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Abstract

This paper presents an affine model for 3-D motion and shape recovery using two perspective views and
their relative 2-D displacement field. The 2-D displacement vectors are estimated as parameters of a 2-
D affine model that generalizes standard block matching by allowing affine shape deformations of image
blocks and affine intensity transformations. The matching block size is effectively found via morphological
size histograms. The parameters of the 3-D affine model are estimated using a least-squares algorithm that
requires solving a system of linear equations with rank three. Some stabilization of the recovered motion
parameters under noise is achieved through a simple form of MAP estimation. A multi-scale searching in
the parameter space is also used to improve accuracy without high computational cost. Experiments on
applying these affine models to various real world image sequences demonstrate that they can estimate
dense displacement fields and recover motion parameters and object shape with relatively small errors.

1 Introduction

Visual motion analysis can provide rich information about the 3-D motion and surface structure of moving
objects with many applications to vision-guided robots, video data compression, and remote sensing. There
are two major problems in this area: the first is determining 2-D motion displacement fields from time
sequences of intensity images. The second problem is to recover the motion parameters (3-D translations
and rotations) and the surface structure (object depth relative to camera or retina) by using the estimated
displacement field. There has been numerous previous and important work on visual motion analysis as
summarized in [2, 13, 19].

The major approaches to estimating 2-D displacement vectors for corresponding pixels in two time-
consecutive image frames can be classified as gradient-based methods, correspondence of motion tokens,
and block matching methods. The gradient methods are based on constraints or relationships among
the image spatial and temporal derivatives, e.g. [12]. A broad class of gradient methods are all the pixel-
recursive algorithms, popular among video coding researchers [21, 22]. The correspondence methods consist
of extracting important image features and tracking them over consecutive image frames. Examples of such
features include isolated points, edges, and blobs [2, 3, 8, 24]. In block matching methods, blocks (i.e.,
subframes) in the previous image frame are matched with corresponding blocks in the current frame via
criteria such as minimizing a mean squared (or absolute) error or maximizing a cross-correlation [14, 21].
The standard block matching does not perform well when the scenes undergo both shape deformations and
illumination changes; thus various improved or generalized models have been proposed in [7, 10, 11, 15, 25].
Finally, there are also numerous approaches to 3-D motion and shape recovery. Most of them assume that
2-D velocity data (sparse or dense) have been obtained in advance. Examples of previous work related to
our approach for 3-D motion recovery include [24, 26].

In this paper we present an integrated system to first determine 2-D motion displacement fields and
then recover the 3-D motion parameters and surface structure. The unifying themes in our work are the use
of affine models, both for 2-D and 3-D motion estimation, and of least-squares algorithms combined with
a limited searching to estimate the parameters of these models. The usage of affine models has appeared
in motion analysis and image processing in various useful ways [1, 5, 7, 11, 16, 18].
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In Section 2.1 we review from [7] our 2-D affine model for estimating the displacement field in spatio-
temporal image sequences, which allows for affine shape deformations of corresponding spatial regions
and for affine transformations of image intensity range. The model parameters are found by using a least-
squares algorithm. (In a related work [11] an adaptive least-squares correlation was proposed which allowed
for local geometrical image deformations and intensity corrections (additive bias only) and a gradient
descent algorithm was used to find model parameters.) In [7] we experimentally demonstrated that our
affine block matching algorithm performs better in estimating displacements than standard block matching
and gradient methods, especially for long-range motion with possible changes in scene illumination. In
Section 2.2 we further refine our affine matching algorithm by using morphological size histograms to
find an effective matching block size that, for each image frame pair, can be chosen to match the various
characteristic object sizes present in the image frame and thus minimize displacement estimation errors.

In Section 3 we present a 3-D affine model that uses a least-squares algorithm to recover the 3-D
rigid body motion parameters and surface structure based on two perspective views and given the 2-D
displacement data estimated by the 2-D affine block matching. Our approach not only uses the redundancy
inherent in the over-determined linear system to combat noise, but also uses MAP estimation to include
prior information and to stabilize the parameters. Although the 3-D affine model is the same as used in
[26], our approach for finding its parameters has the attractive feature of using a system of linear equations
that has only rank three. In addition, our algorithm performs a multi-scale search of the discretized and
bounded parameter space to avoid high computational cost and to achieve better accuracy. In the time
domain, the recovered motion parameters can be smoothed by vector median filtering to reduce the noise
when the motion remains constant or varies smoothly.

