����2, Dg�x� ,y��

=Zmo
g �x� ,y��− �Zmo

r �x� ,y�+2�+Zmo
r �x� ,y�−2�� /2. Then, the

proposed new refinement method, which combines the con-
cept of the local color ratios38 and the proposed weighting
scheme, is used to refine the estimated Zmo

g �x ,y� by

Zmo
g �x,y� = − 
 + �Zmo

r �x,y�

+ 
�

�
�d,x�,y����g�

��d,x�,y��wg�d,x�,y��Lg�x�,y��

�
�d,x�,y����g�

��d,x�,y��wg�d,x�,y��
, �4�

where �g�= ��H ,x ,y� , �V ,x ,y� , �H ,x ,y�2� , �V ,x�2,y��;
Lg�x� ,y��= �Zmo

g �x� ,y��+
� / �Zmo
r �x� ,y��+
�; ��d,x�,y��

= �1 /2� if �d ,x� ,y��� ��H ,x ,y� , �V ,x ,y��; ��d,x�,y��=1, oth-
erwise. Furthermore, the determination of the two param-
eters 	 and 
 is discussed in the appendix.

B G B

GRG

B G B

B G B

GRG

B G B

B G B

GRG

B G B

Fig. 6 Data dependence of the proposed interpolation estimation
for the G channel: �a� horizontal variation �vertical edge�, �b� vertical
variation �horizontal edge�, and �c� other variations.
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After estimating the G values in �1
g, Fig. 7 illustrates the

urrent pattern of Zmo. For the current pattern of Zmo, in
rder to preserve the Bayer CFA structure, Lukac and
lataniotis,34 and Lukac et al.35 suggested moving the R
nd B values of the pixels in �1

g to the positions corre-
ponding to the Bayer CFA structure. Thus, for each R
alue at position �x� ,y����1

g, we move it to the right po-
ition �x� ,y�+1�; for each B value at position �x� ,y��

�1
g, we move it to the lower position �x�+1,y��. After

oving R and B values, the resultant pattern of Zmo is il-
ustrated in Fig. 8, and then the missing R and B color
alues can be estimated by the existent R and B color pix-
ls. Unfortunately, moving the R value to its right position
nd the B value to its lower position directly would lead
roducing acute color artifacts in the nonhomogenous re-
ions and degrading the image quality of the zoomed im-
ge.

To overcome this problem, instead of using the preced-
ng approach, we use the color difference interpolation to
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expand the G-R color difference and the G-B color differ-
ence. Based on the Bayer CFA structure, it is known that
the R pixels will be fully populated in �r= ��2m ,2n
+1� �m ,n�Z ,0�2m�2X−1,0�2n+1�2Y −1� after the
zooming process. Further, for the pixels in �Dr = ��4m ,4n
+2� �m ,n�Z ,0�4m�2X−1,0�4n+2�2Y −1�, the G-R
color difference values can be calculated by Dr�x� ,y��
=Zmo

g �x� ,y��−Zmo
r �x� ,y�� , ∀ �x� ,y����Dr. For exposition,

the pixels in �r and �Dr are denoted by the symbols � and
�, respectively, in Fig. 9. Then, we can estimate the color
difference values of the pixels in �r from the color differ-
ence values of the pixels in �Dr by using the bilinear inter-
polation estimation. In Fig. 10, we observe that the G-R
color difference values of the four corner pixels have been
known. Using the bilinear interpolation estimation, the
color difference values of the pixels at positions ��x+k1 ,y
+k2� �k1� �0, �2� ,k2� ��1��, which are denoted by gray
colors, could be estimated by

Dr�x + k1,y + k2� = �
�1

2 + �1k2

4 �
�2

2 + �2k1

4
Dr�x + 2�2,y

+ 2�1� , �5�

where �1 ,�2� ��1�; k1� �0, �2�; and k2� ��1�. By the
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Fig. 9 Depiction of the pixels in Ωr, ΩDr, and Ωb, where ��Ωr, �
�ΩDr, and ��Ωb.

