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Abstract

Given a query DNA sequence, our goal is to find in the
DNA sequence database all the sequence segments that are
similar to the query. In this paper we present a string-
to-signal transform technique that can transform a DNA
sequence into a four-channel signal. Without considering
gaps, the edit distance between two DNA sequences can be
calculated as the sum of absolute difference (SAD) between
their corresponding four-channel signals. The algorithm
proposed in this paper can then be applied to speed up the
process of searching for the desired sequence segments that
yield small SADs. In addition to efficiency, this algorithm
guarantees the optimal search. That is, all the sequence
segments that are similar enough to the query can be found
without any miss.

1. Introduction

Recently, DNA molecules of many organisms, including
the human species, have been sequenced and the amount of
sequence information has been on a rapid increase. Con-
fronted with a wealth of genomic sequences, scientists can
not analyze biological information and interpret genetic
messages without using efficient sequence analysis tools.
Among these tools is the sequence database search tool.
When a new DNA molecule is sequenced, the next step that
a biologist will be eager to take is to find in databases the
DNA sequences that are similar to the newly obtained se-
quence [4]. This routine is very important because sequence
homology implies the evolution and gene function clues[3].

A DNA sequence can be represented as a string over
an alphabet of four characters{A, T, G, C}. The simi-
larity score of sequence alignment between two DNA se-
quences can be obtained by calculating the edit distance
between their corresponding strings. The problem of find-
ing the minimum edit distance (or the maximum similar-

ity score) is called pairwiseglobal alignmentof sequences.
This problem can be solved by using dynamic programming
techniques [5, 6] and the computational cost is proportional
to the length product of the two sequences.

Dynamic programming is not suitable for searching
large-scale sequence databases due to its high computa-
tional cost. Instead of adopting the global alignment,
Altschul et al. proposed a basiclocal alignmentsearch tool,
BLAST [1]. Their goal is to find in the database the se-
quence segments that are similar enough to a segment in
the query sequence according to a local similarity score, the
maximal segment pair (MSP) score. Here, a sequence seg-
ment is a contiguous stretch of nucleotides in a sequence.
BLAST gains its efficiency mainly by neglecting gaps for
insertions and deletions of nucleotides when calculating the
local similarity scores. Moreover, BLAST can only find an
approximation of the desired set of alignments by using a
heuristic method to skip unlikely sequence segments. Nev-
ertheless, BLAST becomes the most widely-used search en-
gine for sequence databases due to its efficiency and versa-
tility.

In this work, we consider another alignment strategy, the
semi-local alignment. Given a query sequence, our goal is
to search the sequence databases for the sequence segments
that are similar enough to thewholequery sequence. Sim-
ilar to BLAST [1], gaps are not considered here. By using
the proposed string-to-signal transform, we can transform
the sequences in the database and the query sequence into
four-channel signals. The problem of finding the sequence
segments having high enough similarity score can be trans-
formed into the problem of finding the signal segments hav-
ing small enough sum of absolute difference (SAD). By uti-
lizing the distance lower bound [2], the proposed algorithm
can efficiently finds the desired segments. Another advan-
tage of the proposed algorithm is that it can guarantee to
find in the database all the desired sequence segments with-
out any miss.
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Figure 1. String-to-signal transform for a DNA sequence

of 18 nucleotides, GTTACCCGGATACACGGC. The size

of the sliding window is set to be 4.

