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Abstract ity score) is called pairwisglobal alignmenbf sequences.
This problem can be solved by using dynamic programming
Given a query DNA sequence, our goal is to find in the techniques [5, 6] and the computational cost is proportional
DNA sequence database all the sequence segments that at® the length product of the two sequences.

similar to the query. In this paper we present a string- D . L t suitable f hi
to-signal transform technique that can transform a DNA ynamic programming 1S not suitable Tor searching
large-scale sequence databases due to its high computa-

sequence into a four-channel signal. Without considering | t  Instead of adonting the alobal ali ¢
gaps, the edit distance between two DNA sequences can b onal cost. —Instead of adopling the global alignment,
Itschul et al. proposed a badaxral alignmentsearch tool,

calculated as the sum of absolute difference (SAD) betwee . ) N
( ) BLAST [1]. Their goal is to find in the database the se-

their corresponding four-channel signals. The algorithm h imil h ;
proposed in this paper can then be applied to speed up thedUence segments that are similar enough to a segment in

process of searching for the desired sequence segments thépe querly sequentce ?Cc&rgg‘g toa IOC:' similarity score, the
yield small SADs. In addition to efficiency, this algorithm maximal segment pair ( ) score. Here, a sequence seg-

guarantees the optimal search. That is, all the sequencement is a contiguous stretch of nucleotides in a sequence.
' BLAST gains its efficiency mainly by neglecting gaps for

segments that are similar enough to the query can be found. ) . . .
without any miss. mserﬂqns apd deletions of nucleotides when calculgtlng the
local similarity scores. Moreover, BLAST can only find an
approximation of the desired set of alignments by using a
heuristic method to skip unlikely sequence segments. Nev-
ertheless, BLAST becomes the most widely-used search en-

Recently, DNA molecules of many organisms, including Sllrt\;la for sequence databases due to its efficiency and versa
the human species, have been sequenced and the amount og ’
sequence information has been on a rapid increase. Con- In this work, we consider another alignment strategy, the
fronted with a wealth of genomic sequences, scientists cansemi-local alignmentGiven a query sequence, our goal is
not analyze biological information and interpret genetic to search the sequence databases for the sequence segments
messages without using efficient sequence analysis toolsthat are similar enough to thveholequery sequence. Sim-
Among these tools is the sequence database search tooilar to BLAST [1], gaps are not considered here. By using
When a new DNA molecule is sequenced, the next step thathe proposed string-to-signal transform, we can transform
a biologist will be eager to take is to find in databases the the sequences in the database and the query sequence into
DNA sequences that are similar to the newly obtained se-four-channel signals. The problem of finding the sequence
quence [4]. This routine is very important because sequencesegments having high enough similarity score can be trans-
homology implies the evolution and gene function clues[3]. formed into the problem of finding the signal segments hav-

A DNA sequence can be represented as a string overing small enough sum of absolute difference (SAD). By uti-
an alphabet of four charactef#\, T, G, C}. The simi- lizing the distance lower bound [2], the proposed algorithm
larity score of sequence alignment between two DNA se- can efficiently finds the desired segments. Another advan-
quences can be obtained by calculating the edit distancdage of the proposed algorithm is that it can guarantee to
between their corresponding strings. The problem of find- find in the database all the desired sequence segments with-
ing the minimum edit distance (or the maximum similar- out any miss.

1. Introduction
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Figure 1. String-to-signal transform for a DNA sequence
of 18 nucleotides, GTTACCCGGATACACGGC. The size
of the sliding window is setto be 4.

