
DEFOCUS MAGNIFICATION WITH CUDA

Chih-Wei Chen (陳智偉), Chun-Ta Lin (林君達), Yu-Lin Sung (宋侑霖)
, and Chiou-Shann Fuh (傅楸善)

Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

E-mail:d98922005, r99922017, r99922104, fuh@csie.ntu.edu.tw

ABSTRACT

In photography, the application of depth-of-field
can be used to make the main subject more promi-
nent. Photographer can modify the range of depth-
of-field by adjusting the aperture size. Unfortu-
nately, due to the limitation caused by the physical
diameter of the lens aperture and the area of the
photodiode, the compact camera cannot control the
depth-of-field as well as single-lens reflex camera.
In this paper, we based on the method proposed
by S. Bae [1] and propose another algorithm to in-
terpolate the defocus map. Then, we use image
processing approaches as post-processing to obtain
a bokeh image. The above-mentioned approaches
are implemented in CUDA (Compute Unified De-
vice Architecture) to increase the integral through-
put. Experimental results show that the modified
method can be applied to emphasize the main sub-
ject in varied shot environment. In addition, we
speed up the algorithm thus explore the possibility
for real-time application.

Keywords: Defocus, Bokeh, Reblur, Blur mea-
surement, Blur Interpolation, Depth-of-Field.

1. INTRODUCTION

In photography, the shallow depth field technique
is usually applied in practice to emphasize the main
subject. Photographer can modify the range of
depth-of-field by adjusting the aperture. Unfor-
tunately, due to the physical diameter limited in
compact camera, the expected visual effect is gen-
erally hard to acquire in such devices. Even though
the light-field camera which enables the post focus-
ing ability for image acquisition, it is still difficult
for them to be embedded in mobile device, where

space is extremely limited.

In this research, our primary objective is to en-
hance the defocus region that is already in the
photos. The term enhance here is different from
its prevailing meaning. We have no intention to
sharpen the images such as super resolution and
de-blur techniques [2], instead, we want to further
blur this region. Our approach can be mainly split
into two stages, blur estimation from a single image
stage and re-blur the image stage. We put emphasis
on the estimation from single image to distinguish
from other approaches.

Moreover, we design our algorithm in a par-
allelizable way and implement our approach on
NVIDIA CUDA (Compute Unified Device Archi-
tecture) platform to improve the throughput of our
algorithm. The intrinsic needs of edge-preserving
lead us to apply cross bilateral filter in different
stages. Based on the observation that bilateral fil-
ter is just another extended dimension, the algo-
rithm is benefited from the separability of filter thus
experiences a factor of performance gain.

The remainder of this article is organized as fol-
lows. In Section 2, we will have a short survey
on other approach. In Section 3, we introduce the
blur estimation algorithm and describe the frame-
work step-by-step. Section 4 presents the blur in-
terpolation approach in detail. In Section 5, some
photographs and their magnified defocus results are
presented. Finally, the conclusion is drawn in Sec-
tion 6.

2. RELATED WORK

In computational photography field, there are sev-
eral approaches to achieve the same effect. One of
them is using hardware, where additional hardware

Figure 1: Our framework makes the main subject in photograph more prominent. (a) A given photo-
graph. (b) Generated defocus map. (c) The result of shallow depth-of-field effect. This input photograph
is from bigfoto.com, and the image size is 1183×784.

assistance is required. For example, light field [3]
and light coding. Light field require an extra lens in
front of the CMOS (Complementary Metal-Oxide-
Semiconductor) sensor. We can imagine it as an-
other optical lens that equipped in DSLR (Digital
Single Lens Reflex Camera) and easily to under-
stand that it might be challenge to scale down to
space limited mobile device. Light coding is the
technology Microsoft used in Kinect, where requires
infra-red emitter and receiver. Despite the addi-
tional hardware that light coding demanded, there
is a privacy issue raised as well. Users may con-
cern that infra-red equipped mobile device might
expose us under peeping risk. The other mainframe
of achieving this effect is to use purely software so-
lution. This can be further categorize into two,
multiple inputs or single input. For multiple input
algorithms, such approaches suffer from the limita-
tion of temporal movement. Without the aid of tri-
pod, optical flow or other image alignment methods
should be applied first, where extra inaccuracies are
introduced. For defocus magnification from single
image, method proposed by S. Bae [1] could acquire
satisfied result but suffered from performance issue
raised by a large linear solver.