2. String-to-Signal Transform

Consider a DNA sequenceS that consists ofs nu-
cleotides,S = n1n2 · · ·ns. We use a sliding window
of length w to scan through the DNA sequenceS. Let
Wi denote the sliding window located at positioni in S,
i = 1, . . . , s. To prevent the boundary condition, we extend
S to be of lengths + w − 1 by concatenating a sequence
of w − 1 null characters at the tail ofS. Within the sliding
windowWi is the segment of DNA sequence containing the
nucleotidesnini+1 · · ·ni+w−1. Leta denote the channel-A
signal of lengths. Each elementai of a is assigned to be
the number of occurrences of the nucleotide ‘A’ within the
sliding windowWi. That is,ai can be calculated by:

ai =

i+w−1∑
j=i

FA(nj),

FA(n) =

{
1 if n = ‘A’
0 otherwise

,

wherei = 1, . . . , s. By using similar equations, we can
obtain another three channels,t, g, andc, for nucleotides
‘T’, ‘G’, and ‘C’, respectively. These four vectors,a, t, g,
andc, are the transformed four-channel signal for the DNA
sequenceS. Fig. 1 shows an example of this string-to-signal
transform. Notice that extra memory storage is required to
store this four-channel signal.

3. Rapid DNA Sequence Database Search

3.1. Similarity Score Calculation

Let P denote a DNA sequence ofs nucleotides in
the databases.P can be represented as a string,P =
p1p2 · · · ps, wherepi ∈ {A,T,G,C}. The sequence seg-
mentPi of lengthd starting at positioni can be represented
asPi = pipi+1 · · · pi+d−1, i = 1, . . . , s − d + 1. Given a
query sequenceQ of lengthd, Q = q1q2 · · · qd, the similar-
ity score,S(i), betweenQ andPi is defined as:

S(i) =

d∑
j=1

F (qj , pi+j−1),

F (p, q) =

{
SI if p = q (identity)

−SM if p 6= q (mismatch)
,

whereSI , SM ≥ 0 are the scores for identity and mismatch,
respectively. Usually,SI is larger thanSM (in BLAST,
SI = 5 andSM = 4). Notice that gaps are not consid-
ered here when calculating the similarity score,S(i).

Suppose there areM(i) mismatches (or replacements of
nucleotides) betweenQ andPi. The similarity scoreS(i)
can also be calculated by:

S(i) = (d − M(i)) · SI − M(i) · SM . (1)

Scanning through the sequenceP , all the similarity
scoresS(i), i = 1, . . . , s − d + 1, between the query se-
quenceQ and the sequence segmentPi at positionsi can
be calculated by using Eq. (1). Whether the sequence seg-
mentPi is similar enough to the query sequenceQ can be
determined by comparing the similarity scoreS(i) with a
thresholdTS . That is,Pi is reported ifS(i) ≥ TS , which
can be rewritten as:

M(i) ≤ d · SI − TS

SI + SM
.

Let TM denote the threshold number of mismatches:

TM =
d · SI − TS

SI + SM
.

We can then determine whether the sequence segmentPi

is similar enough to the query sequenceQ by calculating
the number of mismatches,M(i), and comparing with the
thresholdTM . Only there exists small enough number of
mismatches does the sequence segment be reported.

3.2. Occurrence Difference and Its Lower Bound

The number of mismatches,M(i), between the sequence
segmentPi and the query sequenceQ can be calculated by
using the occurrence vectors ofPi andQ. For the DNA
sequenceP , its four occurrence vectorspa, pt, pg, andpc

record the occurrence of nucleotides A, T, G, and C at each
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position. For example, the value ofpai in pa is set to be1
if pi is A; otherwise, it is set to be0. At each positioni,
only one amongpai, pti, pgi, andpci will be 1 and others
are all0s. Notice that these four occurrence vectors,pa, pt,
pg, andpc, can be obtained by using the proposed string-to-
signal transform while setting the window size to be1. By
using the same method, we can obtain the four occurrence
vectors,qa, qt, qg, andqc, for the query sequenceQ.

