
Anisotropic Cone Mapping
Yu-Jen Chen and Yung-Yu Chuang

National Taiwan University
E-mail: {colac,cyy}@cmlab.csie.ntu.edu.tw

Abstract—This paper presents a more efficient and accurate
method for inverse displacement mapping, methods which at-
tempt to render effects offered by displacement mapping, motion
parallax, self-occlusion, self-shadowing and silhouette, without
actually perturbing the surface geometry. We first propose an
extension to cone step mapping. The extension, Anisotropic Cone
Mapping (ACM), provides a more efficient and accurate way
for calculating intersections. Anisotropic cones are used as the
bounding volume for the empty space above texels, allowing faster
convergence and rendering speed. Experiments show that ACM
has better rendering quality and convergence speed than previous
methods. In addition, we propose a hierarchical adaptive prepro-
cessing method that is around 10 times faster than conventional
methods, allowing our space leaping approach to be used for
rendering dynamic displacement maps. The proposed method is
suited for many real-time 3D applications because of their low
memory cost and good performance in both rendering quality
and speed.

I. INTRODUCTION

Over the past few years, we have seen an impressive
improvement in the capabilities of graphics processing units
(GPUs). Among many revolutionary features, the most fasci-
nating achievement is GPU’s programmability for real-time
realistic rendering. This capability allows us to synthesize
many compelling effects in real time. To create appealing
appearance, texture and bump mapping are often used to
significantly improve the realism of rendered images by adding
spatially-varying appearance due to surface details. These
mapping techniques are widely adopted because they are
suitable for GPU implementation. Bump mapping simulates
surface details of uneven surface’s interaction with light by
adjusting normals to provide more realistic look [2]. However,
bump mapping has its limitations. It only captures the shading
caused by normal variation, but not the visually important
effects such as motion parallax, self-occlusion, self-shadowing
and silhouette.

Displacement mapping [4] provides a more effective repre-
sentation for surface details with a displacement map instead
of many small triangles. Points on a surface are moved along
their normals by the amount specified by the displacement
map. All the features that bump mapping fails to capture
are naturally supported by displacement mapping. However, it
requires altering geometry during shading. Even with today’s
graphics hardware, this is still a very expensive operation.

Inverse displacement mapping [9] is a class of mapping
methods which attempt to render those effects offered by dis-
placement mapping, such as motion parallax, self-occlusion,
self-shadowing and silhouette, without actually perturbing the
geometry of the surface being mapped. These methods have

several advantages: they require lower amount of memory;
they do not need to change the original geometry; and most
importantly, they are performed in image space and can be
efficiently implemented using fragment shaders on current
GPUs. Recent progresses of inverse displacement mapping
take advantage of the programmability and parallel nature of
modern graphics hardware to render surface details in real
time [11], [7], [3], [12], [1], [8], [5], [6]. One key question
these methods attempt to answer is how to effectively search
for the closest intersection to the surface defined by the
displacement map along a given viewing ray. A compromise
between convergence speed and rendering quality is often
made by these methods.

This paper proposes anisotropic cone mapping (ACM),
which extends existing cone step mapping and provides a
better tradeoff between rendering speed and guaranteed accu-
racy. Furthermore, we propose a fast preprocessing algorithm,
which is around 10 times faster than previous methods. Thus,
even requiring preprocessing, our space leaping method can be
used for rendering scenes with dynamic displacement maps
at a frame rate of 50 fps. The main contributions of this
paper include: (1) an improved technique to provide better
compromise between accuracy and rendering speed, and (2)
a real-time adaptive hierarchical processing method, which
allows rendering scenes with dynamic displacement maps in
real time.

II. ANISOTROPIC CONE MAPPING

Our method is built upon a previous method, cone step
mapping (CSM), proposed by Dummer [6] on the game
development forum. Section II-A reviews the main concept
of CSM. Section II-B explains our extension to speed up
CSM by using anisotropic cones. Next, we present our adap-
tive hierarchical preprocessing algorithm so that ACM can
handle dynamic displacement maps (Section II-C). Finally,
Section II-D discusses implementation issues.

