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Abstract 
We propose a computational model motivated by 

human cognitive processes for detecting changes of 

driving environments. The model, call dynamic visual 

model, consists of three major components: sensory, 

perceptual, and conceptual components. The proposed 
model is used as the underlying framework in which a 

system for detecting and recognizing road signs is 

developed.

1. Introduction 

The objective of road signs is to guide, warn, and 

regulate traffic. They supply information to help drivers 

operate their cars in such a way as to enhance traffic 

safety. However, when drivers get tired, they may not 

always notice road signs. A stable road sign detection and 

recognition system is thus desirable to alert the driver to 

presence of signs. 

Road signs use particular colors and geometric shapes 

to attract drivers’ attention. However, the difficulty in 

recognizing road signs is largely due to the following 

reasons: (1) Colors may fade after long exposure to the 

sun. Moreover, paint may even flake or peel off, and 

signs may get damaged. (2) Air pollution and weather 

conditions may decrease the visibility of road signs. (3) 

Outdoor lighting conditions vary from day to night and 

may affect the apparent colors of road signs. (4) Obstacles, 

such as trees, poles, buildings, and even vehicles and 

pedestrians, may occlude or partially occlude road signs. 

(5) Video images of road signs often suffer from blurring 

in view that the camcorder is mounted on a moving 

vehicle. 

Many techniques have been developed to detect and 

recognize road signs. Pacheco, Batlle, and Cufi [7] 

proposed adding special color barcodes under road signs 

to help road sign identification for vision-based systems. 

However, much time and resources would be expended to 

replace road signs, making this solution uneconomical. 

Aoyagi and Asakura [1] used genetic algorithms to detect 

road signs from gray-level video imagery. Unfortunately, 

due to the discrete nature of crossover and mutation 

operators, optimal solutions are not guaranteed. Lalonde 

and Li [6] reported a color indexing approach to identify 

road signs, but the computation time will increase greatly 

in complex traffic scenes. In addition, many other studies 

on detecting and recognizing road signs by morphological 

methods, neural networks, and fuzzy reasoning have been 

reported. 

Two potential problems with an automatic road sign 

detection system are that if it analyzes and reports a 

critical situation too slowly or if it makes errors, then the 

system would be of little use. Unfortunately, the above 

difficulties keep bothering researchers. We may appeal to 

the human visual system for a solution. 

2. Computational Model 

Figure 1 depicts the proposed dynamic visual model 

(DVM), which captures several aspects of the human 

visual process [2, 4, 5, 8]. The proposed model is 

comprised of three major components, the sensory, 

perceptual, and conceptual analyzers of the human visual 

system. The input to the model are video sequences. 

Video sequences can be subsampled to a degree 

appropriate to an application so as to reduce the quantity 

of the input data. In addition to data reduction, the format 

and structure of input data may be converted in order to 

increase the effectiveness of later processing. We refer to 

this stage of data reduction and conversion as the data 

transduction stage, since it corresponds to the transducer 

of the human visual system. 

The transduced data are forwarded to the sensory 

component of the DVM to extract spatial and temporal 

information. Spatial information sketches the relations 

between objects in a single image, and temporal 

information describes the change of objects between 

successive images. All these kinds of information are 

important for correct detection and recognition. In the 

sensory component, we extract the temporal and spatial 

information of moving objects from the input video 

sequence.  

In the perceptual component, a voluntary selectivity of 

attention is realized by introducing a module called the 

spatiotemporal attentional (STA) neural module, as well 

as a long term memory (LTM), which preserves the 

characteristics of the objects of interest. The information 

from the LTM will call the attention of the neural network 
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to the objects of interest when it is being innervated by 

the stimuli coming from the sensory component. Then the 

activations of the STA neurons are examined. If there is 

no focus of attention formed over the neurons, the system 

repeats the above process. Otherwise, the feature 

extraction step is evoked to detect categorical features of 

the objects within the image areas corresponding to the 

focuses of attention in the STA neural module.  