The proposed affine models are applied to time sequences of real world images and are shown to give
displacement vectors, motion parameters, and surface structure with a small relative error.

2 Affine Block Matching Model

2.1 2-D Affine Model and a Least-Squared Algorithm

This section reviews a 2-D affine model and its associated least-squared algorithm for image matching and
motion detection [7]. Let I(z,y,t) be a spatio-temporal intensity image signal due to a moving object,
where p = (z,y) is the (spatial) pixel vector. Let a planar region R be the projection of the moving object
at time ¢t = ¢;. At a future time ¢ = t3, R will correspond to another region R’ with deformed shape due
to foreshortening or rotations of the object surface regions as viewed at two different time instances. We
assume that the region R’ at t = t; has resulted from the region R at t = ¢; via an affine shape deformation

p+— Mp+ d, where
Mp+d= sz cosf; —sysinb, T + dy 1
p " | spsinfy sy cosb, Y dy (1)

The vector d = (d;,d,) accounts for spatial translations, whereas the 2 x 2 real matrix M accounts for
rotations and scalings. That is, sz, s, are the scaling ratios in the z,y directions, and 6,6, are the
corresponding rotation angles. Translation, rotation, and scaling are region deformations that often occur
in a moving image sequence. In addition, we allow the image intensities to undergo an affine transformation
I v~ rI 4 c, where the ratio r adjusts the image amplitude dynamic range and c is a brightness offset.
These intensity changes can be caused by different lighting and viewing geometries at time ¢; and t,.

Given I(p,t) at t = t1,12, and at various image locations, we select a small analysis region R and find
the optimal parameters M, d, r, c that minimize the error functional

E(M,d,r,c)= > [I(p,t1) — rI(Mp+ d,t3) — c|? (2)
PER
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Table 1: Displacement estimation errors with respect to block size (in pizels)

BxB [[1x1|3x3|5x5|7x7|11x11]|15x15|19x19]|23x23
d, error 46.4 | 21.3 7.1 1.6 0.5 0.3 0.3 0.3
d, error 45.3 | 33.5 6.1 0.9 0.5 0.3 0.3 0.3

The optimum d provides us with the displacement vector. As by-products, we also obtain the optimal
M, r,c which provide information about rotation, scaling, and intensity changes. We call this approach
the affine model for image matching. Note that the standard block matching method is a special case of
our affine model, corresponding to an identity matrix M, »r = 1, ¢ = 0. Although d is a displacement
vector representative of the whole region R, we can obtain dense displacement estimates by repeating this
minimization procedure at each pixel, with R being a small surrounding region.

Finding the optimal M,d,r,c is a nonlinear optimization problem. While it can be solved iteratively
by gradient steepest descent in an 8-D parameter space, this approach cannot guarantee convergence to
a global minimum. Alternatively, we proposed in [7] the following algorithm that provides a closed-form
solution for the optimal r,c and iteratively searches a quantized parameter space for the optimal M,d.
We find first the optimal 7, ¢ by setting % = 0 and %% = 0. Solving these two linear equations yields
the optimal r* and c* as functions of M and d. Replacing the optimal 7*,c* into E yields a modified
error functional E*(M,d). Now by discretizing the 6-D parameter space M,d and exhaustively searching
a bounded region we find the optimal M*,d* that minimize E*(M,d). The translation is restricted to be
L pixels in each direction, i.e., |dz|,|dy| < L, and the region R at ¢t = t; is assumed a square of B x B
pixels. After having found the optimal M* and d*, we can obtain the optimal r* and c* [7].