A. Cone step mapping

CSM belongs to the category of space leaping. Its bounding
volume is a symmetric cone. For each texel, a cone is
computed associated with it. It describes the largest empty
space above that texel which can be bounded by a cone. This
cone’s tip is the texel itself. Hence, such a cone is described
by a single parameter, cone ratio. The cone ratio ξ is defined
as the ratio between the radius and the height of the cone,
i.e. ξ = dr/dh, measuring the opening angle of the cone as
shown in Figure 1(a).

dh

dr

Vxy

ξ

β

α

P

Q

1

2
3

4
5

6
78

1

2

3

4
5

(a) Symmetric cone (b) Asymmetric cone (c) Ray-line intersection (d) Cone step mapping (e) Anisotropic cone mapping

Fig. 1 Configuration of symmetric (a) and asymmetric cones (b). (c) illustrates our ray-line intersection algorithm. (d) and (e) show
how CSM and ACM work.

0%

5%

10%

15%

20%

25%

30%

0.00 0.25 0.50 0.75 1.00

CSM cone ratio
average cone ratio
max cone ratio

Fig. 2 Histogram of cone ratio.

The cone ratio is within the range of [0, 1]. It is partly
because we can obtain better precision by mapping 256 levels
of texture to a smaller range. More importantly, in practice,
cone ratio is unlikely larger than one. For example, the blue
curve in Figure 2 is the histogram of cone ratios for the brick
texture. Most cone ratios are clustered below 0.25.

As shown in Figure 1(d), once we have the cone ratio for
each texel, the exact intersection of the viewing ray and the
displacement map can be found by repeatedly performing 2D
ray-line intersections. Dummer used a more expensive proce-
dure for finding 2D ray-line intersection. Here, we present a
simpler and faster method as shown in Figure 1(c). Because
of similar triangles, we know that α : β = ξ : |Vxy|, where
Vxy is the vector PQ’s projection on the x − y plane of the
tangent space, P and Q are entry and exit points. Hence, the
ratio γ = α/(α + β) equals ξ/(ξ + |Vxy|). Therefore, we
should march γVxy in the texture space. The procedure halts
when either the solution converges or loop count exceeds a
maximum limit.

B. Anisotropic cone mapping
We propose a method to improve CSM by removing cone

symmetry 1. Many displacement maps have strong anisotropic
property. It is too conservative to use the minimal cone ratio as
the representative because other directions with larger empty
space are often be compromised. Dummer suggested that
ellipses probably could be for anisotropic displacement maps.
However, it seems to be computationally more expensive.
Hence, we propose to use asymmetric cones as the bounding
volumes. An asymmetric cone has n sectors and each has its

1Note that Policarpo and Oliveira have a similar extension concurrent to
our work. They called it quad-directional cone step mapping [10].

13
.70 8.0

0
5.1

8
3.5

4
2.7

0
1.9

1
0.8

2

error

fr
am

e
ra

te

CSM
ACM4
ACM8

0

100

200

300

400

Fig. 3 Comparisons of error and frame rate among CSM, ACM4
(4-sector ACM) and ACM8 (8-sector ACM).

own cone ratio. Figure 1(b) shows the configuration for a 4-
sector asymmetric cone. The intersection finding procedure is
similar to CSM, except that the cone ratio is now indexed by
the viewing direction. Figure 1(e) shows such a procedure of
ray marching.

One choice we have to make for ACM is the number of
sectors. The use of more sectors obviously increase the cone
ratio, thereby, offering faster convergence. Figure 2 displays
the histogram of average and maximum cone ratios for 4-sector
ACM. To compare the performance of CSM, 4-sector ACM
and 8-sector ACM we performed an experiment to analyze the
relationship between accuracy and rendering speed. We first
generate a ground truth image using displacement mapping.
Then, for each algorithm, we run it with 10, 20, 30, 40 and
50 steps and recorded the corresponding frame rate and its
L2 error from the ground truth. The results are shown in
Figure 3. It is obvious that for a fixed accuracy, ACM4 is
the fastest and CSM is the slowest. We observed that there
is almost no visually noticeable difference when the error
is below 3.0. The frame rates when error equals to 3.0 for
CSM, ACM4 and ACM8 are roughly 100, 200 and 150fps
respectively. Therefore, ACM4 is roughly two times faster
than CSM. Though with better cone ratios, ACM8 is slower
than ACM4 because of more texture accesses. In the following
experiments, we will use ACM4 to represent ACM. Figure 4
compares the progression of convergence for CSM and ACM.
Note that, on the discontinuity in the middle, CSM at 20 steps
appears too flat. However, ACM at 20 steps is already very
close to the final solution. It is obvious that ACM converges
faster than CSM.

20 steps 30 steps 40 steps

Fig. 4 Comparisons of convergence between CSM and ACM. The
top row shows convergence of CSM and the bottom row is for
ACM. Note that, on the discontinuity border in the middle, CSM
at 20 steps appears too flat. However, ACM at 20 steps is already
very close to the final solution.