G

G G

G

y-2 yy-1 y+1 y+2

x+1

x+2

x-2

x-1

x

Dr Dr

DrDr

BG
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ence values of the pixels in Ωr.
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ame arguments, the G-B color difference values of the
ixels in �b= ��2m+1,2n� �m ,n�Z ,0�2m+1�2X−1,0
2n�2Y −1�, i.e., the pixels denoted by � in Fig. 9, can

e estimated. Then, Fig. 11 illustrates the current pattern of
mo after estimating the G-B color difference values of the
ixels in �r and �b. In Fig. 11, the pixels in �r and �b are
enoted by gray colors and black colors, respectively.

.1.2 Step 2 in stage 1: estimating the G values of
the pixels in Ω2

g

fter describing how to estimate the G values of the pixels
n �1

g, we now describe how to estimate the G values of the
ixels in �2

g. After comparing the arrangement of the G
hannel in Fig. 12 with that of the R �or B� channel in the
osaic image �see Fig. 1�, it is not hard to find that the

rrangements of two channels are the same except the num-
er of pixels in the two channels. From Ref. 29, we have
nown that the four SI-quad-masks, which are derived by
ombining the Sobel operator and the bilinear interpolation,
an be used to extract the horizontal, vertical,
/4-diagonal, and −� /4-diagonal gradient information of

G
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ig. 11 Current pattern of Zmo after estimating the color difference
alues of the pixels in Ωr and Ωb.
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ig. 12 Subimage used to explain how to estimate the G values of
ixels in Ωg.
2
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the R �or B� channel in the mosaic image as shown in Fig.
1. The four SI-quad-masks are shown in Figs. 13–16. Be-
cause the arrangement of the G channel in Fig. 12 is similar
to that of the R �or B� channel in Fig. 1, we can directly use
the four SI-quad-masks as shown in Figs. 13–16 to extract
the G gradient information of all pixels in Zmo.

From Fig. 12, it is observed that for each pixel at posi-
tion �x ,y���2

g, the G value can be estimated from its
four neighbors with movement �n2

g = ��x� ,y�� � �x� ,y��
= �x�1,y�1��. Similar to the G value estimation for pix-
els in �1

g, to estimate Zmo
g �x ,y� in Fig. 12 more accurately,

four diagonal gradients are considered to determine the four
proper weights.

Fig. 13 For all pixels at positions �x� ,y��� ��x±2m ,y±2n�� in Fig.
12, the four SI-based masks for G channel. �a� The horizontal SI-
based mask. �b� The vertical SI-based mask. �c� The � /4-diagonal
SI-based mask. �d� The −� /4-diagonal SI-based mask.

Fig. 14 For all pixels at positions �x� ,y��� ��x±2m+1,y±2n�� in
Fig. 12, the four SI-based masks for G channel. �a� The horizontal
SI-based mask. �b� The vertical SI-based mask. �c� The
� /4-diagonal SI-based mask. �d� The −� /4-diagonal SI-based
mask.
Jan–Mar 2010/Vol. 19(1)6
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Considering the neighboring G pixel located at location
x−1,y−1�, if there is a � /4-diagonal edge passing
hrough it, i.e., the −� /4-diagonal G gradient response
Zdm

−�/4,g�x−1,y−1� is large, the G value of this pixel
akes less contribution to the estimation of Zmo

g �x ,y�, oth-
rwise, the G value of this pixel makes more contribution
o the estimation of Zmo

g �x ,y�. Further, to reduce the estima-
ion error, the two −� /4-diagonal G gradient responses
Zdm

−�/4,g�x ,y� and �Zdm
−�/4,g�x−2,y−2� are also considered.

onsequently, the weight of the pixel at location �x−1,y
1� can be given by wg�V ,x−1,y−1�=1 / �1
��Zdm

−�/4,g�x ,y�+2�Zdm
−�/4,g�x−1,y−1�+�Zdm

−�/4,g�x−2,y

ig. 15 For all pixels at positions �x� ,y��� ��x±2m ,y±2n+1�� in
ig. 12, the four SI-based masks for G channel �a� The horizontal
I-based mask. �b� The vertical SI-based mask. �c� The
/4-diagonal SI-based mask. �d� The −� /4-diagonal SI-based
ask.