Figures 1(a),(b) show an original “Poster” image and a synthetically transformed image according to
the affine model with a global translation of d = (5,5) pixels, rotation by 6 = 6°, scaling s, = sy = 1.2,
intensity ratio 7 = 0.7, and intensity bias ¢ = 20. The center of the synthesized rotation and scaling is at
the global center of the image. Figure 1(c) shows the displacement field estimated via the affine matching
algorithm. In this experiment the searching range for the scaling was s, = sy € [0.8,1.2] and for the
rotation 8, = 8, € [—6°,6°]; also we had set B = 19 and L = 40.

2.2 Block Size Selection for 2-D Affine Matching

The selection of the block size B is important because if B is too small there is insufficient information in the
analysis region to determine the affine model parameters and hence mismatches can occur. If the block size
is too large, the matching is unnecessarily computationally expensive and the affine model cannot resolve
small objects undergoing disparate motions within the region. As an example, the whole image in Fig. 1(a)
is an affine transformation of the image in Fig. 1(b). As the block size increases, the block contains more
information for determining the affine model parameters thus the error in d, and d, decreases. Table 1
and Figure 1(d) show that as the block size increases the number of mismatches decreases and vice-versa.

The size and shape of the objects in the image are natural criteria for the selection of the optimal block
size B. Our approach is to obtain a binarized version X for the gray-level image frame and determine an
optimum block size based on the shapes and sizes of the binary objects in X. The morphological shape-size
histogram [17, 23], based on multiscale openings/closings and granulometries [20] and also called ‘pattern
spectrum’ in [17], offers a good description of the shape and size information of the objects in the binary
image X and is defined as follows:

SHx(+n)
SHx(—n)

A[XonS]— A[Xo(n +1)S], n>0 (3)
A[XonS]— A[Xe(n—-1)S], n>1
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Figure 1: Selection of block size B. (a) An affine transformed version of the image in (b) with translation
d = (5,5), rotation § = 6°, scaling s = 1.2, intensity ratio r = 0.7, and intensity bias ¢ = 20. (b) The
original “Poster” image. (242x242 pizels, 8-bit/pizel). (c) Result of matching (a) and (b) where block
size is 19 x 19. (d) Errors of d, and d, (in pirels) with respect to varying block size. (e) Binarized image
of (b). (f) Size histogram of (e) using a 3 X 3 square structuring element.
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where A[-] denotes area, and XonS and X ®n.S denote opening and closing of X by a structuring element §
of size n. Large isolated spikes or narrow peaks in the size histogram, located at some positive (or negative)
size n, indicate the existence of separate objects or protrusions in the foreground (or background) of the
image X at that size n. In our experiments we use square analysis regions for image matching, and so we
fix S to be a 3 x 3-pixel square.

We convert! a gray-tone image frame into a binary image X by thresholding at the median of the
intensity values, so that to obtain approximately equal numbers of dark and bright pixels. Note that the
opening and closing are dual operations on bright and dark pixels, and hence the size histogram will be
more symmetrical if the binary image has approximately equal numbers of dark and bright pixels. The
binary image thus generated is shown in Figure 1.(e) and its size histogram is shown in Figure 1.(f).

By using the size histogram and a heuristic rule for the selection of block size B we can avoid expensive
multi-scale analysis to choose an “optimal” block size B,y that minimizes the average displacement error.
Since we have six parameters in our 2-D affine model, (r,¢,8,s,d;, dy) the block size B,y cannot be less
than a minimum size in order to have enough information in the analysis region; experimentally we found
this minimum to be about 11. After some experimentation on various images, we found strong correlation
between 7,,,, and optimal block size B,p; where npq. is the size at which the size histogram assumes
its maximum value over all sizes > 11. As an example, Table 1 shows that the estimation errors in the
displacements d, and d, (between the images in Figs. 1(a),(b)) achieve an asymptotic value of 0.3 pixels
when B > 15. From the size histogram, the size which is not less than the minimum and which gives the
maximum value of the size histogram is 7. Therefore, since the structuring element is a 3 X 3 square, the
most common pattern size is Ny, = 2 X 74+ 1 = 15, which coincides with the optimum block size. Despite
their strong correlation, an exact relationship between B,y and o, is difficult to find. In practice, we
propose the following general heuristic rule for block size selection: Bopt & Nar + 4. We add this small
constant (4) to Tpmq, because the most common patterns will be smaller than the corresponding analysis
region R and lie entirely inside R. Thus, for the example of Fig. 1 we finally selected B = 19. We have
applied this heuristic rule to various images to approximately select the optimal block size B,y and found
that it performs well.

