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Abstract—We propose a semi-supervised learning technique 

to address the problem of fusing multimodal information sources 
for CBIR. In our approach, user's preferences in the form of 
reference feedback are treated as labeled data, and the key idea is 
to devise an on-line scheme to effectively transform the abstract 
semantics into useful training data for improving the query 
performance. Specifically, our method can be characterized with 
the following three advantages: 1) Kernel matrices are used to 
encode each modality of information so that the fusion can be 
conveniently carried out via boosting; 2) The base kernel 
matrices are derived from eigendecomposing the graph 
Laplacian, and further refined to satisfy a pivotal monotone 
property that ensures intrinsic structure will be reasonably 
maintained for each modality; 3) The adopted optimization 
criterion in boosting is to align with a target kernel matrix 
accounting for relevance feedback, and the learned multimodal 
kernel matrix can be used for training, and then for testing with 
those unlabeled ones in the database. To demonstrate the 
efficiency of the proposed framework, experimental results on 
CBIR are provided to illustrate several practical considerations.  

Keywords—image retrieval, boosting, kernel fusion 

I.  INTRODUCTION 
Exploiting relevance feedback for retrieving multimedia 

information such as webpages, images, and video data is an 
interesting and challenging research topic. Such problems 
typically deal with at least two different sources of information: 
the intrinsic data relations entailed by the underlying 
multimedia data, and the abstract semantics given by on-line 
users. One important aspect of these tasks is that the emphasis 
may not be on learning a general classifier for inferencing, but 
finding a reliable way to transfer user's preferences to locate 
relevant data from those already included in a database. In this 
work, we consider kernel matrices as the information 
bottleneck for semi-supervised learning so that the system can 
respond more properly to user's queries. Furthermore, to 
accommodate the rich characteristics embodied in multimedia 
data, we design a wide variety of base kernel matrices, each of 
which is to account for a particular modality of feature 
representation, and its corresponding distance measure. Our 
formulation uses boosting to fuse the multimodal information, 
and then applies SVMs with the learned ensemble kernel for 
finding those relevant to a query. 

A. Previous Work 
As we shall experiment the efficiency of our method with 

content-based image retrieval, our discussion will mostly focus 
on those related to CBIR. In particular, we investigate several 
trends in CBIR, and their connection to our approach. 

Supervised versus semi-supervised learning: Since labeled 
data provided in relevance feedback are few, they generally can 
not faithfully represent the underlying joint distribution of the 
label and the feature. Current mainstream classification 
techniques, say AdaBoost and SVMs, consequently may not be 
stable enough for learning a reliable decision boundary. This 
phenomenon is the so-called small sample problem in retrieval 
[26]. Alternatively, semi-supervised learning, e.g., [2], [11], 
appears to be more promising in that both the labeled and 
unlabeled data are considered in the construction of a decision 
boundary. The use of the unlabeled data usually builds upon 
the assumption that two nearby points are likely to have the 
same class label. It follows that the learned decision boundary 
has a tendency not passing through regions with high sample 
density. Another recent trend of designing semi-supervised 
algorithms for retrieval is based on manifold learning [9], [10], 
[15]. Such techniques assume that the images of interest spread 
as manifolds embedded in the feature space, and then consider 
this particular image structure as well as the information of 
labeled data for addressing queries. 

Single-modal versus multimodal information sources: 
Fusing multimodal information sources is one of the feasible 
ways to bridge the semantic gap. One main reason for the 
effectiveness is that through the information fusion, the 
respective irrelevant factors in each source may be smoothed 
out or reduced (though this is not always the case). Indeed, 
multimodal information fusion has been shown to be successful 
in, e.g., image and web retrieval [25], and video retrieval [29]. 
The most widely-used fusion strategies include averaging, 
linear combination, min-max aggregation or voting, in which 
each information source is pre-associated with a weight, and 
the outcome is the weighted combination of the evidence found 
in each modality. Behind the simple and intuitive idea, fusing 
multimodal information often involves two difficult issues: 1) 
how to find the optimal weighting in each source; and 2) how 
to perform the fusion from user to user, or query to query. Wu 
et al. [27] propose super kernel for fusing evidence from all 
sources to form a feature vector, and learn an SVM-based 
classifier to output the final results. In this case, the multiple 
information sources can be nonlinearly combined. 