2. String-to-Signal Transform

Consider a DNA sequenc§ that consists ofs nu-
cleotides,S = nins---ns. We use a sliding window
of lengthw to scan through the DNA sequenée Let
W, denote the sliding window located at positiomn S,

1 =1,...,s. To prevent the boundary condition, we extend
S to be of lengths + w — 1 by concatenating a sequence
of w — 1 null characters at the tail &f. Within the sliding
window IW; is the segment of DNA sequence containing the
nucleotidesy;n; 1 - - - n;1,—1. Leta denote the channel-A
signal of lengths. Each element,; of a is assigned to be
the number of occurrences of the nucleotide ‘A" within the
sliding windowW;. That is,a; can be calculated by:

i+w—1

> Falny),

j=i

a;

1 ifn="A
Fa(n) = { 0 otherwise ’
where: = 1,...,s. By using similar equations, we can

obtain another three channets,g, andc, for nucleotides
‘T', ‘G, and ‘C’, respectively. These four vectors, t, g,
andc, are the transformed four-channel signal for the DNA
sequencé. Fig. 1 shows an example of this string-to-signal

3. Rapid DNA Sequence Database Search

3.1. Similarity Score Calculation

Let P denote a DNA sequence of nucleotides in
the databases.P can be represented as a string, =
pipe -+ - ps, Wherep; € {A, T, G,C}. The sequence seg-
mentP; of lengthd starting at position can be represented
asP; = pipi+1 - Ditd-1,t = 1,...,s —d+ 1. Given a
guery sequenc€ of lengthd, Q = ¢14s - - - qq, the similar-
ity score,S (i), betweeny and P, is defined as:

d
(i)=Y F(as,pirs-1),
j=1

S
F(p,q) _{ 7512

whereSy, Sy, > 0 are the scores for identity and mismatch,

respectively. UsuallySy is larger thanS,, (in BLAST,

S; = 5 and Sy, = 4). Notice that gaps are not consid-

ered here when calculating the similarity Sca¥¢;).
Suppose there afe (i) mismatches (or replacements of

nucleotides) betwee@ and P;. The similarity score5 (i)

can also be calculated by:

if p = g (identity)
if p # g (mismatch) ’

S(i) = (d — M(i)) - St — M(3) - Sas. @)

Scanning through the sequenég all the similarity
scoresS(i), ¢ = 1,...,s — d + 1, between the query se-
guence and the sequence segmdhtat positionsi can
be calculated by using Eq. (1). Whether the sequence seg-
ment P; is similar enough to the query sequen@ean be
determined by comparing the similarity sca$éi) with a
thresholdTs. That is, P; is reported ifS(i) > Tg, which
can be rewritten as:

N _d-Si—Ts
M < — .
@ = Sr+ Su

Let T}, denote the threshold number of mismatches:

T _d~S[—TS
M TS S

We can then determine whether the sequence segfent
is similar enough to the query sequen@eby calculating
the number of mismatche8/ (i), and comparing with the
thresholdT},,. Only there exists small enough number of
mismatches does the sequence segment be reported.

3.2. Occurrence Difference and Its Lower Bound
The number of mismatche3{ (i), between the sequence

segmentP; and the query sequenégcan be calculated by
using the occurrence vectors 8f and Q. For the DNA

transform. Notice that extra memory storage is required to sequence?, its four occurrence vectos,, p¢, Py, andp.

store this four-channel signal.

record the occurrence of nucleotides A, T, G, and C at each



position. For example, the value pf; in p,, is set to bel wherei = 1,...,s — d + 1. We can calculat&AD,",

if p; is A; otherwise, it is set to bé. At each position, ~ SAD,", andSAD," by using similar equations. The total
only one among,;, pt;, Pg;, andp.; will be 1 and others number of occurrence differenceSAD", between these
are allos. Notice that these four occurrence vecters,p;, two four-channel signals is then defined as:

Py, andp., can be obtained by using the proposed string-to-
signal transform while setting the window size to beBy
using the same method, we can obtain the four occurrencerollowing a similar derivation given in [2], we can obtain:
vectors,qe, 9+, 44, andq., for the query sequencg.

SADY (i) = SAD," (i) + SAD," (i) + SAD, " (i) + SAD." (i).