The categorical features obtained in the perceptual 

component serve as the input stimuli, represented as a 

supraliminal pattern, to a CART neural module in the 

conceptual component. The input supraliminal pattern 

first initializes the LTM of the CART neural module with 

the contents coming from a system memory, called the 

episodic memory. The configurations of the LTM and the 

associated components of the neural module have to be 

adapted in accordance with the contents. This adaptability 

of configuration is referred as the configurable capability 

of the neural module. Subliminal patterns to be matched 

with the input supraliminal pattern will be retrieved from 

the LTM, for which the search space of subliminal 

patterns is greatly reduced. The supraliminal pattern is 

compared with a subliminal pattern, and if they are 

similar enough, the class of the supraliminal pattern is 

regarded as that of the subliminal pattern under 

consideration. The CART module then performs a 

supervised learning through which the subliminal pattern 

in the LTM is updated under the guidance of the input 

supraliminal pattern. On the other hand, if no subliminal 

pattern is similar to any supraliminal pattern, an 

unsupervised learning, which represents the supraliminal 

pattern as a new subliminal pattern, is carried out.  

After the classification stage, particular object features 

regarding the special category are extracted and fed into a 

CHAM neural module, which is the recognition stage in 

the conceptual component. Similar to the classification 

stage, the supraliminal object feature pattern first 

initializes the LTM of the CHAM module with the 

contents coming from the episodic memory. If the 

supraliminal pattern adequately matches a subliminal 

pattern, the supraliminal pattern is recognized 

successfully. Otherwise, our system is in a new situation 

and will attempt to learn and memorize the new 

experience for future recognition. 

3. Road Sign Recognition System 

3.1. Sensory Component 

The data input to our system are color image 

sequences acquired using a camcorder mounted on a 

moving vehicle. In the sensory analyzer of our system, 

spatial and temporal information of dynamic scenes is 

extracted from the input video sequences, and noise is 

filtered out. The sensory analyzer is a primary analyzer 

which concerns itself only with local information. In road 

sign detection, color is a local feature which can be 

extracted from individual pixels. On the other hand, shape 

is global feature which must be decided by a 

neighborhood of pixels. 

As mentioned previously, road sign detection is very 

difficult under poor weather conditions because of the 

influence of constantly varying outdoor illumination and 

optical distortion. Even though the actual colors of road 

signs are initially quite well controlled, the perceived 

colors are affected by illumination from light of various 

colors in their natural settings. Moreover, due to the 

effects of sunlight, the paint on signs often gradually 

fades. The hue component in the HSI model is invariant 

to brightness and shadows. Thus the hue component is 

suitable for extracting color features, given the 

uncertainty of weather and natural and artificial damage 

to road signs. 

There are one-to-one mappings of sensory analyzers to 

the pixels of an input image, and a sensory analyzer 

processes only the information coming from a single pixel. 

First, the hue value, h, of each pixel is calculated. Then, 

the similarity between h and the stored hue values of 

particular colors in road signs is calculated. Let {h1, h2,…, 

hq} be the set all the hue values of particular colors in 

road signs which are assumed to be Gaussianly 

distributed with variance 
2

. Then the output of the 

sensory analyzer is the degree of similarity 

)(max
,...,1

k
qk

zz
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)2)(exp(
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Finally, the outputs of sensory analyzers are fed into 

the perceptual analyzer. Figure 2 gives an example 

showing the result of the sensory analyzers. The input 

image is shown in Fig. 2 (a). There are two road signs in 

the traffic scenes, one red and the other blue. The output 

of the sensory analyzers is shown in Fig. 2 (b) where the 

intensity of each pixel indicates its degree belonging to a 

road sign color. 

3.2. Perceptual Component 

We give only a brief description of the STA neural 

module in this subsection; more details can be found in 

our previous study. The STA neural module is structured 

as a two-layer network: one for input and one for output. 

The output layer is also referred to as the attentional layer. 

Neurons in this layer are arranged into a 2D array in 

which they are connected to one another. These 

connections are within-layer connections and are almost 

always inhibitory. There are no synaptic links among 

input neurons; they are, however, fully connected to the 

attentional neurons. These connections are called 

between-layer connections and are always excitatory. 