Query-class independent versus query-class dependent: 
Retrieval methods that adopt the same information fusion 
strategy for all queries are considered as query-class 
independent. As the best fusion policy may vary from query to 
query, a query-class dependent scheme is preferred. The 
concept of query-class dependent is proposed by Yan et al. [29]. 
Their algorithm has two stages. An input query is first 
classified into one of the predefined classes. Then the retrieval 
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result is obtained according to the fusion strategy associated 
with the class. However, the effectiveness of a query-class 
dependent method is based on two assumptions: 1) Samples in 
the same class are assumed to prefer the same fusion strategy; 2) 
The classifier for separating the classes is required to achieve 
high accuracy. 

B. Our Approach 
Concerning multiple modalities, since the feature 

representations and their associated similarity measures are 
different, fusion in the domains of representations and distance 
outputs are difficult. For example, an image can be represented 
by a feature vector, a tensor, or a bag of feature vectors. And 
their corresponding distances could be a metric, or non-metric. 
Thus, instead of directly considering the representations as well 
as the distance outputs, we propose to perform multimodal 
fusion in the domain of the kernel matrices, such a fusion 
strategy would generally give a more flexible and unified view 
for handling multimodal information sources. 

In designing kernel matrices for semi-supervised learning, 
two viewpoints are often adopted: the first relies on kernel 
alignment [7], [13], [16], and the second has to do with 
integrating the concepts of cluster assumption [4] or manifold 
assumption [24] into kernel matrix generation. We propose to 
use boosting to link the two aspects of considerations. By our 
design of base kernel matrices, the scheme will nicely preserve 
intrinsic structure of each information modality. Furthermore, a 
boosting algorithm itself will conveniently select good base 
kernels from the many modalities such that their 
combination/fusion would best explain the query and relevance 
feedback. Since the ensemble kernel matrix is dynamically 
learned from multiple modalities, our method is query 
dependent. 

To achieve high fusion performance in CBIR, good and 
diversified image representations and their corresponding 
similarity measures are required. In our system, we implement 
six representation-distance pairs in three levels, i.e., global-
based level, region-based level and patch-based level. Some of 
them are suggested in the retrieval literature, and some are 
proposed by us. Each of these combinations may achieve good 
retrieval results in some image categories, but none is always 
the best. Our experimental results show that the performance 
could be significantly improved through the fusion of six 
modalities by the proposed scheme. 

II. KERNEL DESIGN AND PRINCIPLES 
Kernel-based methods have attracted considerable attention 

in recent years, owing to their effectiveness in classification, 
regression, and ranking. For multimedia retrieval, it is nature to 
use a kernel matrix to record a particular modality of 
information source. Under this setting, the problem of 
multimodal fusion can be transformed into combining all the 
corresponding kernel matrices into an informative one. 

A. Kernel Matrix by Alignment 
Consider a set of training samples  where 

 (the input space) and  is the binary label. 
In practice, a kernel matrix  associated with  can be 
obtained by specifying a kernel function. 

As suggested by several researchers [6], [7], [13], [17], [19], 
model selection can also be done in terms of kernel matrix. 
Cristianini et al. [7] suggest to use kernel alignment 

  to estimate the degree of agreement between 
two kernel matrices  and  with respect to , where 

 

Let  be the learned kernel matrix. To connect  with a 
given classification task, we define the target kernel to be , 
where . Then a well-learned  would have a 
large value in the following equation, 

 

In optimizing with equation (3), Lanckriet et al. [13] use 
semi-definite programming (SDP) to search the optimal kernel 
by linearly combining several predefined kernel matrices.  

B. Graph Laplacian and Kernel Matrix 
The previous section describes how to learn a kernel matrix 

by alignment; however, it assumes the training samples are all 
labeled. Concerning CBIR, only a small portion data are 
labeled, and the remaining are unlabeled. Thus techniques other 
than kernel alignment are required. 

Let the set of data points be , where 
 for data with labels, and those 

without labels are included in . We 
define a graph  with vertices over , and an affinity matrix 

 to record the non-negative weights over edges of . 
Typically, the value of  is set to  if samples  and  are 
neighbors or close enough, and otherwise . Then the graph 
Laplacian of  can be defined as , where  is a 
diagonal matrix with . 