3. BLUR MEASUREMENT

The input image may contains many noises, e.g.
salt-and-pepper noise, fixed pattern noise, and so
on. Moreover, the compression algorithm in digi-
tal still camera may create unwanted block effect.
Therefore, we apply a bilateral filter as preprocess-
ing step to suppress the noise effect and preserve
the detail information. After noise removal, we ex-
tract the gray-level values around the edge pixel

from input image to obtain the blurred informa-
tion. Then, we calculate the second-order deriva-
tive of the extracted intensities along the gradient
direction. Figure 2 (a) and (c) shown the concept
of the intensity extraction along the gradient di-
rection on sharp edge and blur edge respectively.
In implement, bilinear interpolation is applied to
increase the continuous characteristic of an input
digital image.

Figure 2: Concept of the intensity variance and the
corresponding second-order derivative. (a)Sharp
edge (upper rectangle in input image). (b)Second-
order derivative of sharp edge. (c)Blur edge (lower
rectangle in input image). (d)Second-order deriva-
tive of blur edge.

The result of the preliminary 2nd derivative is
sensitive to the intensity variance. The inappro-
priate jitter in the preliminary 2nd derivative will
cause the erroneous result of blur measurement.
We use polynomial curve fitting approach (the de-
gree of a polynomial is set to 5 in our implement)
to resolve this problem. Figure 2 (b) and (d) shown

the modified 2nd derivative results. We fit the mod-
ified sigmoid curve by various response models and
compare their mean square errors. The above re-
sponse models are composited by second derivative
of Gaussian blur kernel g, step function u(x) , and
the local maximum A within sampling slice. The
response model is defined by [1]:

r2x (x, y, σ) = Au (x) ∗ g2x
(
x, y, (d/2)

2
)

(1)

=
−Ax

√
2π (d/2)

3 exp
(
−x2/2(d/2)2

)
(2)

Since, the response models are steerable, we
use brute force method to attempt to obtain the
blurred values on edge pixels in photograph. This
fitting process needs to try various σ in different
slice sizes. In this research, the slice sizes are from
3 to 71. Figure 3 shown the result of the blur mea-
surement.

Figure 3: The result of the blur measurement.
(a)Input image, this image size is 266×191.
(b)Result of the blur measurement. Blue means
the σ of the best fitting response model is small.
Red means the σ of the best fitting response model
is big.

4. BLUR INTERPOLATION

To generate complete blur estimation, several op-
erations should be applied. In this section, we will
first explain the fundamental data structure in de-
tail and then demonstrate procedures based on this
data structure to reach the final blur estimation.
We use a data structure called bilateral grid. It is

an advanced data structure proposed by [4] aimed
for performing bilateral like operation in less com-
putation cost. Primary motivation behind bilat-
eral grid is to convert the 2D-image into a 3D grid
and perform desired operation on the grid. Finally,

an inverse transformation is applied to obtain 2D-
image. These three steps are called scattering, pro-
cessing and slicing.

4.1. Scattering

First step of this data structure is creating the grid,
which is called scattering. Scattering is the key
concept that convert 2D image into 3D grid. Every
pixel in the image will be mapped into a cell in
grids, added as a homogeneous vector. It is worth
to notice the grid data is extremely sparse, thus
there is an incentive to further compress the data
structure.