The input neurons are also organized into a 2D array 

as are the attentional neurons and the size of both the 

arrays be the same as that of the input images. Let wij
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denote the weight of the link between attentional neuron 

ni and input neuron nj. The weight vector of attentional 

neuron ni is written as wi = (wi1, wi2,…,wim), where m is 

the number of input neurons. The activation of attentional 

neuron ni due to input stimuli z (coming from sensory 

components) is

)))()1(()1(()( n
l
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In above equations, ak is the activation of neuron nk,

threshold n  prevents the effect due to noise, and  and 

 are positive parameters. Set Ni indicates the 

neighboring set of attentional neuron ni; uik is the linking 

weight between neurons ni and nk; M(rik) denotes a 

"Mexican-hat" function, and the parameter rik is the 

distance between neurons ni and nk.

Selective attention was realized by the STA neural 

module. Two important features of our module are that 

top-down expectations have been embedded beforehand 

in the input stimuli to the module so as to save processing 

time, and that both spatial and temporal information are 

managed in one construct so as to reduce the cost of the 

configuration. 

The input stimuli of the STA neural module are the 

outputs of the sensory components, shown in Fig. 2 (b). 

Figure 2 (c) shows the corresponding attention map of the 

STA neural module. Once the focus of attention is 

developed, the following subsystems will pay attention to 

only the area of interest and ignore the rest of the input 

pattern. 

Categorical features utilized to partition road signs into 

groups should represent common characteristics of the 

groups, not the specific ones of road signs. First, create an 

edge image E from the input Z of perceptual component 

and the attention map M of STA neural module. For each 

pixel (x, y), E(x, y) is calculated by 

otherwise0

),(and0),(if),('
),( cyxZyxMyxE

yxE ,

where ),(' yxE  is the absolute edge magnitude of 

pixel (x, y), and c  is the similarity threshold to 

determinate whether the colour of pixel (x, y) has a road 

sign colour. Second, by combining the colour and edge 

information, we can locate the candidate positions of road 

signs. Let Q contain the candidate positions of road signs. 

For each position (x, y),

otherwise0

0),(and0),(if1
),(

yxZyxE
yxQ .

A pre-attention map is used for modelling the 

expectation of the human brain. In the pre-attention map, 

the places where we expect road signs to be located have 

stronger stimuli than others. Now, we combine this prior 

information in Q:

otherwise,0

1),(and0),(if1
),(

* yxQyxM
yxP

)),(),,(min(),(* yxMyxMyxM p ,

where Mp
(x, y) is the pre-attention stimulus of pixel (x, y).

Figure 3 gives an example to illustrate the effect of the 

pre-attention map. The original input stimulus is shown in 

Fig. 3 (a), and the pre-attention map is presented in Fig. 3 

(d). Figures 3 (b) and (e) show the attention maps, M and 

M*
, respectively. Compared with M, the attention map 

given by M*
 is more concentrated on the road signs, and 

noise near the ground is filtered out. Finally, patterns Q

and P are shown in Fig. 3 (c) and (f), respectively. Next, 

we use the connected components technique to detect the 

road signs. In summary, road sign detection is 

accomplished by these steps. 

After the road sign detection stage, the perceptual 

component extracts the categorical features input to the 

conceptual component. The categorical features indicate 

the colour horizontal projection of the road signs. In the 

colour horizontal projection, all gray pixels are treated as 

the same colour to eliminate the individual difference 

among road signs of the same class. Figure 4 shows the 

eight classes stored in CART. 

3.3. Conceptual Component 

The categorical feature extracted in the perceptual 

component serves as a supraliminal feature to be fed into 

the CART module in the conceptual component. The 

CART module is actually an ART2 neural network [3] 

with a configurable long term memory (CLTM). Figure 4 

shows a classification result of the CART module. We 

scan sixteen road sign images and extract their categorical 

features to train and test our system. Sixteen categorical 

features of road signs are applied to the CART module. 

These features are classified into eight classes so that 

similar features will be classified into the same class. This 

result is memorized as the learned experience and used to 

classify the subsequent input features. 