From the spectral graph theory [5], we know the following 
equation holds for any given vector : 

 

In other words, the degree of smoothness of vector  varying 
along the intrinsic structure can be measured by the Laplace 
operator . We next eigendecompose  as follows: 

 

where  are the eigenvalues of  in non-decreasing 
order, and  are the corresponding eigenvectors with 
unit length. The eigenvector corresponding to a smaller 
eigenvalue will have a smoother change in the intrinsic 
structure. Note that the Laplacian eigenmap [1] for manifold 
learning builds upon the above property. 
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The kernel matrices yielded from the graph Laplacian, as 
are proposed in [24], have the following form, 

 

where  is a real-valued function: 1) being  monotonically 
decreasing in ; and 2) . The first property 
ensures that the smoother eigenvectors are emphasized more, 
and the second guarantees  is a kernel matrix. 

III. LEARNING MULTIMODAL FUSION 
Having described useful principles for kernel design, we are 

now in a position for learning multimodal kernel matrices. 

A. Modal-wise CBIR Information 
Assume that each data instance in the dataset  has  

feature representations, i.e., . To leave room 
for extending our approach to handling other multimedia 
information, no specific form of a feature representation is 
enforced. The space of the th representation is denoted as , 
for . The distance function with respect to the th 
representation is denoted as . Again no 
assumptions have been made on the distance functions. They 
could be either a metric or a non-metric.  

In our formulation, a modality of CBIR information is 
decided by a pair of feature representation and its distance 
function. Under this setting, we can now compute the graph 
Laplacian for each modality. Specifically, we use a simple-
minded scheme to define the th affinity matrix by  

 

where . With (7), the Laplacian matrix  of each 
modality  is computed as follows: 

 

Analogous to equations (5) and (6), we can now perform 
eigendecomposition on , and conveniently construct the 
corresponding kernel matrix  for the th modality, i.e., 

 

where ,  arranged in a non-decreasing order, are 
the eigenvalues of , and  are the corresponding 
normalized eigenvectors. From (9) to (10), we impose the 

order constraint on  to avoid the use of a parametric 
form due to the function . Empirically we set , 
and let . The concise form in (11) gives a unified 
view for addressing multiple information sources. 

B. Monotone Base Kernel (MBK) 
Suppose we treat the set of relevance feedback examples as 

labeled data. Following our notations in the previous section, 
the dataset is , and . Clearly, a 
labeled data point with  implies relevance to a query and 
vice versa. In practice, we have . 

To learn reasonable values of , Zhu et al. [30] 
design an optimization scheme to connect kernel alignment 
with graph Laplacian. Specifically, aligning the submatrix 

 (related to only the labeled data) to a target kernel serves 
as the objective function, and the order constraint in (11) is 
enforced as the constraint. They use quadratically constrained 
quadratic program (QCQP) to obtain the optimal kernel for a 
single modality. While QCQP may not be efficient enough for 
on-line applications such as CBIR, more critical is that the 
fusion of multiple information modalities remains unsolved. 

We instead consider boosting to accomplish the kernel 
learning with . It implies we need to construct a set of base 
kernel matrices such that the outcome after boosting is still a 
kernel, and more challengingly, satisfactorily resolves the two 
critical issues discussed earlier in this section. To this end, we 
define modal-wise monotone base kernel (MBK) matrices by 

 

where . Let  and . 
From the definition in (12), we know each base kernel matrix is 
of size , and is derived solely based on labeled data (i.e., 
relevance feedback). It can be readily verified boosting with , 
the set of base kernel matrices, will automatically satisfy the 
order constraint, and the mechanism of boosting provides a 
systematic way to fuse base kernels across multiple modalities. 

C. Boosting for Semi-Supervised Learning 
Equipped with the set of , we still need to define a target 

kernel  so that boosting by aligning with  would imply 
good CBIR performance. Recall that  contains the  label 
data that are indeed the relevance feedback. Since the 
irrelevance of a pair of images to a query generally does not 
imply the two must be similar, the binary classification 
problem with respect to  is not standard. Consequently, the 
target kernel given by the  matrix , [7], [13], [30], 
may not be adequate. We thus consider the following definition 
for our target kernel  for CBIR: 

 

in which the elements with zero value will have no influence in 
the boosting algorithm. The exact steps of multimodal kernel 
boosting are listed in Algorithm 1. We remark that in the 
algorithm, the final boosted kernel matrix is added with a prior  
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kernel matrix , where c is a positive scalar between 
. This is equivalent to putting a bit more confidence on the 

diagonal entries since they correspond to the autocorrelations 
of samples in the relevance feedback. 

Let  be the learned multimodal kernel matrix 
by Algorithm 1. Assume that the base kernel selection through 
boosting implies the following expansions: 

 

where the values of  can be easily calculated as we know 
how  is derived through boosting iterations. It follows that 
we can use  to train an SVM-based classifier and then 
reference the following rectangular matrix 

 

for testing with those unlabeled data. The CBIR system then 
returns the samples with top classification scores as the 
retrieval results. (We use LIBSVM [3] to implement this step.) 