C. Adaptive hierarchical preprocessing

The preprocessing of ACM is pretty straightforward. For
each texel, we expand the search radius incrementally for each
sector. For each expansion, several new texels are considered.
The cone ratio is updated if the new texel offers a lower cone
ratio. The current minimal cone ratio also provides the short
circuit condition to terminate the search. This process takes on
average 0.03 to 0.2 seconds for a 128×128 displacement map
depending on its content. To apply ACM to dynamic displace-
ment maps, we propose an adaptive hierarchical preprocessing
algorithm (Algorithm 1) to speed up the process. We first build
a pyramid for the displacement map using the max operator.
That is, the height of the parent equals the maximal height
of its four children. This is for maintaining the property that
parents have more conservative cone ratios than their children.
This property guarantees that, for a time-critical application,
children can simply copy parent’s cone ratio for conservative
bounding volumes. The convergence could be a little slower
with conservative ratios, but it is always correct. The ACM for
the top level is calculated as usual. When calculating the cone
ratios from top to bottom, we first compare whether a texel’s
height is similar to its parent’s height. If so, then it simply
copies its parent’s cone ratio. Otherwise, it performs regular
cone ratio search, but with its parent’s cone ratio as the initial
short circuit condition. This often terminates the search very
quickly since we already have a very close estimation.

In practice, we found that it is often sufficient to set a high
threshold for similarity in the above algorithm. It is because the
resulted ACM is just more conservative but won’t incur errors.
Thus, we found the adaptive method seldom reaches the finest
level. Table I shows the preprocessing time for three different
displacement maps. The adaptive method offers more than 10x
speedup by using three levels of hierarchy. The processing

original adaptive speedup
brick 0.195 0.017 11.5
rockwall 0.186 0.014 13.3
stone 0.080 0.013 6.2

TABLE I Comparisons between the original preprocessing
method and adaptive hierarchical preprocessing method.

Algorithm 1 Adaptive ACM Preprocessing. Given a dis-
placement map H , this procedure generates its ACM, M0.

1: procedure ADAPTIVEACM(DisplacementMap H)
2: H0=H; . build a pyramid using the max operator
3: for (i=0; i≤ l − 1; i= i+1) do
4: Hi+1=CreateMap(1

2Hi.width, 1
2Hi.height);

5: for each texture coordinate (u, v) of Hi+1

6: Hi+1(u, v)= max
∆u,∆v∈{0,1}

Hi(2u+∆u, 2v+∆v);

7: end for
8: end for
9: Ml=CreateACM(Hl); . regular cone ratio search for Hl

10: for each (i= l−1; i≥0; i= i−1) . from top to bottom
11: for each texture coordinate (u, v) of Mi

12: if Similar
(
Hi(u, v), Hi+1(u

2 ,
v
2)

)
then

13: Mi(u, v) = Mi+1(u, v);
14: else . regular cone ratio search at (u, v) on Hi

15: Mi(u, v)=ACM(u,v,Hi,Mi+1(u
2 ,

v
2));

16: end if
17: end for
18: end for
19: end procedure

time is now below 0.02 seconds, making it possible to apply
ACM to dynamic displacement maps.

D. Implementation

We use an RGBα texture to store 4-sector ACM texture.
Figure 5 shows the visualization for the ACM texture for
the brick displacement map. For 8 sectors, we put two ACM
textures side by side into a single texture. A fast GPU imple-
mentation for ACM needs care. Earlier, we implemented ACM
using branch instructions to select proper sector according to
the viewing direction and its performance was even worse
than CSM. Later, we optimized the shader code by encoding
almost all branch conditions into dot product computations as
described by nVidia’s shader tricks. It boosted the performance
a lot. However, the most important performance gain of ACM
comes from its larger cone ratios, allowing us to converge in
less steps. This has big impact on performance. For current
GPUs, there is a performance bound for texture accesses.
When a shader has more texture accesses than this bound,
the shader performance drops dramatically. Because ACM can
converge with less steps, namely less texture accesses, it has
better chance to reach the target accuracy before exceeding
this bound than other methods.

(a) Displacement map (b) ACM texture (c) Rendering

Fig. 5 ACM texture. (a) The brick displacement map. (b) The
computed 4-sector ACM texture. (c) Rendering of mapping brick
over a plane using ACM.

