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Abstract—Most person re-identification (ReID) approaches
assume that person images are captured under relatively similar
illumination conditions. In reality, long-term person retrieval is
common, and person images are often captured under differ-
ent illumination conditions at different times across a day. In
this situation, the performances of existing ReID models often
degrade dramatically. This paper addresses the ReID problem
with illumination variations and names it as Illumination-Adaptive
Person Re-identification (IA-ReID). We propose an Illumination-
Identity Disentanglement (IID) network to dispel different scales
of illuminations away while preserving individuals’ identity in-
formation. To demonstrate the illumination issue and to evaluate
our model, we construct two large-scale simulated datasets with
a wide range of illumination variations. Experimental results on
the simulated datasets and real-world images demonstrate the
effectiveness of the proposed framework.

Index Terms—Person Re-identification, Illumination-Adaptive,
Feature Disentanglement

I. INTRODUCTION

Person re-identification (ReID) is a cross-camera retrieval
task. Given a query person-of-interest, it aims to retrieve the
same person from a database of images collected from multiple
cameras [1], [2], [3], [4], [5], [6], [7]. The key challenge of
ReID lies in the person’s appearance variations among differ-
ent cameras. Most previous methods attempt to find a feature
representation that is stable to the appearance variations.
They have well investigated how to deal with variations in
occlusions [8], resolutions [9], [10], poses [11], etc. However,
the influence of ever-changing illumination conditions has
been largely ignored. Most popular ReID datasets, such as
Market1501 [12] and DukeMTMC-reID [13], have relatively
uniform illumination conditions, as their images were captured
under similar illumination at the same period of time.

In practice, long-term person retrieval is often required in
video surveillance networks and criminal investigation appli-
cations. As Figure 1(a) shows, the images of a suspect could be
taken under very different illumination conditions at different
times across a day. He may appear in camera A with dim light
at 6:00 a.m., then in camera B with normal light at 9:00 a.m.,
and finally in camera C with glare light at 12:00 p.m. Existing
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Figure 1: (a) A toy example to illustrate the real application scenario
of ReID where images captured at different times could have quite
different illumination conditions. (b) The results of preliminary exper-
iments to show the impact of illumination-adaptive. The experiments
were conducted on three kinds of networks, including ResNet50 [He
et al., 2016], DenseNet121 [Huang et al., 2017], and PCB [Sun et
al., 2018]. “M1”, “M2” and “M3” stand for the CMC-1 and mAP
results for three different training and testing pairs. “M1” is obtained
by training and testing on the Market-1501 dataset. “M2” is obtained
by training on the Market-1501 and testing on the Market-1501++
dataset. “M3” is obtained by training and testing on the Market-
1501++ dataset.

researches do not investigate this illumination-adaptive issue.
We name the ReID task under different illumination conditions
as Illumination-Adaptive Person Re-identification (IA-ReID).
In this task, given a probe image under one illumination,
the goal is to match gallery images with several different
illuminations. The images can be with normal illumination as
existing ReID datasets (Market1501, DukeMTMC-reID), can
be very bright if captured under dazzling sunshine, and also
can be very dark if captured in the sunset or even during the
night.

The illumination greatly affects the performance of re-
identification. As we know, the re-identification performance
heavily relies on the characteristics of the datasets. The model
trained on one dataset often can not perform well on the
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other. Traditional models, although efficient and effective to re-
identify gallery images with the same illumination, may suffer
from a significant performance drop when the illumination
conditions of gallery images vary greatly. We have conducted
preliminary experiments for demonstrating the performance
degradation using the Market-1501 dataset. We simulated
different illumination conditions for images in the dataset.
The resultant dataset with varying illumination conditions
is named the Market-1501++ dataset. Three training-testing
configurations were performed: M1 (both train and test on
Market-1501), M2 (train on Market-1501 but test on Market-
1501++), and M3 (both train and test on Market-1501++).
As Figure 1(b) illustrates, 1) the learned models are not stable
across datasets with different illuminations (“M2”) and 2) even
trained with images under different illumination conditions,
the model cannot achieve satisfying performance (“M3”). That
is to say, general ReID models lose their effectiveness in the
situation with illumination variations.

As far as we know, some researches investigated the issue
of different illuminations in ReID [14], [15]. However, they
only consider a situation of two scales of illuminations. They
assumed that the probe and the gallery images are respectively
captured from two cameras, each with a corresponding illumi-
nation condition. In such a controlled setting, they proposed to
learn the relationship between two scales of illuminations by
brightness transfer functions [14] or the feature projection ma-
trix [15]. IA-ReID is a more practical problem with multiple
illuminations. Obviously, constructing the relationships among
different scales of illuminations is not a practical solution for
this problem. If there are ten different scales in the dataset,
the method needs to construct ten different relationships, and
it cannot be guaranteed the ten relationships work perfectly.

Removing the effect of illumination is another intuitive
idea. One solution is to do image enhancement [16] for
the low-illumination images and image reconstruction [17]
for the images with high exposure. However, this kind of
methods either cannot handle extreme illuminations [18], or
are particularly designed for visualization and rely heavily on
the data condition and training samples [16], [17].

Another solution is to disentangle the illumination infor-
mation from the person feature. This idea is learned from
the existing face recognition methods [19], where certain face
attributes are separated from the feature vector. In this paper,
we follow this thread of ideas and propose an Illumination-
Identity Disentanglement (IID) network. Inspired by previous
researches dealing with the image resolution issue [10], we
construct two simulated illumination-adaptive datasets based
on Market1501 [12] and DukeMTMC-reID [13]. Then, these
two datasets are utilized to evaluate the effectiveness of the IID
network. Our contributions can be summarized as follows:
• A new and practical problem. We raise a new and

practical task, i.e., IA-ReID. The task is practical for long-
term person re-identification applications. We construct
two simulated datasets with different illuminations to put
forward this task. Most general ReID models are proved
ineffective when evaluated on these two datasets.