ig. 16 For all pixels at positions �x� ,y��� ��x±2m+1,y±2n+1�� in
ig. 12, the four SI-based masks for G channel. �a� The horizontal
I-based mask. �b� The vertical SI-based mask. �c� The
/4-diagonal SI-based mask. �d� The −� /4-diagonal SI-based
ask.
ournal of Electronic Imaging 013005-
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−2���. Similarly, the weights of the four neighboring G
pixels can be expressed by wg�−� /4,x−1,y−1�=1 / �1
+ ��k=0

2 �k�Zdm
−�/4,g�x−k ,y−k���, wg�� /4,x−1,y+1�=1 / �1

+ ��k=0
2 �k�Zdm

�/4,g�x−k ,y+k���, wg�� /4,x+1,y−1�=1 / �1
+ ��k=0

2 �k�Zdm
�/4,g�x+k ,y−k���, and wg�−� /4,x+1,y+1�

=1 / �1+ ��k=0
2 �k�Zdm

−�/4,g�x+k ,y+k���, where �k=2 if k=1;
�k=1, otherwise. According to the preceding description,
the G value of Zmo

g �x ,y� in Fig. 12 can be estimated by

Zmo
g �x,y� =

�
�d,x�,y����

wg�d,x�,y��Zmo
g �x�,y��

�
�d,x�,y����

wg�d,x�,y��
, �6�

where �= ��−� /4,x−1,y−1� , �� /4,x−1,y+1� , �� /4,x
+1,y−1� , �−� /4,x+1,y+1��.

After performing the G value estimation for pixels in
�2

g, the zooming process for the G channel of Zmo has been
completed. Afterward, the current pattern of Zmo is illus-
trated in Fig. 17. In Sec. 3.2, the zooming processing for
the mosaic R and B channels is presented.

3.2 Stage 2: Zooming the Mosaic R and B
Channels

In this subsection, the second stage of the proposed zoom-
ing algorithm, i.e., the zooming approach for R and B chan-
nels, is presented. Since the zooming approach for the mo-
saic R channel is the same as that for the mosaic B channel,
in what follows, we only present it for the mosaic R chan-
nel.

For easy exposition, Fig. 18 is taken as the representa-
tive to explain how to estimate the R values of pixels in �r.
Based on the color difference concept, the R value of the
current pixel at position �x ,y� can be estimated by

G
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Fig. 17 Current pattern of Zmo after completing the zooming pro-
cess for the mosaic G channel.
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mo
r �x,y� =

�
�d,x�,y����

wg�d,x�,y��Zmo
g �x�,y��

�
�d,x�,y����

wg�d,x�,y��
− Dr�x,y� , �7�

here �= ��V ,x�1,y� , �H ,x ,y�1��; the four proper
eights are wg�V ,x−1,y�=1 / �1+ ��k=0

2 �k�Zdm
V,g�x−k ,y���,

g�V ,x+1,y�=1 / �1+ ��k=0
2 �k�Zdm

V,g�x+k ,y���, wg�H ,x ,y
1�=1 / �1+ ��k=0

2 �k�Zdm
H,g�x ,y−k���, and wg�H ,x ,y+1�

1 / �1+ ��k=0
2 �k�Zdm

H,g�x ,y+k���, where �k=2 if k=1; �k=1,
therwise.

Finally, the B values of the pixels in �b can be estimated
y the same way, and then the fully populated zoomed
osaic image Zmo, as shown in Fig. 19, is obtained.

Experimental Results

n this section, based on 24 test mosaic images, some ex-
erimental results illustrate the zoomed image quality ad-
antage of our proposed mosaic zooming algorithm when
ompared with two previous zooming algorithms, one by
attiato et al.33 called the locally adaptive zooming �LAZ�
lgorithm and the other by Lukac et al.35 called the Bayer
attern zooming �BPZ� algorithm. The three concerned al-
orithms are implemented on the IBM compatible com-
uter with Intel Core 2 Duo CPU 1.6 GHz and 1 Gbyte
AM. The operating system used is MS-Windows XP and

he program developing environment is Borland C��
uilder 6.0. The programs of the three concerned algo-

ithms have been uploaded in Ref. 39.
Figure 20 illustrates the 24 test images from Kodak

hotoCD.40 Like those test images used in Refs. 33 and 35,
n our experiments, the 24 512�728 color test images are
rst shrunk and down-sampled by Eqs. �8� and �9�, respec-

ively, to obtain the 48 256�364 shrunk mosaic images.