IV. IMAGE FEATURES AND DISTANCES 
Good image representations and similarity measures are also 
essential for designing an effective retrieval system. In our 
system, a coupling of image representation and similarity 
measure defines its respective graph Laplacian, and is 

associated with a specific set of weak kernels. We implement 
various ``feature + distance" pairs. These pairs are expected to 
complement each other, and some combinations of them will 
get better performances. We roughly divide the image 
representations into three levels, namely, global level, region 
level, and patch level, according to the scale described by a 
single feature.  

A. Global Level 
In global-level image representations, each feature 

describes a specific characteristic about the whole image. 
These holistic perceptual features will depict an image in a 
compact form and directly capture the overall properties. 

1) Color Histogram + Jeffrey Divergence: Features related 
to color are adopted mostly for their good performance and 
human-intuition matching. We apply the 64-bin color 
histogram defined in the HSV color space. To include the 
spatial information in the histogram, the color coherence vector 
(CCV) [20] is concatenated after the color histogram. We use 
the Jeffrey divergence as the distance function. The Jeffrey 
divergence of two histograms  and 

 is defined as 

 

2) Texture + Euclidean Distance: Texture features refer to 
the image patterns that display homogeneity. We select and use 
Tamura coarseness and directionality features to measure the 
distribution of the sizes of consistent regions, and the 
magnitudes and directions of gradients. To cover the texture in 
the frequency domain, we also apply three-level discrete 
wavelet transform and calculate the first two moments of 
coefficients from the nine high-frequency sub-bands. Each 
feature value is dimension-wise normalized over all images 
before computing the Euclidean distance.  

B. Region Level 
Many researchers observe that the reason why images 

belong to the same class is due to a similar sub-image they 
commonly share. In other words, the human semantics may 
only refer to some regions in an image, not the whole image. 

1) Normalized Cuts + Principle Angle: We use the 
normalized cuts [22] to segment an image into five regions. 
Each segmented region is described by a 76-dimensional vector, 
which comprises a 64-bin color histogram and a 12-bin edge 
orientation histogram. By stacking the five vectors of the five 
regions, an image can be represented as a matrix . 
For such a representation, we can measure the dissimilarity 
between the two column spaces of matrices  and  by their 
smallest principle angle(s) [28].  

2) k-Means + Integrated Region Matching: We apply the 
strategy of Li et al. [14] to image segmentation, and compute 
image distances using integrated region matching (IRM): An 
image is divided into 4-by-4 non-overlapping blocks. From 
each block we extracted six features, three about color 
information and three about the wavelet coefficients. The 
blocks are clustered into five regions via k-means on the six 
features. Then, each region is depicted by nine features, which 
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respectively characterize color, wavelet coefficients, and spatial 
information. Finally, the IRM with the area percentage scheme 
is used to measure dissimilarity between image pairs. For more 
details, please refer to [14]. 

C. Patch Level 
In recent research [8], [12], [23], an image can be 

represented by a bag of local patches, and using such a 
representation yields satisfactory results in retrieval. 

1) Salient Points + Earth Mover's Distance: We adopt the 
difference-of-Gaussian (DoG) detector [18] to find the salient 
points in an image. The 128-dimensional SIFT (Scale Invariant 
Feature Transform) descriptor [18] and the 64-bin color 
histogram are used to depict each detected patch. Then images 

 and  are represented as and 
, where  and  are the numbers of detected 

patches. Because the values of  and  are often large and 
different, the aforementioned distance functions for the global-
based and region-based features are not suitable. We instead 
apply the earth mover's distance (EMD) [21]. To fit its weight 
and signature pair-formulation, images  and  are expressed 
as  and 

 for computing their EMD.  

2) Salient Points + EMD with Slack Signatures: Two 
images regarded as similar may only share common material in 
the sub-images. By the setting of EMD, it will move all the 
components from one image to another. To integrate the 
concept of partial similarity, we modify the image 
representation as follows. First we add an additional slack 
signature  with a proper weight  into the image 
representation, i.e.,  
and . Then the moving 
costs between  to all other signatures are set as a common and 
small constant . Clearly if , only the nearest  
portion of signature components between the two images will 
be moved, and thus the concept of partial similarity will be 
achieved. 

V. EXPERIMENTAL RESULTS 
In this section, we present several experiments to 

demonstrate our system and discuss the results. 