For clarity in explaining algorithm in following
text, let us define few notation here, Grid(x, y, z)
represent the homogeneous vector in three dimen-
sion grid, I(x, y) represent the intensity in 2D im-
age and the compression rate in x-axis, y-axis and
z-axis are Cx, Cy and Cz. With these notations,
we now formally list the pseudo code for scatter as
below:

Algorithm 1 Scatter(Grid, I, Cx, Cy, Cz)

Initialize every cell in Grid to zero
for each pixel (x, y) in I do
x′ = rounding(x/Cx)
y′ = rounding(y/Cy)
z′ = rounding(z/I[x, y])
Grid[x′, y′, z′]+=(I[x, y], 1)

end for

Although it is tempting to directly parallelize the
above algorithm, there exists a pitfall inside. It
might be misinterpreted that every pixel can be in-
dependently handled. However, the Grid(x, y, z)
exist dependency. Two different solutions can be
used to solve this. One of them is using atomic
operation on each cell of the grid. However, this
approach suffers from significant performance de-
grade. Another approach performs the grid compu-
tation in an inverse direction, listed below to ensure
no simultaneous writing will occur.

4.2. Processing

After scattering, we now obtained a 3D grid. Op-
eration applied in the 2D image can be used as
usually on the bilateral grid with extra control on
z-axis. How the z-axis ripples is actually the con-

Algorithm 2 Scatter Parallelized version(
Grid, I, Cx, Cy, Cz)

Initialize every cell in Grid to zero
for each (x, y) pair in Grid, open a new thread
do

//calculate corresponding mapping in I
Grid[x/Cx, y/Cy, z/I[x, y]]+=(I[x, y], 1)
xstart = x× Cx

ystart = y × Cy

xend = (x+ 1)× Cx

yend = (y + 1)× Cy

for each xI in the range of [xstart, xend) do
for each yI in the range of [ystart, yend) do
Grid[x, y, I[xI , yI]] += (I[xI , yI], 1)

end for
end for

end for

trol parameter on edge-preserving. Take bilateral
filtering as an example; one can use a three dimen-
sion Gaussian blur directly to the grid. An obvi-
ous advantage should be further pointed out here.
In the traditional bilateral filter, kernel varies in
space. However, with the aid of grid, we use a sin-
gle kernel for the whole processing. This leads to a
separable convolution, hence reduce the complexity
from O(N3) to O(N).

4.3. Slicing

Finally, to transform back to image, a slicing pro-
cedure is required. Basic concept of slicing is to
perform inverse operation in opposite direction of
scattering.

Algorithm 3 Slice(Grid,Output, Cx, Cy, Cz)

for each (x, y) in Output do
//Using bilinear interpolation to get
//homogeneous vector at
Grid[x/Cx, y/Cy, z/I[x, y]]
vec = Grid[x/Cx, y/Cy, z/I[x, y]]
//Converting vector to normal representation
vec = vec/vec(3) //Fourth World element
Output[x, y] = vec

end for

This procedure is safe to parallelize, however,
special handling on image border and divisor is re-
quired.

4.4. Cross Bilateral Filter (CBF)

The last step of explaining our interpolation algo-
rithm is to modify above mentioned to cross bilat-
eral filter. A cross bilateral filter [5] is taking two
images as sources and proceed bilateral filtering on
one of the image. One of the image is called edge
image, used to calculate the kernel to convolve. An-
other one called data image is the one to convolve
with the computed kernel. To unify the notation,
let Grid(x, y, z) represent the homogeneous vector
as before , Iedge(x, y) represent the intensity of edge
image, Idata represent the data image. The modi-
fied algorithm is listed as algorithm 4.

Algorithm 4 Scatter Parallelized version for
CBF(Grid, Iedge, Idata, Cx, Cy, Cz)

Initialize every cell in Grid to zero
for each (x, y) pair in Grid, open a new thread
do
//calculate corresponding mapping in I
xstart = x× Cx

ystart = y × Cy

xend = (x+ 1)× Cx

yend = (y + 1)× Cy

for each xI in the range of [xstart, xend) do
for each yI in the range of [ystart, yend) do

Grid[x, y, Iedge[xI , yI]] +=
(Idata[xI , yI], 1)

end for
end for

end for

The remaining procedures are mostly the same as
before, except using Iedge as I in slicing procedure.