mo�i, j� = 	Ofc
r �2i,2j� if i � even and j � odd

Ofc
b �2i,2j� if i � odd and j � even

Ofc
g �2i,2j� otherwise


 , �8�

G G

G G G

G G
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G G
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ig. 18 Subimage used to explain how to estimate the R values of
he pixels in Ωr.
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Imo�i, j� =

	
1

4 �
k1=0

1

�
k2=0

1

Ofc
r �2i + k1,2j + k2� if i � even and j � odd

1

4 �
k1=0

1

�
k2=0

1

Ofc
b �2i + k1,2j + k2� if i � odd and j � even

1

4 �
k1=0

1

�
k2=0

1

Ofc
g �2i + k1,2j + k2� otherwise,



�9�

where Ofc
r �x ,y�, Ofc

g �x ,y�, and Ofc
b �x ,y� denote the three

color components of the color pixel at position �x ,y� in the
original full-color image; Imo�i , j� denotes the color value
of the pixel at position �i , j� in the shrunk mosaic image.
For convenience, the mosaic images shrunk by Eqs. �8� and
�9� are called the shrunk-sampling mosaic image and the
shrunk-averaging mosaic image, respectively; the zoomed
mosaic images obtained by using the shrunk-sampling mo-
saic image and the shrunk-averaging mosaic image are
called the zoomed-sampling mosaic image and the zoomed-
averaging mosaic image, respectively. Furthermore, the
boundaries of each image are dealt with using the mirroring
method.

We adopt the peak signal-to-noise ratio �PSNR� to jus-
tify the advantage of the proposed zooming algorithm. The
PSNR of a M �N mosaic image is defined by

PSNE = 10 log10
2552

1/�MN� �
i=0

M−1

�
j=0

N−1

�Omo�i, j� − Zmo�i, j��2

,

�10�

where Omo�i , j� denotes the color value of the pixel at po-
sition �i , j� in the 512�728 mosaic image generated by
mosaicing the original full-color image and Zmo�i , j� de-
notes the color value of the pixel at position �i , j� in the
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Fig. 19 Fully populated zoomed mosaic image Zmo.
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oomed mosaic image obtained by applying the zooming
lgorithm on Imo.

Table 2 demonstrates the zoomed mosaic image quality
omparison in terms of PSNR for the three concerned al-
orithms. In Table 2, the second to fourth columns and the
fth to seventh columns demonstrate the comparisons for

he zoomed-sampling mosaic image and the zoomed-
veraging mosaic image, respectively. In Table 2, the entry
ith the best PSNR is highlighted by boldface. Table 3
emonstrates the average PSNR quality comparison for the
oomed-sampling mosaic image and the zoomed-averaging
osaic image. On average, our proposed zooming algo-

ithm has more than 1.79 dB of quality improvement when
ompared with two previous zooming algorithms.

Next, we adopt the subjective visual measure to demon-
trate the visual quality advantage of our proposed zooming
lgorithm. For simplicity, seven magnified subimages cut
rom the test image No. 7 are used to compare the visual
ffect. Figures 21�a�–21�g� illustrate the seven magnified
ubimages cut from the mosaic image obtained by mosaic-
ng the original test image No. 7 directly; cut from the
oomed-sampling mosaic images obtained by LAZ algo-
ithm, LAZ algorithm, and the proposed mosaic zooming
lgorithm; cut from the zoomed-averaging mosaic images
btained by the preceding three concerned algorithms, re-
pectively. To show the mosaic images more clearly, the
olor value of each pixel is represented by its gray value.
omparing the visual effect between the magnified subim-
ge in Fig. 21�a� and the corresponding one in Figs.
1�b�–21�g�, we observe that the shutters in the two
oomed mosaic images obtained by the proposed mosaic
ooming algorithm look clearer and have fewer artifacts
hen compared with those in the other four zoomed mosaic

Fig. 20 Twenty-four test
ournal of Electronic Imaging 013005-
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images obtained by the previous zooming algorithms. Simi-
lar to the visual comparison for the test image No. 7, we
further take the magnified subimages cut from the test im-
age No. 23 for visual comparison. Figures 22�a� and 22�g�
illustrate seven magnified subimages cut from the mosaic
image obtained by mosaicing original color test image No.
23; cut from the zoomed-sampling mosaic images; cut from
the zoomed-averaging mosaic images. From visual com-
parison, we observe that the face textures of the birds in the
two zoomed mosaic images obtained by our proposed mo-
saic zooming algorithm look clearest and have least arti-
facts, i.e., the best visual effect.