Overall, we have applied the affine block matching algorithm to various indoor and outdoor image
sequences and the experimental results showed the algorithm is robust and gives dense and reliable dis-
placement fields.

3 3-D Motion and Shape Recovery

After the 2-D displacement vector field is estimated, the next step is to use it to recover the rigid-body
motion parameters and object shape. This section gives the details and experimental results of recovering
3-D motion parameters and surface structure under perspective projection via a 3-D affine model whose
parameters are found using a least-squares algorithm.

3.1 3-D Affine Model and Least-Squares Algorithm

Assume a perspective projection where the origin is the center of projection and the image plane is the
Z = 1 plane, as shown in Figure 2. Let (X,Y,Z) and (X',Y’, Z’) be the 3-D world coordinates of a point
on objects before and after rigid motion. Let (z,y) and (2’,y') be the coordinates of the projections of the

1We did not use any edge operator to convert a gray-tone image into a binary image, because a good edge detection requires
pre-smoothing the image and the size of the smoothing kernel affects the size histogram.
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Figure 2: Camera setup and the perspective projection.

point on the 2-D image plane before and after the motion; thus we have:

X , X' Y , Y
Rigid motion includes rotation by angles 8,,8,,6, around their respective axes X, Z,Y in the given order
(other orders can be solved similarly) and followed by translation (T, T, T), where the subscript denotes
the corresponding axis along which the translation component is measured. Thus we have the 3-D affine

model:

X' c, 0 5,7[cC. -5, 0][1 0 o X T,
Y= 0 1 0[S ¢ ofl|loc -S.||Y|+]|T (5)
z' S, 0¢c,||lo o 1]||lo s c z T,

X' = C.CyX + (528, = CoCyS2)Y + (CpSy + S5CyS:)Z + Ty

Y' = S.X+C,C.Y - S,C.Z+T, (6)

Z' = —S5,C.X 4 (CySy + CuS,S.)Y + (CoCy — 525,5.)Z + T,

where C; = cos b, Cy =cosb,, C, =cosb,, S§;=sinb,, S,=sinb,, §,=sind,.
We assume that the angles of rotation are sufficiently small such that to a first-order approximation:

cosfy = 1, cosby ~ 1, cosb,~1, sinf, ~80,, sinf, =0, sinf, ~0, (M

sin 6 sinf, ~ 0, sinf,sinf, ~0, sinf,sinf, ~ 0 (8)

For example, if (~10° < 6,,6,,6, < 10°) the errors in cos@ =~ 1 and sinf =~ 6 are at most 2% and 1%,
respectively. Under this small angle assumption, Eq. (6) becomes

X' = X+6,Z-6,Y+T,
Y = Y+6,X-6,Z+T, (9)
Z' = Z46,Y -0,X+T,

If we divide X’ and Y’ by Z’ in Eq. (9), we obtain

,_ X' X+6,Z2-0.Y+T, z+4+6,-6y+%
A Z+0ZY‘0yX+Tz_1+oxy—0y$+IZ‘

(10)

VY _Y40.X-0,2+4T,  y+6.c—0.+%
VA Z+01:Y_0yX+Tz 1+0’:y—0yx+IZl

y (11)
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Cancelling Z from the above two equations, assuming T, # 0, dividing both sides with T, and letting
L= %,M = %, we have:

0:(y'yL+ L — ' — c'yM) + 0,(—zy'L + za’M + M — y') + 0,(zz' — 2L — yM + yy')

=Mz —Mz+zy — Ly +yL —z'y (12)