The total number of occurrence differences for nu- SAD" (i) < SAD(%), (2
cleotide A betweer) and P; can be calculated as the sum ] )
of absolute differenc8AD,, betweeny, andp,: wherei = 1,...,s —d + 1. Thatis,SAD" (i) is a lower
bound ofSAD(3).

d
SAD, (i) = a; — Paitj—1l>
2 ;'q )~ Peseal 3.3. Proposed Algorithm
wherei = 1,...,s—d-+ 1. Similarly, we can defin8AD;, W
SAD,, andSAD, which account >f/or the total number of It SAD® (i) is a'ready larger than the threshald),,
occurrence differences for other three nucleotides, T, G, andthe calculation o8AD(i) can be saved. The reason is that
C, respectively. The total number of occurrence differencesSAD(i) has no chance to be smaller than the threshold ac-
for all the four nucleotides§AD, can then be calculated as: cording to the lower bound inequality described in Eq. (2).
. ) . ) . Otherwise,SAD(3) still has to be calculated to determine

SAD(7) = SADa(7) + SAD:(d) + SAD, (i) + SAD(3), whether the setgu)ence segmétis similar enough to the
wherei = 1,...,s—d+1. Since amismatch (replacement) query sequenc€). Notice that the computational cost of
of a pair of nucleotides consists of a deletion of one nu- SAD™ (i) is O(d/w) while that of SAD(7) is O(d). We can
cleotide followed by an insertion of another nucleotide, the gain computational efficiency wheAD" (i) is larger than
total number of occurrence differences for all the four nu- the threshold®27}, and the calculation 0BAD(i) can be
cleotides is equal to twice the total number of mismatches, saved for many positions. The proposed algorithm for rapid
i.e.,SAD(i) = 2M (i), wherei = 1,...,s —d + 1. Con- DNA sequence database search is summarized below.
sequently, the threshold can be set to2lig; when deter-
mining whether the number of mismatches for the corre- /* Preprocessing Stage */
sponding pair of sequences is small enough. To sum upfor each DNA sequence” of lengthsp in the database
we can find the sequence segméhsuch that the similar- Perform the string-to-signal transform to obtain two
ity score betweerP; and the query sequencg is greater four-channel signals: .
than or equal to a threshalgy by calculating eacBAD(7), (1) {Pa, Pt, Py, Pe}, sliding window sizeis.
. . L @) {p.", p:¥, ps", p."}, sliding window size isv
i1=1...,s—d+1, and looking for the positionsuch that

SAD(i) < 2Ty /* DNA Sequence Search Stage */
Remember that the four occurrence vectors can be 0b-gjen a query DNA sequenc@ of lengthd

tained by using the string-to-signal transform, where the  perform the string-to-signal transform to obtain two

size of the sliding window is set to be When a larger four-channel signals:
window sizew > 1 is chosen, we can obtain another four- (1) {da, q¢, a4, 9c }, sliding window size is
channel signakp.*, p:*, ps", p."}, by using the string- 2){g9." a:", 94", ac"'}, sliding window size isv
to-signal transform. Each channel is of the same length, for each DNA sequence” of lengthsp in the database
as the original DNA sequence. The query sequepaan for i=1tosp —d+1
also be transformed by using the same window siz&or CalculateSAD"™ (7)
simplicity, we assume thatis a multiple ofw. Instead of if SAD™ (i) < 2Th

L . CalculateSAD(4)
sliding through every positions @}, the numbers of occur- if SAD(i) < 2T
rences are only calculated and recorded for non-overlapping Output P
windows located at positions w+1, 2w+1,...,d—w+1. endif ’
Each channel of the obtained four-channel sigfal,®, endif
a:",q4", q." }, is of lengthd /w. nexti

The total number of occurrence differencga,D, ", for endfor
p.” andq," can be calculated by
d/w—1
SAD," (i) = Z 102" 101 = Pa” i1 50y For the_ query sequence and the sequence segment un-
= der examination, if their occurrence numbers of the four



Table 1. Mean search time, t, for different length, d, of the Table 2. Mean search time, ¢, for different mutation rate,

query sequence (mutation rate is settobe  1/128). 1/m (the length, d, of the query sequence is  4090).
d 256 512 | 1024 | 2048 | 4096 m 128 256 512 | 1024 | 2048
t(ms) | 273.7 | 282.4| 330.6 | 420.6 | 523.9 t (ms) | 523.9| 329.9| 234.6| 191.8| 181.3

nucleotides accumulated in a window differ a lot, the re- as shown in Table 2.