Besides evaluating the zoomed image quality perfor-
mance under the mosaic image domain, we further evaluate
the image quality performance under the demosaiced full-
color image domain. Here, three demosaicing algorithms
proposed by Pei and Tam,22 Lukac and Plataniotis,21 and
Chung and Chan,4 respectively, are adopted to demosaic the
zoomed mosaic images. For convenience, the three demo-
saicing algorithms proposed in Refs. 22, 21, and 4 are
called the signal correlation demosaicing �SCD� algorithm,
the normalized color-ratio modeling demosaicing �NCMD�
algorithm, and the variance of color differences demosaic-
ing �VCDD� algorithm, respectively.

For fitting the demosaiced full color domain, we adopt
three objective color image quality measures, the color
PSNR �CPSNR�, the S-CIELAB �E

ab
* metric,23,41 and the

mean structural similarity42 �MSSIM�, and one subjective
color image quality measure, the color artifacts, to justify
the better quality performance of our proposed zooming
algorithm in the demosaiced full color domain. The
CPSNR for an M �N color image is defined by

from Kodak PhotoCD.40
PSNR = 10 log10
2552

1/�3MN� �
i=0

M−1

�
j=0

N−1

�
c�C

�Ofc
c �i, j� − Zdm

c �i, j��2

, C = �r,g,b� , �11�
images
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here Ofc
r �i , j�, Ofc

g �i , j�, and Ofc
b �i , j� denote the three color

omponents of the color pixel at position �i , j� in the origi-
al full color image; Zdm

r �i , j�, Zdm
g �i , j�, and Zdm

b �i , j� denote
he three color components of the color pixel at position
i , j� in the zoomed and demosaiced full color image. The
reater the CPSNR is, the better the image quality is. The
-CIELAB �E* of an M �N color image is defined by

Table 2 PSNR comparison for three conce

Zoomed-Sampling Mosaic Ima

LAZ �Ref. 33� BPZ �Ref. 35�

Image 01 21.0309 22.0561

Image 02 28.2049 28.8876

Image 03 29.0091 29.7613

Image 04 28.0358 28.4953

Image 05 20.9758 21.4357

Image 06 22.9187 23.6897

Image 07 26.3770 27.6181

Image 08 18.7949 19.5576

Image 09 26.2863 27.7866

Image 10 26.9833 27.6467

Image 11 24.3368 24.9773

Image 12 28.2548 29.0543

Image 13 19.4352 19.7921

Image 14 23.7403 24.3755

Image 15 27.6946 28.2269

Image 16 26.5490 27.3799

Image 17 26.8729 27.4734

Image 18 23.0155 23.4576

Image 19 22.5968 23.8859

Image 20 26.2403 27.2153

Image 21 23.1969 24.0252

Image 22 25.6045 26.0330

Image 23 28.3455 29.2668

Image 24 22.0551 22.2335

Average 24.8564 25.5971
ab

ournal of Electronic Imaging 013005-1
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�E
ab
* =

1

MN
�
i=0

M−1

�
j=0

N−1 � �
c�

�EOfc
c �i, j� − EZdm

c �i, j��2�1/2
, 

= �L,a,b� �12�

where EOfc
L �i , j�, EOfc

a �i , j�, and EOfc
b �i , j� denote the three

CIELAB color components of the color pixel at position
�i , j� in the original full color image; EZL �i , j�, EZa �i , j�,

lgorithms based on mosaic image domain.