Here the known data are the n corresponding beginning points (z,y) and ending points (z’,y’) and the
unknowns are the five motion parameters (L, M,0;,6,,6,). We further constrain the range of L and M
by assuming that —10.0 < L, M < 10.0, which corresponds to assuming 7, and T, are not more than
an order of magnitude larger than T,. Thus we search a discretized and bounded parameter space of
(L, M) € [-10,10]? with step size of 0.05 in each direction. For each (L, M), we set up an overdetermined
system of equations

v «a = 8
(nx3) Bx1)  (nx1) (13)
where ¥ and 8 consist of n rows of
(viyil + L — 2} — ziyiM, —z;y; L + z;xiM + M -y}, 23} — 2; L — y; M + y;90), (14)
(Mai— Mzi + ziy; — Ly; + il — 2jys), 1<i<n (15)

and & = (6,,8,,0,)T, where ()7 denotes vector transpose. For each pair of translation parameters (L,M),
we can solve Eq. (12) for a least-squares solution of corresponding rotation parameters (6, 8y, ,) as follows:

ars = (VTw)1yTg (16)
The quintuple (L, M, 6,,8,,0,) which minimizes the squared error (¥a—3)T (¥a— ) is the set of recovered
motion parameters.
3.2 MAP Estimation

This section explains how our 3-D affine model can include statistical assumptions to include prior informa-
tion and thus “stabilize” the recovered motion parameters. Assume that the overall effect of displacement
estimation errors is to have the error model

B=Va+te (17)

where € = (¢€1,...,€,)7 and the random variables ¢; are zero-mean independent, and normally distributed

with identical variance 0'2’;.

First, if we assume that « is deterministic, its mazimum likelihood (ML) estimate
ap = argmax P(f|a) (18)
o

makes use of whatever information we have about the distribution of the observations (displacement vec-
tors). This ML estimate is equal to [4]:

1 _ 1 _
apr = (=870 =8 = (¥T0)" 1T (19)
93 93

Thus the maximum likelihood estimate is the same as the ordinary least-squares estimate under the above
error assumptions.
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Further statistical information can be utilized to improve the motion parameter estimates. Assuming
now that a is random, by using Bayes’ formula

P(Bla) P(a)
P(a|f) = —F"F7— 20
(alf) = S (20)
it follows that the mazimum a posteriori (MAP) estimate for « is
OMAP = argmo:?,xP(alﬂ) = a,rgmoaln.xP(ﬂ|a)P(a) (21)

maximimizes the product of the likelihood and the prior. Since the camera field of view is small in
real life, rotation angles are usually small; otherwise, objects will be out of view. We further assume as
prior information that 6, 6,,6, are independently and normally distributed with zero mean and identical
variance o2. This assumption yields [4]:

1 1 .41 o}
aMAP=(;g\I’T‘II+;51) IEZ\I!Tﬂ_—.(‘IJT‘II-i-U—gI) 19T (22)

The confidence factor ag /o2 reflects the confidence of the prior information relative to that of displacement
vectors. The larger crg /o2, the more confidence about the prior information; on the other hand, if ag /o2
is small we are more confident in the displacement vectors. Note that if ag/ 0% = 0, then the least-squares
estimate, ML estimate, and MAP estimate become the same. The advantage of MAP estimators is that
they can include prior information and are flexible because the confidence level can be controlled and hence
the solutions can be “stabilized” when the matrix ¥ is ill-conditioned due to noise. The disadvantage is
that when the mean values of the parameters assumed by the prior information are different from the actual
values (e.g. nonzero rotation angles) and there is no noise in the displacement vectors (e.g. in synthetic
simulations), the MAP estimates are shifted toward those mean values (i.e., toward zero rotation angles).

Synthetic simulations [9] show that when no noise is added and ag/ag = 0, the recovered motion
parameters depend only on displacement vectors. In this case there is almost no error in recovered motion
parameters; a small error occurs only because we search a bounded and discrete space for the translational
direction (T/T,,Ty/T,1). In our synthetic simulations, the noise added to the beginning points (z,y)
and ending points (z’,y’) was white Gaussian noise. If the synthetic rotation angles are the same as the
mean rotation angles assumed by the prior information (6, = 0°,6, = 0°,8, = 0°), increasing O‘g/ag
always improves the motion parameter estimates. When the synthetic rotation angles are nonzero, as
the confidence factor ag /o2 increases, we are more confident in the prior information, thus the average
error of the motion parameter estimates increases. Similar conclusions are achieved when the noise level
is low, such as, SNR > 50dB. Hence, synthetic simulations indicate that more confidence should be on
displacement vectors when no or low noise is present.