4.5. Two-pass interpolation simulation by CBF

With all the algorithms prepared, we now generate
the interpolated blur estimation in two-pass. Be-
cause estimation errors exist in the blur measure-
ment stage, in order to increase the robustness of
this algorithm, we apply a CBF on the estimation
before we further process, which is the first pass.
Figure 4 shown the difference before and after CBF.

In the second pass, we propagate the known esti-
mation to the dark blue pixels by an abnormal large
bilateral. With compression rated Cx = 8 and Cy

= 8, the execution time is reduced to a factor of 64
in spite of benefit brings by parallelism.

Figure 4: The difference before (left image) and
after (right image) cross bilateral filter.

5. EXPERIMENTAL RESULTS

Due to the result of the blur measurement and
the image size are interdependent and inseparable,
we use varied size of images as input to evaluate
the performance. Figure 6 shown our processed
results and the corresponding input photographs.
The first column is the input, the second column
is the generated defocus map, and the last col-
umn is the corresponding result of shallow depth-
of-field effect. The input photographs (c), (d), (f),
and (g) are from bigfoto.com, photograph (b) is
from dofpro.com, photograph (a) is from sfl94.over-
blog.com, and photograph (e) was token by using
Canon PowerShot G7 with 7.4mm lens at f/2.8.
Figure 5 gives the comparison between S. Bae and
our approach.

6. CONCLUSION

To judge the performance of defocus magnification
is quite subjective. In this research, we generate the
defocus map by using blur measurement and blur
interpolation approach, and re-blur the input image
by the generated defocus map. There still are many
challenging minutiae, including harmonic defocus
magnification in application, defocus magnification
for portable device, and so on.

ACKNOWLEDGEMENT

The authors would like to thank Prof. Wei-Chao
Chen in Department of Computer Science and
Information Engineering, National Taiwan Uni-
versity for kindly helping to give us many useful
suggestions and guide us.

REFERENCES

[1] Bae, S., and Durand, F. 2007. Defocus
magnification. Computer Graphics Forum 26,
3 (Sept.), 571–579.

[2] Fergus, R., Singh, B., Hertzmann, A.,
Roweis, S. T., and Freeman, W. T. 2006.
Removing camera shake from a single photo-
graph. ACM Trans. Graph. 25, 3 (July), 787–
794. ACM ID: 1141956.

[3] Liang, C.-K., Lin, T.-H., Wong, B.-Y.,
Liu, C., and Chen, H. 2008. Programmable
aperture photography: Multiplexed light field
acquisition. ACM Transactions on Graphics 27,
3, 55:1–55:10.

[4] Chen, J., Paris, S., and Durand, F. 2007.
Real-time edge-aware image processing with the
bilateral grid. In ACM Transactions on Graph-
ics (TOG), ACM, New York, NY, USA, SIG-
GRAPH ’07. ACM ID: 1276506.

[5] Paris, S., and Durand, F. 2009. A fast ap-
proximation of the bilateral filter using a signal
processing approach. Int. J. Comput. Vision
81, 1 (Jan.), 24–52. ACM ID: 1487517.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: The comparison between S. Bae and our approach. (a) and (b) are the input images. (c) and
(d) are Bae’s results, (g) and (h) are the corresponding defocus maps respectively. (e) and (f) are our
results, (i) and (j) are the corresponding defocus maps respectively.

Figure 6: Comparison the input photographs with the processed results. The first column is the input, the
second column is the generated defocus map, and the last column is the corresponding result of shallow
depth-of-field effect. The input photographs (c), (d), (f), and (g) are from bigfoto.com, photograph (b)
is from dofpro.com, photograph (a) is from sfl94.over-blog.com, and photograph (e) was token by using
Canon PowerShot G7 with 7.4mm lens at f/2.8.