Zoom-Averaging Mosaic Images

LAZ �Ref. 33� BPZ �Ref. 35� Ours

2 21.2226 23.0226 23.7134

6 28.4293 29.9341 30.4789

7 29.0248 30.6286 31.5853

3 27.6440 29.5121 29.9524

7 20.8922 22.4231 23.5210

6 23.1881 24.8081 25.4316

8 25.6686 28.4169 29.0751

9 18.7016 20.6395 21.0174

0 25.9515 28.5187 29.1765

0 26.7956 28.6003 29.5745

9 24.3862 26.0407 26.6855

7 28.0030 29.9528 30.5984

2 19.7506 21.0273 21.8124

3 23.6557 25.2574 25.6734

4 27.0980 29.0145 29.3562

7 26.8854 28.5203 29.1772

9 26.5713 28.4128 29.1937

5 23.0911 24.5974 25.2960

8 22.6393 24.8886 25.4410

9 25.9125 28.1746 28.7152

2 23.2785 25.1467 25.8918

8 25.6056 27.1060 27.6788

8 28.0118 30.0933 31.0779

7 22.2721 23.4373 24.3001

1 24.7783 26.5906 27.2677
rned a

ges

Ours

24.783

31.100

32.496

31.447

25.023

26.366

31.583

22.190

30.898

30.919

27.667

31.981

22.552

26.730

30.883

29.986

30.772

26.329

26.722

30.314

27.101

28.611

32.702

25.097

28.511
dm dm
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nd EZdm
b �i , j� denote the three CIELAB color components

f the color pixel at position �i , j� in the zoomed and demo-
aiced full-color image. The smaller the S-CIELAB �E

ab
*

s, the better the image quality is. Further, the MSSIM,
hich is based on human visual system and the comparison
etween local patterns, is used to measure the image quality
erformance. The MSSIM for an M �N color image is de-
ned by

able 3 Average PSNR comparison for the zoomed-sampling mo-
aic image and the zoomed-averaging mosaic image.

LAZ
�Ref. 33�

BPZ
�Ref. 35� Ours

Zoomed-sampling mosaic images 24.8564 25.5971 28.5111

Zoomed-averaging mosaic images 24.7783 26.5906 27.2677

Average 24.8174 26.0939 27.8894

Quality improvement 3.0720 1.7955
SSIM =
1

3 �
c��r,g,b�  1

MN
�
i=0

M−1

�
j=0

N−1 �2 �
���

��
c�i, j� + k1��2�oz

c �i, j� + k2�

� �
���

���
c�i, j��2 + k1�� �

���

���
c�i, j��2 + k2�� ,
�
c�i, j� = �

x=−5

5

�
y=−5

5

�wxyI
c�i + x, j + y�� ,

�
c�i, j� = � �

x=−5

5

�
y=−5

5

�wxy�Ic�i + x, j + y� − ��
c�i, j��2��1/2

oz
c �i, j� = �

x=−5

5

�
y=−5

5 �wxy �
���

�Ic�i + x, j + y� − ��
c�i, j��� �13�

here �� �o ,z�; Ic�i� , j��=Ofc
c �i� , j�� if �=o; otherwise,

c�i� , j��=Zdm
c �i� , j�� where the definitions of Ofc

c �i� , j�� and

dm
c �i� , j�� are the same as those in Eq. �11�; W= �wx,y �−5
x ,y�5� are the coefficients of the 11�11 circular-

ymmetric Gaussian mask. The greater is the MSSIM, the
etter is the image quality.

Based on the same test images, among the nine schemes
hat combine one of the concerned three mosaic zooming
lgorithms and one of the three existing demosaicing algo-
ithms, Tables 4–6 demonstrate the image quality compari-
ournal of Electronic Imaging 013005-1
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son in terms of the average CPSNR, the average
S-CIELAB �E

ab
* , and the average MSSIM, respectively. In

Tables 4–6, the second to fourth columns and fifth to sev-
enth columns demonstrate the quality comparison for
demosaicing results based on the zoomed-sampling mosaic
image and the zoomed-averaging mosaic image, respec-
tively, and the entries with the largest CPSNR and MSSIM,
and the smallest S-CIELAB �E

ab
* are highlighted by bold-

face. From Tables 4–6, we observe that our proposed
zooming algorithm produces the best zoomed and demosa-
iced image quality in terms of CPSNR, S-CIELAB �E