A. Comparison among Modalities 
Before fusing multi-modality information for retrieval, it is 

reasonable to see first their respective results. The 30-category 
COREL dataset is used to compare their performances. For 
each image in the dataset, we search its 20 nearest neighbors 
(excluding itself) by using the representation and distance 
function defined in the respective modalities. Then the 
category-wise average precisions of each modality are shown 
in Figure 1. For a clearer visualization, the categories are 
arranged in the order such that the performance of using global 
color features is monotonically increasing. We highlight some 
remarks on the results. Because these modalities achieve good 
results in different kinds of categories, and they seem to 
complement each other in many categories, this gives us 
positive evidence to consider multimodal fusion.  

B. Multiple Modalities vs. Single Modality 
We use five-fold cross validation to evaluate the proposed 

algorithm. More precisely, we randomly divide the $30$-
category COREL dataset into five equal-size subsets. In each 
run of cross validation, one subset is picked as the query set, 
and the other four subsets serve as the images in the database. 
Our system is driven by the query-by-example (QBE) 
execution, and each image in the query set will be submitted to 
the system one by one. Once the query and the relevance 
feedback are acquired, we use the on-line retrieval procedure to 
handle the query, train the classifier, and return the top-ranking 
results. For the sake of systematic performance evaluation, the 
system will automatically feedback some informative samples 
and insert them into the relevance feedback. In our 
implementation, five relevant and five irrelevant samples that 
are closest to the decision boundary but have been 
misclassified by the current classifier are selected at each 
iteration. Five iterations are executed for each query. Since the 
classifier is not trained when a query is given at the first time, 
the relevance and irrelevance feedback are randomly selected at 
the first iteration.  

Under the mechanism, our system's performance on 
retrieval with relevance feedback is evaluated. For comparison, 
we also measure the performance for each of the six modalities. 
The major difference is that base kernel sets from all modalities 
can be selected and added into the boosted kernel in our 
approach. For each of the single modality, only its own base 
kernels are under consideration. In other words, the difference 
is that the fusion is performed or not. We highlight some 
remarks on the experimental results in the following.  

Throughout the fusion in boosting the kernel matrix, the 
performance is significantly improved. In most cases, the 
outcome with boosted fusion is higher than the best 
performance among all the modalities. In other words, the 
proposed method is effective in learning the combination of 
multi-modality. In the latter feedback iterations, the 
improvement in precision is more stable (i.e., performance 
falling behind the one of a single modality rarely happens). 
That may be due to that the number of feedback examples 
becomes sufficient for boosting a useful kernel.  

The combinational weights roughly match the performance 
of modalities in each category. Since we learn the 
combinational weights dynamically, our approach to fusing 
multiple information sources is query-dependent. 
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VI. CONCLUSION 
We have proposed a kernel-based framework to fuse 

multimodal information sources for retrieval. Unlike the 
previous techniques that the fusion is often done in the domains 
of feature representation, or in the space of modal-wise outputs, 
our scheme conveniently works with kernel matrices, and leads 
to a unified approach for dealing with information fusion 
among modalities that contain large intra-varieties. 

In view of the innate properties of CBIR with relevance 
feedback, the quantity-wise unbalance between labeled and 
unlabeled data (a.k.a. the small sample problem) often forms 
the bottleneck for performance improvement. A typical 
solution to this problem relies on learning a classifier based on 
the cluster assumption. In our work, two important issues on 
the design of kernel matrices are both taken into account. One 
is about the alignment between labeled data, and the other 
concerns the realization of the data intrinsic structure based on 
manifold assumption. We satisfactorily address these two 
aspects of consideration by considering a boosting algorithm. 
Indeed boosting with our design of monotone base kernel 
(MBK) matrices plays the central role of our approach. As we 
have described, through boosting the proposed algorithm can 
simultaneously address intrinsic structure preserving, kernel 
alignment, and multimodal fusion. All in all, our kernel-based 
multimodal learning method appears to be promising, and is 
general enough for handling multimedia data other than images. 

REFERENCES 
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques 

for embedding and clustering. In Advances in Neural Information 
Processing Systems, 2001. 

[2] A. Blum and T. Mitchell. Combining labeled and unlabeled sata with co-
training. In Annual Conf. on Learning Theory, pages 92–100, 1998. 

[3] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector 
machines, 2001. Software available at http://www.csie.ntu.edu.tw/ 
cjlin/libsvm. 