When the noise in displacement vectors increases, more confidence should be put on the prior infor-
mation to stabilize the estimates. In [9] it was found via simulations that the optimal confidence factor
increases as the noise increases, for cases where the signal-to-noise ratio was < 40 dB. However, the rela-
tionship between these two amounts of increase is difficult to quantify and depends on the actual parameter
values. Various simulations show that MAP estimation indeed improves motion parameter estimates com-
pared to least-squares estimates or maximum likelihood estimates when there is noise in the displacement
vectors.

3.3 Multi-Scale Parameter Searching and Time-Domain Smoothing

In this section we discuss how multi-scale searching of motion parameter space can improve accuracy and
how time-domain smoothing of recovered motion parameters can reduce the noise. Since the velocity
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equation is valid only instantaneously, each snapshot of scenes shows rigid body motion and is described
more accurately by Eq. (5). The first-order approximation estimate of motion parameters (L, M, 6., 0,,9.)
is computed as described in Sections 3.1 and 3.2 and is used as the initial estimate. More accurate motion
parameter estimates can be achieved by further refining this initial estimate through multi-scale searching
(i.e., locally searching) the bounded and discretized motion parameter space around the initial estimate in
a finer scale. This is explained next.

We return to the true motion equations of rigid body, define the error term, and locally search the
bounded and discretized motion parameter space around the initial estimate in a finer scale. Using Eq.
(6) and dividing X’ and Y’ by Z’ yields

,_ X' _ C:Cyr+(SeSy — CoCyS:)y + (CuSy + S:CyS:) + F
Z' " —8,C.x + (CySe + CuSyS2)y + (CoCy — 5:5,8.) + &

x

(23)

1 z Szx + Cszy - Szcz + %
2 —8,C.z + (CySe + C28yS.)y + (CoCy — 525,5.) + L

By cancelling Z from the above two equations, assuming T, # 0, dividing both sides with T, and letting
L= %, M= %, we define the error, for each corresponding pair,

Yy (24)

Error(L,M,0.,0,,0,) = (CyC. + L5,C;)zy + (S:8y — C:CyS, — LC:SyS. — LS:Cy)yy'
+(CzSy + 5:CyS, — LC.Cy + LS:5,S.)y — (MS,C. + S;)zz’
+(MC;S5,S, + MS,Cy— C,C)ya' + (MC,Cy— MS5;5,S, + 5.C)z’
+(LS, - MCyC,)x + (LCC, = MS. Sy + MC,CyS.)y — (MC,S5,+ MS.C,S, + LS;C.)

(25)

Ideally (in the noise-free case) Error = 0. But in practical experiments Error # 0, and we find the
optimal (L, M, 8,,0,,0,) that minimize 3_(Error)? over all corresponding pairs. The multi-scale searching
is done by locally searching around the initial estimates in a finer scale. We search the discretized and
bounded parameter space of [0, — 1°,0, +1°],[6, — 1°,68, + 1°],[6, — 1°,8, + 1°] with step size of 0.1° and
(L —0.05,L + 0.05],[M — 0.05, M + 0.05] with step size of 0.005. The quintuple (L, M,8,,8,,6,) which
yields the minimum sum of squares of Error is the set of recovered motion parameters. The multi-scale
searching improves the accuracy of motion parameter estimates and avoids high computational cost since
searching the complete motion parameter space with such a fine scale would be computationally expensive.

After multi-scale searching to compute more accurate motion parameters, we can substitute them back
to Eq. (23) or (24) to compute T%’ i.e. the depth of the object surface up to a scaling factor by:

7 ' - L
T, ~ 5,C.za' — (C18,S, + S:Cy)z'y — (CoCy — 555,85, )" + CyCoz + (8528, — C2CyS2)y + €

(26)