III. RESULTS

We performed experiments on a Pentium 4 3.0GHz machine
with an NVIDIA GeForce 7900 GTX GPU with 512 MB
memory. We used several displacement maps, exhibiting both
high-frequency and low-frequency contents. All scenes were
rendered at a resolution of 1024× 768.

Figure 6 shows comparisons of parallax occlusion mapping
(POM) [3], Relief mapping (RM) [11], CSM and ACM. POM
and RM have an aliasing problem with discontinuity of height
field. Hence, even with 200 steps, there are still stair-stepping
artifacts. Because many steps are used, their frame rates drop
to around 25 fps. On the other hand, CSM and ACM have
less artifacts. Note that CSM-like approaches are not artifacts
free but usually have less artifacts than root finding ones. As
pointed out by Policarpo and Oliveira, CSM-like approaches
could still have artifacts if number of steps is enough [10].
The frame rates of CSM and ACM are around 100 fps and
200 fps respectively. Figure 7 shows an example of applying
dynamic displacement on a simple water simulation. We
generate displacement maps at each time instance using simple
sinusoids. The synthetic displacement map is then processed
by our adaptive algorithm to obtain its ACM texture. These
processes are performed on CPU. The displacement map and
its ACM texture are then fed to the rendering system on
GPU. The combined frame rate is around 50 fps including
synthesizing height field, preprocessing of height field, texture
transfer from CPU to GPU and rendering on GPU.

IV. CONCLUSIONS

In this paper, we present an extension towards more accurate
intersection for real-time inverse displacement mapping. The
proposed anisotropic cone mapping provides better cone ratio
than cone step mapping because of the use of asymmetric
cones. Therefore, it usually requires less steps to converge.
As a result, it is faster than CSM to reach a target quality.
As relaxed cone stepping, combination of ACM with binary
search could further reduce artifacts with a faster speed. In
addition, our adaptive hierarchical preprocessing algorithm
allows us to render scenes with dynamic displacement maps
in real time. This approach can be extended to handle relaxed
cone step mapping as well, greatly reducing the overhead of
preprocessing.

(a) Parallax occlusion mapping (b) Relief mapping

(c) Cone step mapping (d) Anisotropic cone mapping

Fig. 6 Comparisons of inverse displacement mapping methods.

Fig. 7 Real-time rendering with dynamic displacement maps.

REFERENCES

[1] L. Baboud and X. Décoret. Rendering geometry with relief textures. In
Proceedings of Graphics Interface 2006, 2006.

[2] J. F. Blinn. Simulation of wrinkled surfaces. In Proceedings of ACM
SIGGRAPH, pages 286–292, 1978.

[3] Z. Brawley and N. Tatarchuk. Parallax occlusion mapping: Self-
shadowing, perspective-correct bump mapping using reverse height map
tracing. In ShaderX3: Advanced Rendering with DirectX and OpenGL,
W. Engel Ed., pages 135–154. Charles River Media, 2005.

[4] R. L. Cook. Shade trees. In Proceedings of ACM SIGGRAPH 1984,
pages 223–231, 1984.

[5] W. Donnelly. Per-pixel displacement mapping with distance functions.
In GPU Gems 2, Matt Pharr Ed., pages 123–136. Addison-Wesley, 2005.

[6] J. Dummer. Cone step mapping.
http://www.lonesock.net/files/ConeStepMapping.pdf, 2006.

[7] T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y. Yanagida, T. Maeda,
and S. Tachi. Detailed shape representation with parallax mapping. In
Proceedings of the ICAT 2001, pages 205–208, 2001.

[8] A. Kolb and C. Rezk-Salama. Efficient empty space skipping for per-
pixel displacement mapping. In Proceedings of Vision, Modeling and
Visualization, 2005.

[9] J. W. Patterson, S. G. Higgar, and J. R. Logie. Inverse displacement
mapping. Computer Graphics Forum, 10:129–139, 1991.

[10] F. Policarpo and M. M. Oliveira. Relaxed cone stepping for relief
mapping. In GPU Gems III, pages 409–428. Addison-Wesley, 2007.

[11] F. Policarpo, M. M. Oliveira, and J. L. D. Comba. Real-time relief
mapping on arbitrary polygonal surfaces. In Proceedings of Symposium
on Interactive 3D Graphics and Games 2005, pages 359–368, 2005.

[12] E. A. Risser, M. A. Shah, and S. Pattanaik. Interval mapping. Technical
Report, School of Engineering and Computer Science, University of
Central Florida, 2006.