[4] O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for 
semisupervised learning. In Advances in Neural Information Processing 
Systems, 2002. 

[5] F. Chung. Spectral graph theory. In Regional Conf. Series in Mathe- 
matics, 1997. 

[6] K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. In 
Advances in Neural Information Processing Systems, 2002. 

[7] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On 
kerneltarget alignment. In Advances in Neural Information Processing 
Systems, 2001. 

[8] K. Grauman and T. Darrell. Efficient image matching with distributions 
of local invariant features. In Int’l Conf. on Computer Vision and Pattern 
Recognition, pages 627–634, 2005. 

[9] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold-ranking 
based image retrieval. In ACM Conf. on Multimedia, pages 9–16, 2004. 

[10] X. He. Incremental semi-supervised subspace learning for image 
retrieval. In ACM Conf. on Multimedia, pages 2–8, 2004. 

[11] T. Joachims. Transductive inference for text classification using support 
vector machines. In Int’l Conf. on Machine Learning, 1999. 

[12] Y. Ke, R. Sukthankar, and L. Huston. Efficient near-duplicate detection 
and sub-image retrieval. In ACM Conf. on Multimedia, 2004. 

[13] G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. Jordan. 
Learning the kernel matrix with semi-definite programming. In Int’l 
Conf. on Machine Learning, pages 323–330, 2002. 

[14] J. Li, J. Wang, and G. Wiederhold. Irm: Integrated region matching for 
image retrieval. In ACM Conf. on Multimedia, pages 147–156, 2000. 

[15] Y.-Y. Lin, T.-L. Liu, and H.-T. Chen. Semantic manifold learning for 
image retrieval. In ACM Conf. on Multimedia, pages 249–258, 2005. 

[16] Y.-Y. Lin, T.-L. Liu, and C.-S. Fuh. Local ensemble kernel learning for 
object category recognition. In Int’l Conf. on Computer Vision and 
Pattern Recognition, 2007. 

[17] Y.-Y. Lin, T.-L. Liu, and C.-S. Fuh. Dimensionality reduction for data in 
multiple feature representations. In Advances in Neural Information 
Processing Systems, 2008. 

[18] D. Lowe. Distinctive image features from scale-invariant keypoints. Int’l 
Journal of Computer Vision, 60(2):91–110, 2004. 

[19] C. Ong, A. Smola, and R. Williamson. Hyperkernels. In Advances in 
Neural Information Processing Systems, 2002. 

[20] G. Pass, R. Zabih, and J. Miller. Comparing images using color 
coherence vectors. In ACM Conf. on Multimedia, pages 65–73, 1996. 

[21] Y. Rubner, C. Tomasi, and L. Guibas. The earth mover’s distance as a 
metric for image retrieval. Int’l Journal of Computer Vision, 2000. 

[22] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE 
Trans. Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. 

[23] J. Sivic and A. Zisserman. Video google: A text retrieval approach to 
object matching in videos. In Int’l Conf. on Computer Vision, pages 
1470–1477, 2003. 

[24] A. Smola and R. Kondor. Kernels and regularization on graphs. In 
Annual Conf. on Learning Theory, pages 144–158, 2003. 

[25] H. Tong, J. He, M. Li, C. Zhang, and W.-Y. Ma. Graph based 
multimodality learning. In ACM Conf. on Multimedia, pages 862–871, 
2005. 

[26] L. Wang, Y. Gao, K. L. Chan, P. Xue, and W.-Y. Yau. Retrieval with 
knowledge-driven kernel design: An approach to improving svm-based 
cbir with relevance feedback. In Int’l Conf. on Computer Vision, 2005. 

[27] Y. Wu, E. Chang, K. Chang, and J. Smith. Optimal multimodal fusion 
for multimedia data analysis. In ACM Conf. on Multimedia, 2004. 

[28] O. Yamaguchi, K. Fukui, and K. Maeda. Face recognition using 
temporal image sequence. In Int’l Conf. on Face & Gesture Recognition, 
pages 318–323, 1998. 

[29] R. Yan, J. Ynag, and A. Hauptmann. Learning query-class dependent 
weights in automatic video retrieval. In ACM Conf. on Multimedia, 
pages 548–555, 2004. 

[30] X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonparametric 
transforms of graph kernels for semi-supervised learning. In Advances in 
Neural Information Processing Systems, 2004 

2010 International Conference on System Science and Engineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

978-1-4244-6474-6/10/$26.00 © 2010 IEEE ICSSE 2010 - 160 -