72 - v (21)
T,  SyC.zy — (CSyS: + S2Cy)y'y — (CoCy — S55,5.)y' + S.z + C:Cy — S,C,
where { = (C;Sy + S:CyS;). The choice of which above equation or combination of them to use depends
on the numerical considerations and motion. For example, when T}, is dominant (the motion is mainly
horizontal translation), Eq. (27) is better than Eq. (26) because the situation is similar to stereo vision to
recover object shape, where y’ and y carry depth information but 2’ and z are almost constant. Similarly,
when T, is dominant (the motion is mainly vertical translation), Eq. (26) is better than Eq. (27).
Although the least-squares algorithm with MAP estimation and multi-scale searching has been found
to be robust in many cases, the motion and shape recovery of real world images is sometimes sensitive to
noise and the estimated motion parameters have errors due to the ambiguity that very differnt motion can
induce similar displacement fields. We treat the errors in the recovered motion parameters as noise and
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additional improvement can be achieved by smoothing the motion parameters in the time domain when
the motion remains constant or varies smoothly between image frames. We choose median filtering because
of its relative robustness compared to a linear averager. Thus the smoothed motion parameter 6, at time
j is the scalar median of the 2m + 1 estimates of 6, centered at time j:

0.(j) = med{6,(i):i=j—-m,j—m+1,...,4,...,5+m} (28)

We have found this time-domain median smoothing to perform well in reducing errors of estimated motion
parameters, as shown in experiments presented in Section 3.4.

3.4 Experiments and Discussion

It is well known that different motions can induce similar displacement vector fields; thus motion and
shape recovery algorithms rely on the consistency of d; and dy to clarify the ambiguity. To smooth? the
estimated displacement field and eliminate some errors, we introduce a nonlinear outlier removal filter
which leaves the displacement vector unchanged if it “agrees” with more than % of its neighbors and
removes the displacement vector if it “agrees” with fewer than % of its neighboring displacement vectors.
We say that a displacement vector d; = {dg,i,dy,i} “agrees” with its neighbor d; = {d; ;,dy ;} if and only
if

|dz ;i — dg ;| < 0.1-maz(|dg;l, |dy:]) and |dy; —dy ;| < 0.1-maz(|dzl,|dy,]). (29)

The two sides of an object with large depth difference can have very different displacement vector patterns;
we choose “%” because if “%” of the neighbors are consistent then the displacement vectors of both sides
stay unchanged. The proportional parameter, “0.1”, constrains how stringently two displacement vectors
must “agree”. Both parameters can be changed depending on image sequence and applications. The
nonlinear outlier removal filter has been demonstrated experimentally to be suitable for motion and shape
recovery on various real world image sequences.

Figure 3 shows three frames from 6-frame toy truck image sequence with no rotation (6, = 6, = 6, = 0°)
and an equal amount of translation (Ty = T, = T, = —5mm = T, /T, = T,/T, = 1) between each image
frame. Here, camera yaw is ; pitch is 6y; roll is 6,, all in degrees. Translation T points upward; T,
points rightward; T, points toward the objects. The lower left truck is the closest (170mm away), the
lower right truck is at middle (220mm away), and the upper tractor truck is the farthest (360mm away).
We use the 2-D displacement vectors estimated by the 2-D affine model because the estimates are dense
and accurate as shown in Figure 3(d). As shown in Figure 3(e), the nonlinear outlier removal algorithm
performs well to remove the mismatches around occlusion boundaries. We use af, /0% = 0.01 in the MAP
estimation because the displacement vector field has low noise after nonlinear outlier removal. Table 2 shows
the recovered motion parameters of the image sequence. The rotation angles are almost zero (compared
to 40 degrees of FOV) and translation direction (7;/T,,T,/T,1) has at most 20% error. Because the
motion is constant, we can apply the time-domain median smoothing on motion parameters and have
6, = 0.349°,6, = —0.305°,6, = 0.009°,7,/T, = 0.950,T,/T, = 0.950, and it shows an improvement over
most individual estimates. We use the above motion parameters to compute the object shape in the form
of depth map. The average error for the depth map in Figure 3(f) was 15%. There is one depth estimate
at each center of 19 x 19 block and these centers are 7 pixels apart horizontally and vertically. We repeat
the depth estimate for the 7 x 7 pixels around the block center. The two black stripes on the right of the
range image are not errors but indicate there is no depth information because the mismatches caused by
occlusion boundaries are removed by nonlinear outlier removal.