The CHAM neural module is structured as a two-layer 

network with one input layer and one output layer. The 

output layer is a winner-take-all competitive layer. In the 

input layer, neurons are arranged into a 2D array, and 

there are no within-layer synaptic links among these 

neurons. Suppose that the input layer of the neural 

network contains of m neurons and the output layer 

contains n neurons. Let wij denote the weight representing 

the strength of the link between output neuron i and input 

neuron j. The weight vector of neuron i is written as wi = 

(wi1, wi2,…, wim). The net input to neuron i on the 

competitive layer due to innervation z is computed from  
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and the winner, nc, after the competition can be found by 
)).max(arg( i

i
c netn  Finally, only the winner on the 

competitive layer outputs a one while the rest output zeros. 

otherwise.0

if1 c
i

 ni
v

Let { p,...,, 21 } be the set of object feature 

patterns stored in the CHAM, where T
iwibi ),( , and 

pi ,...,2,1 . Patterns 
ib

 and 
iw

 represent the black and 

white feature patterns, respectively, of the ith road sign. If 

an input object feature pattern, , is fed into the CHAM, 

then the output class corresponds to 
)minarg(

,...,1
i

pi ,

where i  is the distance between  and i .

Figure 5 shows an example of the regulatory sign 

recognition. The CHAM is trained by the set of 31 
regulatory signs, and one part of these signs are shown in 

column (a). The white and black object features extracted 

from the training set are shown in columns (b) and (c), 

respectively. Three test sets are prepared for the test stage. 
The first test set, shown in column (d), contains the 

smoothed images of those signs in column (a) with 5x5 

neighborhood averaging. Their white and black object 

features extracted from the training set are represented in 
columns (e) and (f), respectively. The second and third 

test sets, shown in column (g) and (j), is comprised of the 

regulatory signs corrupted by 20 and 30 percent uniform 

noise, respectively. All 31 smoothed signs and 46 signs 
with noise are recognized correctly. 

Figure 6 gives another example of regulatory sign 

recognition. The training set is the same as shown in Fig. 

5 (a) but the test patterns are extracted from real images 
captured by camcorder. Their white and black object 

features are shown in columns (b) and (c), respectively. 

Column (d) shows the recognition results. Although these 

road signs are imperfect, they are still recognized. 
The examples show how to recognize road signs in a 

single image. However, since the data input to our system 

are video sequences, we can collect more information 

during several successive images to make a better 
decision. Due to the road signs on the roadside getting 

closer to the vehicle, the visual sizes of road signs 

projected in the video images continuously increase in 

size and clarity. The road signs should still be very small 
when first detected, but our system may have difficulty 

recognizing these small signs. However, such signs still 

supply valuable information for eliminating the 

impossible candidates of road signs and reducing the 
search space. The more video images fed into our system, 

the more information can be used to strengthen our 

decision. 

Suppose our system initially maintains all the 

candidates for road signs in the LTM of the CHAM 
network, then the candidate number p with the video 

input will be reduced to only one by the following 

procedure: 

(1) Put all candidates into the LTM. 

(2) Input the extracted object feature  of an image in a 

video sequence into the CHAM network. 

(3) For each candidate j  in the LTM, apply the 

following rule: 

If )(tj , then remove the jth candidate 

from the LTM, where pj ,...,2,1 and )(t is a 

constant depending on the size of the road sign 

projected on the image. 

(4) Repeat Steps (2) to (4) until only one candidate is 

left, and output the candidate as the recognition result. 

This procedure illustrates the recognition process for a 

road sign. If there are two or more different signs in the 

image sequence, the recognition process is the same 

except that the contents of the LTM should be modified 

for different signs. 

4. Experimental Results

The input data to our system were acquired using a 

video camcorder mounted in the front windshield of a 

vehicle while driving on expressways. In our experiments, 

each video sequence was down-sampled to a frame rate of 

5 Hz before being submitted to the system. Furthermore, 

each 720 x 480 pixel input image was reduced to 180 x 

120 pixels. We downsample input video sequences for the 

purpose of reducing the processing load on the computer. 

Likewise, we subsample video images for reducing the 

processing time. 

A number of video sequences were collected for 

experiments with one or two signs included in each 

sequence. One example of the experimental results is 

presented in Fig. 7. It shows only part of a video sequence 

(the seven images in column (a)). In this sequence, two 

road signs should be recognized, one is a speed limit sign 

and the other is a warning sign. The corresponding 

attention maps of the input images, column (a), are shown 

in column (b). Column (c) represents the detection results 

of the candidate road signs. We frame these road signs 

with white boxes. Column (d) shows the contents of the 

white boxes. They are extracted from the input image and 

normalized to 60 x 60 pixels. The recognized results, 

shown in column (e), are output only when one candidate 

is left in each LTM. In this example, the warning sign is 

recognized first, and the speed sign is recognized later. 