ab
* ,

and MSSIM.
Finally, we adopt the subjective visual quality measure,

color artifacts, to demonstrate the visual quality advantage
of our proposed zooming algorithm under the demosaiced
full-color domain. After demosaicing the zoomed mosaic
image, some color artifacts may appear on nonsmooth re-
gions of the demosaiced image. To evaluate the color arti-
facts among the concerned algorithms, the magnified sub-
images containing nonsmooth contents are adopted from
the demosaiced images. First, Figs. 23�a�–23�s� illustrate 19
magnified subimages, one cut from the original test image
Fig. 21 Seven magnified subimages cut from �a� the mosaic image
obtained by mosaicing the original test image No. 7 directly; the
ones cut from the zoomed-sampling mosaic images obtained from
�b� the LAZ algorithm, �c� the BPZ algorithm, and �d� our proposed
mosaic zooming algorithm; the ones cut from the zoomed-averaging
mosaic images obtained from �e� the LAZ algorithm, �f� the BPZ
algorithm, and �g� our proposed mosaic zooming algorithm.
Jan–Mar 2010/Vol. 19(1)1
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No. 19; the others cut from the ones by running the nine
zooming and demosaicing schemes, which combine one of
the three concerned mosaic zooming algorithms and one of
the three demosaicing algorithms already mentioned, on the
zoomed-sampling mosaic image and the zoomed-averaging
mosaic image. From a visual comparison, we observe that
based on the same demosaicing algorithm, the demosaiced
images, which use the zoomed mosaic images created by
our proposed zooming algorithm as the input images, have
fewer color artifacts on the plank walls when compared
with those that use the zoomed mosaic images created by
the other two zooming algorithms as the input images. Fur-
ther, we take the magnified subimages cut from the test
image No. 23 for visual comparison. Figures 24�a�–24�s�
are the magnified subimages cut from the original full color
test image No. 23 and the 18 zoomed and demosaiced im-
ages. Similar to the visual comparison for the test image
No. 19, experimental results for the test image No. 23 im-
age also reveal that the face textures of the birds in the
demosaiced images, that use the zoomed mosaic images
created by our proposed zooming algorithm as the input
images, have least color artifacts and the best visual effect.
More visual results of the concerned algorithms are avail-
able in Ref. 39.

5 Conclusion
The new quality-effective zooming algorithm for mosaic
images was presented. Utilizing the adaptive heterogeneity

rned demosaicing algorithms based on demo-

s Zoomed-Aveaging Mosaic Images

urs LAZ �Ref. 33� BPZ �Ref. 35� Ours

469 24.9344 26.8063 27.2044

609 24.9787 26.8715 27.2044

311 24.9233 26.800 27.1771

463 24.9454 26.8259 27.1916

e concerned demosaicing algorithms based on

s Zoomed-Aveaging Mosaic Images

urs LAZ �Ref. 33� BPZ �Ref. 35� Ours

853 4.40765 3.87297 3.28052

994 4.34464 3.67143 3.20609

600 4.38060 3.81125 3.29513

482 4.37763 3.78522 3.26058
Table 4 Average CPSNR comparison for three conce
saiced full-color domain.

Zoomed-Sampling Mosaic Image

LAZ �Ref. 33� BPZ �Ref. 35� O

SCD �Ref. 22� 25.2014 25.9048 28.3

NCMD �Ref. 21� 25.2456 25.9615 28.3

VCDD �Ref. 4� 25.1836 25.8916 28.3

Average 25.2102 25.9193 28.3
Table 5 Average S-CIELAB �E
ab
* comparison for thre

demosaiced full-color domain.

Zoomed-Sampling Mosaic Image

LAZ �Ref. 33� BPZ �Ref. 35� O

SCD �Ref. 22� 4.87254 4.40272 3.13

NCMD �Ref. 21� 4.80572 4.22144 3.08

VCDD �Ref. 4� 4.82128 4.30877 3.14

Average 4.83318 4.31098 3.12
ig. 22 Seven magnified subimages cut from �a� the mosaic image
btained by mosaicing the original test image No. 23 directly; the
nes cut from the zoomed-sampling mosaic images obtained from
b� the LAZ algorithm, �c� the BPZ algorithm, and �d� our proposed
osaic zooming algorithm; the ones cut from the zoomed-averaging
osaic images obtained from �e� the LAZ algorithm, �f� the BPZ
lgorithm, and �g� our proposed mosaic zooming algorithm.
Jan–Mar 2010/Vol. 19(1)2
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rojection masks and the Sobel-and luminance-estimation-
ased masks, the gradient information can be extracted
rom the input mosaic image directly. Then, the extracted
radient information and the color difference concept are
ombined to assist the design of the proposed quality-
ffective zooming algorithm. Based on 24 test images, ex-

Table 6 Average MSSIM comparison for three c
iced full-color domain.