The total number of occurrence differences for nu-
cleotide A betweenQ andPi can be calculated as the sum
of absolute differenceSADa betweenqa andpa:

SADa(i) =

d∑
j=1

|qaj − pai+j−1|,

wherei = 1, . . . , s−d+1. Similarly, we can defineSADt,
SADg, andSADc which account for the total number of
occurrence differences for other three nucleotides, T, G, and
C, respectively. The total number of occurrence differences
for all the four nucleotides,SAD, can then be calculated as:

SAD(i) = SADa(i) + SADt(i) + SADg(i) + SADc(i),

wherei = 1, . . . , s−d+1. Since a mismatch (replacement)
of a pair of nucleotides consists of a deletion of one nu-
cleotide followed by an insertion of another nucleotide, the
total number of occurrence differences for all the four nu-
cleotides is equal to twice the total number of mismatches,
i.e., SAD(i) = 2M(i), wherei = 1, . . . , s − d + 1. Con-
sequently, the threshold can be set to be2TM when deter-
mining whether the number of mismatches for the corre-
sponding pair of sequences is small enough. To sum up,
we can find the sequence segmentPi such that the similar-
ity score betweenPi and the query sequenceQ is greater
than or equal to a thresholdTS by calculating eachSAD(i),
i = 1 . . . , s− d+1, and looking for the positioni such that
SAD(i) ≤ 2TM .

Remember that the four occurrence vectors can be ob-
tained by using the string-to-signal transform, where the
size of the sliding window is set to be1. When a larger
window sizew > 1 is chosen, we can obtain another four-
channel signal,{pa

w, pt
w, pg

w, pc
w}, by using the string-

to-signal transform. Each channel is of the same length,s,
as the original DNA sequence. The query sequenceQ can
also be transformed by using the same window sizew. For
simplicity, we assume thatd is a multiple ofw. Instead of
sliding through every positions ofQ, the numbers of occur-
rences are only calculated and recorded for non-overlapping
windows located at positions1, w+1, 2w+1, . . . , d−w+1.
Each channel of the obtained four-channel signal,{qa

w,
qt

w, qg
w, qc

w}, is of lengthd/w.
The total number of occurrence differences,SADa

w, for
pa

w andqa
w can be calculated by

SADa
w(i) =

d/w−1∑
j=0

|qa
w

j+1 − pa
w

i+j·w|,

wherei = 1, . . . , s − d + 1. We can calculateSADt
w,

SADg
w, andSADc

w by using similar equations. The total
number of occurrence differences,SADw, between these
two four-channel signals is then defined as:

SADw(i) = SADa
w(i)+SADt

w(i)+SADg
w(i)+SADc

w(i).

Following a similar derivation given in [2], we can obtain:

SADw(i) ≤ SAD(i), (2)

wherei = 1, . . . , s − d + 1. That is,SADw(i) is a lower
bound ofSAD(i).

3.3. Proposed Algorithm

If SADw(i) is already larger than the threshold2TM ,
the calculation ofSAD(i) can be saved. The reason is that
SAD(i) has no chance to be smaller than the threshold ac-
cording to the lower bound inequality described in Eq. (2).
Otherwise,SAD(i) still has to be calculated to determine
whether the sequence segmentPi is similar enough to the
query sequenceQ. Notice that the computational cost of
SADw(i) is O(d/w) while that ofSAD(i) is O(d). We can
gain computational efficiency whenSADw(i) is larger than
the threshold2TM and the calculation ofSAD(i) can be
saved for many positions. The proposed algorithm for rapid
DNA sequence database search is summarized below.

/* Preprocessing Stage */
for eachDNA sequenceP of lengthsP in the database

Perform the string-to-signal transform to obtain two
four-channel signals:
(1) {pa, pt, pg, pc}, sliding window size is1
(2) {pa

w, pt
w, pg

w, pc
w}, sliding window size isw

/* DNA Sequence Search Stage */
Given a query DNA sequenceQ of lengthd

Perform the string-to-signal transform to obtain two
four-channel signals:
(1) {qa, qt, qg, qc}, sliding window size is1
(2) {qa

w, qt
w, qg

w, qc
w}, sliding window size isw

for eachDNA sequenceP of lengthsP in the database
for i = 1 to sP − d + 1

CalculateSADw(i)
if SADw(i) ≤ 2TM

CalculateSAD(i)
if SAD(i) ≤ 2TM

OutputPi

endif
endif

next i
endfor

For the query sequence and the sequence segment un-
der examination, if their occurrence numbers of the four
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Table 1. Mean search time, t, for different length, d, of the

query sequence (mutation rate is set to be 1/128).