Figure 8 shows another six examples of experimental 

results. In each sequence we select only one image to 

represent the whole sequence in this figure. Columns (a) 

and (d) are the selected images of the input video 
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sequences, and columns (b) and (e) give their detection 

results. The recognition results are presented in columns 

(c) and (f). 

The CART and CHAM networks should be well 

trained before being tested. Some training patterns of 

CART are shown in Fig. 4. These patterns are first 

normalized to 60 x 60 pixels, and then the categorical 

feature vectors are extracted to train the CART network. 

Although the patterns in the training set were made in a 

computer, they can be used to classify real patterns 

captured by a camcorder. In our experiments additional 

patterns are not need training for the CART network. 

For each category stored in the CART networks, a 

corresponding LTM of the CHAM network should be 

trained. The weights in these LTMs are recorded in 

episodic memory, and will be moved to the LTM as they 

are needed. 

Although most road signs in input images are detected 

at the detection stage, there are some misdetections. 

Misdetection usually occurs when the road signs are small 

in the image. Since our system integrates the results of 

several successive images to make a decision, a few 

misdetections in a sequence does not affect the decision 

making of our system. 

If the speed of a vehicle is very high, then vehicle and 

camcorder vibration cannot be avoided, and the quality of 

input video sequences is reduced. Some patterns extracted 

from these sequences appear jerky, though they are 

detected and classified correctly. However, the 

recognition of these patterns (about 1/10) may be 

incorrect. The incorrect results do not affect the 

correctness of system’s decision since the decision is 

made by integrating several images. 

5. Conclusion and Future Work 

In this paper, a computational model motivated by 

human visual cognitive and recognition processing was 

presented. The road sign recognition system is not the 

only subsystem in vision-based driver assistance systems. 

There are several other subsystems, which perform 

obstacle recognition, and environmental change detection, 

etc. Developing and integrating these subsystems to 

collect significant information in driving environments is 

very important for improving traffic safety. We hope the 

proposed DVM is helpful for designing various 

subsystems for functions. Moreover, other applications to 

event detection and recognition can also be accomplished 

with this model by extracting different kinds of features. 
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Fig. 2. An example of the attention map of the STA neural 

network. (a) One image of an input video sequence. (b) 

Corresponding outputs of the sensory components. (c) 

Corresponding attention map of the STA neural network. 

(a)                               (b)                             (c) 

(d)                               (e)                              (f) 
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attention. (d) Pre-attention map. (e) Attention map with 

pre-attention. (f) Regions containing road sign candidates 

with pre-attention. 

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 4. Eight classes are stored in CART neural module. (a) 

Warning signs. (b) Regulatory signs. (c) Construction 

signs. (d) Construction signs. (e) Guide signs. (f) Guide 

signs in highway. (g) Information signs in highway. (h) 

Guide signs in highway. 

(a) (b) (c)  (d) (e) (f) 

Fig. 8. Some experimental results of road sign detection and 

recognition. Columns (a) and (d) are the input video 

sequences. Columns (b) and (e) show their detection 

results. Columns (c) and (f) represent the recognition 

results. 
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Fig. 5. A partial experimental result of regulatory signs 

recognition. (a) Training set of the regulatory signs. (b) White 

object feature of column (a). (c) Black object feature of column 
(a).(d) Blurred test set. (e) White object feature of column (d). 

(f) Black object feature of column (d). (g) Noisy test set. (h) 
White object feature of column (g). (i) Black object feature of 

column (g).(j) Noisy test set. (k) White object feature of column 

(j).(l) Black object feature of column (j). 

(a) (b) (c)   (d) (e)   (f) (g) (h) (i)   (j) (k) (l)

Fig. 7. Result of road sign detection and recognition. 

(a) The input video sequence. (b) The 

corresponding attention map. (c) The results of road 

sign detection. (d) The road signs extracted after 

categorical analyzer. (e) The recognition result. 

(a)                   (b)                        (c)            (d)    (e) 

Fig. 6. Recognition results of real road sign patterns. (a) 

Test images captured by camcorder. (b) 

Corresponding white object feature of column (a). (c)  

Corresponding black object feature of column (a). (d) 

Their recognition results. 

(a) (b) (c) (d) (a) (b) (c) (d) 
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