Zoomed-Sampling Mosaic

LAZ �Ref. 33� BPZ �Ref. 35

SCD �Ref. 22� 0.38018 0.47815

NCMD �Ref. 21� 0.38290 0.48475

VCDD �Ref. 4� 0.32424 0.47788

Average 0.36244 0.48026

ig. 23 Nineteen magnified subimages cut from �a� the original test
mage No. 19; based on the zoomed-sampling mosaic image, the
emosaiced full-color images obtained by �b� LAZ+SCD, �c� LAZ
NCMD, �d� LAZ+VCDD �e� BPZ+SCD, �f� BPZ+NCMD, �g� BPZ
VCDD, �h� ours+SCD, �i� ours+NCMD, and �j� ours+VCDD;
ased on the zoomed-averaging mosaic image, the demosaiced

ull-color images obtained by �k� LAZ+SCD, �l� LAZ+NCMD, �m�
AZ+VCDD �n� BPZ+SCD, �o� BPZ+NCMD, �p� BPZ+VCDD, �q�
urs+SCD, �r� ours+NCMD, and �s� ours+VCDD.
ournal of Electronic Imaging 013005-1
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perimental results demonstrated that the proposed zooming
algorithm has more than 1.79 dB quality improvement
when compared with two previous zooming algorithms,
one by Battiato et al.33 and the other by Lukac et al.35 In
addition, based on the demosaiced full-color domain, the
proposed zooming algorithm has the best image quality

ed demosaicing algorithms based on demosa-

s Zoomed-Aveaging Mosaic Images

urs LAZ �Ref. 33� BPZ �Ref. 35� Ours

142 0.32424 0.50118 0.51600

543 0.32682 0.50724 0.51839

0111 0.32259 0.50103 0.51470

265 0.32455 0.50315 0.51636

Fig. 24 Nineteen magnified subimages cut from �a� the original test
image No. 23; based on the zoomed-sampling mosaic image, the
demosaiced full color images obtained by �b� LAZ+SCD, �c� LAZ
+NCMD, �d� LAZ+VCDD �e� BPZ+SCD, �f� BPZ+NCMD, �g� BPZ
+VCDD, �h� ours+SCD, �i� ours+NCMD, and �j� ours+VCDD;
based on the zoomed-averaging mosaic image, the demosaiced full
color images obtained by �k� LAZ+SCD, �l� LAZ+NCMD, �m� LAZ
+VCDD �n� BPZ+SCD, �o� BPZ+NCMD, �p� BPZ+VCDD, �q�
ours+SCD, �r� ours+NCMD, and �s� ours+VCDD.
oncern
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erformance in terms of three measures such as CPSNR,
-CIELAB �E

ab
* , and MSSIM. For the proposed zooming

lgorithm, it can only enlarge the original X�Y mosaic
mage to the one with a size of 2X�2Y and it is an inter-
sting research topic to extend the proposed zooming algo-
ithm to enlarge the mosaic image to the one with arbitrary
ize.

ppendix: The Determination of Two Parameters
and �

ince the zoomed image quality performance of the pro-
osed zooming algorithm is influenced by the two param-
ters 	 and 
, the determination of the best 	 and 
 is
iscussed in this appendix. In terms of 	 and 
 is discussed
n this appendix. In terms of 	 and 
, the average CPSNR
urfaces of the zoomed-sampling mosaic image and the
oomed-averaging mosaic image are illustrated in Figs.
5�a� and 25�b�, respectively. From the peaks of Figs. 25�a�
nd 25�b�, the best choices of 	 and 
 are 	=0.6 and 

256.
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