d 256 512 1024 2048 4096
t (ms) 273.7 282.4 330.6 420.6 523.9

nucleotides accumulated in a window differ a lot, the re-
sulted number of mismatches will be even larger. If their
occurrence numbers are close to each other, on the other
hand, we still cannot determine whether the number of mis-
matches is small enough because the order of nucleotides
in the window is unknown. To determine the similarity, we
have to calculate the number of mismatches by using the
occurrence vectors obtained when the window size is1.

4. Experiments

Two experiments of the proposed algorithm for DNA
sequence database search were conducted on a PC with a
Pentium III 700 MHz CPU. We show the mean execution
time of various inquiries when searching the DNA sequence
database of E. coli. There are totally 4,662,239 nucleotides
constituting400 sequences in the database. For each of the
400 sequences, we obtained two sets of four-channel sig-
nals by using the string-to-signal transform while the win-
dow size was set to be1 and128. We also generated a query
set consisting of4000 sequences. Each query sequence is
of length d and is randomly extracted from a contiguous
interval of a sequence in the database. After the extraction,
nucleotides of the query sequence are randomly replaced by
others at a mutation rate1/m. The thresholdTM is set to be
2 · d/m. All the 400 sequences in the database are scanned
through and the sequence segments having small enough
number of mismatches (i.e.,SAD ≤ 2TM ) are reported.

In the first experiment, we perform the DNA sequence
database search for different length,d, of the query se-
quence. The mutation rate,1/m, is set to be1/128. As
the lengthd increases from256 to 4096, the thresholdTM

increases from4 to 64 and the mean search time also in-
creases from273.7 ms to523.9 ms, as shown in Table 1.

The second experiment was conducted to analyze the
computational efficiency of the proposed algorithm for dif-
ferent mutation rate,1/m. When the mutation rate is lower
(i.e., whenm is larger), the query sequence will be more
similar to the obtained matched sequence segment. We can
assign a smaller value for the thresholdTM . Hence, calcu-
lations ofSAD for more sequence segments can be skipped
because their lower bounds,SADw, have more chance to
be larger thanTM . Thus improves the efficiency. Asm in-
creases from128 to 2048, TM reduces from64 to 4 and the
mean search time also reduces from523.9 ms to181.3 ms,

Table 2. Mean search time, t, for different mutation rate,

1/m (the length, d, of the query sequence is 4096).

m 128 256 512 1024 2048
t (ms) 523.9 329.9 234.6 191.8 181.3

as shown in Table 2.
For reference, we performed the sequence database

search on the same machine by using BLAST, whose ef-
ficiency is roughly independent ofm. The mean search
time is 205.7 ms. Notice that it is not very fair to com-
pare the computational efficiency of the proposed algo-
rithm with that of BLAST because of the following two
reasons: (1) the proposed algorithm can find, without any
miss, all the sequence segments which are similar enough
to the query sequence while BLAST cannot guarantee this
optimal search; and (2) the proposed algorithm performs
the semi-local alignment while BLAST performs the local
alignment.

5. Conclusions

A fast semi-local alignment algorithm for DNA sequence
database search is proposed. The DNA sequences are trans-
formed into four-channel signals by using the string-to-
signal transform. The sequence segments in the database
that are similar enough to the query sequence can be found
efficiently, at the expense of extra memory storage, by cal-
culating and comparing the SAD distances between the ob-
tained four-channel signals. Another advantage of the pro-
posed algorithm is that it guarantees the optimal search.
That is, all the sequence segments that are similar enough
to the query sequence can be found without any miss.
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