sulted number of mismatches will be even larger. If their ~ For reference, we performed the sequence database
occurrence numbers are close to each other, on the othefearch on the same machine by using BLAST, whose ef-
hand, we still cannot determine whether the number of mis- ficiency is roughly independent ofi. The mean search
matches is small enough because the order of nucleotidedime is 205.7 ms. Notice that it is not very fair to com-

in the window is unknown. To determine the similarity, we Pare the computational efficiency of the proposed algo-
have to calculate the number of mismatches by using thefithm with that of BLAST because of the following two

occurrence vectors obtained when the window siZe is reasons: (1) the proposed algorithm can find, without any
miss, all the sequence segments which are similar enough

to the query sequence while BLAST cannot guarantee this
optimal search; and (2) the proposed algorithm performs

) ) the semi-local alignment while BLAST performs the local
Two experiments of the proposed algorithm for DNA alignment.

sequence database search were conducted on a PC with a
Pentium 11l 700 MHz CPU. We show the mean execution
time of various inquiries when searching the DNA sequence
database of E. coli. There are totally 4,662,239 nucleotides ] . .
constituting400 sequences in the database. For each of the A fastsemi-local alignment algorithm for DNA sequence
400 sequences, we obtained two sets of four-channel sig-database search is proposed. The DNA sequences are trans-
nals by using the string-to-signal transform while the win- formed into four-channel signals by using the string-to-

dow size was set to beand128. We also generated a query signal transform. The sequence segments in the database
set consisting of000 sequences. Each query sequence is that are similar enough to the query sequence can be found

of lengthd and is randomly extracted from a contiguous €fficiently, at the expense of extra memory storage, by cal-
interval of a sequence in the database. After the extraction,Cu_latlng and comparing the SAD distances between the ob-
nucleotides of the query sequence are randomly replaced by@ined four-channel signals. Another advantage of the pro-
others at a mutation rate'm. The threshold), is set to be pose(_j algorithm is that it guarantees the opym_al search.
2 - d/m. All the 400 sequences in the database are scannedlhat is, all the sequence segments th.at are S|m|lgr enough
through and the sequence segments having small enougff the query sequence can be found without any miss.
number of mismatches (i.&SAD < 277,) are reported.

In the first experiment, we perform the DNA sequence References
database search for different length, of the query se-
qguence. The mutation raté/m, is set to bel/128. As [1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
the lengthd increases fron256 to 4096, the threshold,, Lipman. Blasic local alignment search todl. of Molecular
increases fromt to 64 and the mean search time also in- Biology, 215:403-410, 1990.

creases fron273.7 ms t0523.9 ms, as shown in Table 1. [& Y--S. Chen, Y.-P. Hung, and C.-S. Fuh. Winner-update algo-
' rithm for nearest neighbor search.Rrmoceedings of the Inter-

. national Conference on Pattern Recognitionl. 2, pp. 708—
The second experiment was conducted to analyze the 711, Barcelona, Spain, Sept. 2000.

computational efficiency of the proposed algorithm for dif- 3] 3. p, Fitch and B. Sokhansanj. Genomic engineering: Moving
ferent mutation ratel, /m. When the mutation rate is lower beyond DNA sequence to functioRroceedings of the IEEE
(i.e., whenm is larger), the query sequence will be more 88(12):1949-1971, Dec. 2000.

similar to the obtained matched sequence segment. We ca4] D. Gusfield. Algorithms on Strings, Trees, and Sequences
assign a smaller value for the thresh@lg. Hence, calcu- Cambridge University Press, New York, 1997. _
lations ofSAD for more sequence segments can be skipped [5] S.B. Needleman and C. D. Wunsch. A general method appli-

. w cable to the search for similarities in the amino acid sequences
because their lower boundSAD™, have more chance to of two proteins.J. of Molecular Biology48:443-453, 1970.

be larger tharl’y;. Thus improves the efficiency. As in- [6] R. A. Wagner and M. J. Fischer. The string-to-string correc-
creases from28 to 2048, T'; reduces front4 to 4 and the tion problem.J. of the ACM 21(1):168-173, 1974.

mean search time also reduces fr623.9 ms t0181.3 ms,

4. Experiments
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