2An alternative smoothing of the displacement vectors, we have also used component-wise median filtering. However, we
found that the small variations introduced to d. and dy by vector median smoothing can affect the accuracy of the 3-D motion
and shape recovery algorithm.
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Figure 3 : Toy truck image sequence, 8, = 0, = 0, = 0°,T, = Ty = T, = —5mm. (a) Frame 3 (386 x 386
pizels, 8 bit/pizel) (b) Frame 4 (c) Frame 5 of the image sequence. (d) Result of 2-D affine block matching
of (a) and (b). (e) Result of nonlinear outlier removal on (d). (f) Range image of recovered object depth
of (a). (The brighter the closer; the darker the farther away).
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Table 2 : Recovered motion parameters of the toy truck image sequence. The measured values are 6, =
6,=6,=0%and L =M = 1.

|frames” 0, | 0, | 9, |L=Tx/Tz|M=Ty/Tz|

1,2 0.037 | -0.008 | 0.007 1.200 1.200
2,3 0.180 | -0.133 | 0.009 1.100 1.100
3,4 0.349 | -0.305 | 0.013 0.950 0.950
4,5 0.469 | -0.406 | 0.007 0.900 0.900
5,6 0.453 | -0.396 | 0.011 0.900 0.900

Table 3: Measured and recovered motion parameters of the mountain image sequence. (The field of view
is approzimately 50°.)

l frames | data ” 0 I 6, [ 0, [ L=T,/T, lil = Ty/TITI
12,13 | measured || 2.181 | 0.192 | -2.137 -0.258 0.000
recovered | 2.513 | 0.094 | -0.819 -0.320 0.000
13,14 | measured || 3.417 | 4.603 | -5.477 -0.254 0.000
recovered | 4.927 | 4.978 | -3.492 -0.255 0.070
14,15 | measured || 2.357 | -2.620 | -1.549 -0.170 0.000
recovered | 2.223 | -3.024 | -0.947 -0.235 0.045

Figure 4 shows three frames from a 21-frame mountain image sequence. As shown in this figure, the
non-linear outlier removal algorithm performs well to remove mismatches around occlusion (the boundary
between mountain top and cloud). We use ag /o = 0.01 in MAP estimation because the displacement
vector field has low noise after nonlinear outlier removal. Table 3 shows the typical measured and recovered
motion parameters. The rotation angles have on average 15% error, L has 20% average error, and M is
almost zero. The following are several possible causes for the large estimation errors. This is a “move
and shoot” image sequence; the vehicle does not stop to stabilize and the road surface is unpaved. The
motions between image frames are quite abrupt and time-domain smoothing of motion parameters is not
suitable. The translation is also mainly along optical axis, so the depth estimates are more sensitive to
noise. We suspect the cloud moves relative to the mountain thus this relative motion violates rigid body
constraint. The relative motion might cause the cloud to appear closer than the mountain as shown in the
range image.

4 Conclusion

We presented a visual motion analysis system which includes a 2-D affine model to determine 2-D motion
displacement fields and a 3-D affine model to recover the 3-D motion parameters and surface structure under
perspective projection. The parameters of both affine models are found using least-squares algorithms and
a limited searching in a bounded parameter space. In the 3-D affine motion and shape recovery algorithm,
a simple form of MAP estimation was added to stabilize the recovered motion parameters in the presence of
noise in the displacement vector field. Multi-scale searching improves accuracy without high computational
cost. Time-domain smoothing improves motion parameter estimates when the motion remains constant or
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Figure 4 : A mountain image sequence from the University of Massachusetts at Amherst motion data set
[6]. (a) Frame 12 (386 x 386 pizels, 8 bit/pizel) (b) Frame 13 (c) Frame 14 of the image sequence. (d)
Result of 2-D affine block matching of (a) and (b). (e) Result of nonlinear outlier removal on (d). (f)
Range image of recovered object depth of (a).
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varies slowly. Many synthetic simulations as well as experiments on real world image sequences indicate
that the proposed affine models and related algorithms are effective and can robustly recover motion
parameters and object shape with relatively small errors.
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