• A novel method. We propose a novel Illumination-
Identity Disentanglement (IID) network, which dispels

the illumination information away from a person’s ap-
pearance. The method achieves great performance im-
provement on our two datasets. We also evaluate our
model on some real images, and it is capable of alle-
viating the effect of illumination discrepancy.

• Simplicity and Effectiveness. We construct the IID
network based on a simple backbone. The network is
easy to follow. Extensive experiments prove that IID is
robust in long-term person re-identification applications.
In this way, we set a benchmark for the new task.

II. RELATED WORK

A. Short-term ReID

In the short-term condition, existing researches paid atten-
tion to the challenges from resolution variations [10], pose
changes [11] and occlusion [8]. Many methods were proposed
to learn robust representations to overcome those challenges.
They have achieved very high performances on the public
datasets. Liao et al. [20] analyzed the horizontal occurrence
of local features and maximized the occurrence to make a
stable representation against viewpoint changes. Su et al. [21]
leveraged the human part cues to alleviate the pose variations
and learn robust feature representations from both the global
image and different local parts. Zheng et al. [8] fused a local
patch-level and a global part-based matching model to address
the occlusion problem. However, when the re-identification
task goes to the long-term situation, the illumination variations
come to be the key issue.

We have claimed that public datasets, such as Mar-
ket1501 [12] and DukeMTMC-reID [13], have relatively uni-
form illumination conditions. As evidence, for both Mar-
ket1501 and DukeMTMC-reID, the file name of each image
includes the frame index, which indicates the relative captured
time of the corresponding image. The range of frame indexes
of all images spans over 90,000 frames for Market1501, i.e.,
those images were captured in a time span of around one hour
(25fps×3600s). For DukeMTMC-reID, images were captured
in around two hours. It supports our claim that existing ReID
datasets were captured in a short period of time, and the
images have relatively uniform illumination conditions.

B. Illumination Problem in ReID

Some researches start to investigate the illumination issue
in ReID. Previous methods [22], [14], [15] consider the
situation that the probe and the gallery images respectively
captured from two cameras with two different illuminations.
Kviatkovsky et al. [22] proposed an invariant feature exploit-
ing a structure of color distributions, using different parts
of the person. Bhuiyan et al. [14] learned robust brightness
transfer functions to release the illumination change from one
camera to the other. Wang et al. [15] designed a feature
projection matrix to project image features of one camera to
the feature space of another camera. Ma et al. [23] focused
on the low illumination problem. They transformed all the
images to a uniform low illumination and proposed metric
learning methods to address the low illumination. There are
also some researches related to more extreme illumination
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Figure 2: The architecture of our proposed Illumination-Identity Disentanglement (IID) network. It consists of an encoder E, a
generator G, and two feature embedding layers HP and HI . The network is optimized through three loss functions. The embedded person
(identity-relevant) feature fP is trained with the ReID loss LP ; the embedded identity-irrelevant feature fI is trained with the illumination
loss LI and the generation loss LG is used to guide the optimization of the generator. The training process has two work flows. 1) The
original flow is defined as x

E−→z
H−→ (fP ,fI)

G−→ x̂. The encoder E firstly encodes an image into a latent vector z, and then disentangles
into two components fP and fI . The generator G reconstructs the image x̂ fed with the combination of fP and fI . 2) The generated
flow is defined as x̂

E−→ ẑ
H−→(f̂P , f̂I). To enhance the identity-preserving of the reconstructed image x̂, we feed it into the network again.

Similarly, we extract the disentangled representations f̂P and f̂I .

conditions. They considered that when the imaging condition
goes to late at night, the low-illumination image will transform
into the infrared image. To this end, some methods [24],
[25], [26], [27], [28], [29], [30] paid their attention to the
infrared-visible re-identification, where one part of the images
are from the visible camera and the other part is from the
infrared camera. They designed networks to bridge the gap
between infrared and visible images. In this paper, multiple
illuminations are taken into consideration, including not only
the low illumination images but also the high illumination
ones. Our illumination-adaptive setting is more practical than
previous methods for long-term ReID.

C. Disentangled Feature Learning

Some previous works tried to disentangle the representa-
tions in different kinds of recognition tasks [31], [32], [33],
[34], for example pose-invariant recognition [19] and identity-
preserving image editing [35]. They exploited attribute super-
vision and encoded each attribute as a separate element in the
feature vector. Liu et al. [36] proposed to learn disentangled
but complementary face features with face identification. Dis-
entangled feature learning was investigated in image-to-image
translation tasks as well. Lee et al. [37] exploited disentangled
representation for producing diverse outputs, in particular, a
domain-invariant content space capturing shared information
across domains and a domain-specific attribute space was
proposed. Gonzalez et al. [38] introduced the concept of cross-
domain disentanglement and separated the internal represen-
tation into one shared part and two exclusive parts. There
also exist some methods using disentangled representations
to address the single-image deblurring tasks [39]. As far as
we know, there is no method designed to disentangle features
from individuals in ReID. Our method is the first to consider
disentangling the illumination, one kind of identity-irrelevant
information.

D. Encoder-Decoder Network

Our method exploits an encoder-decoder network. As we
know, this framework is prevalent, e.g., the Ladder Net-
work [40] and U-Net [41]. Although our approach is similar
to these two typical networks, there are key differences. 1)
Different focuses: The Ladder Network focuses on the semi-
supervised learning task, the U-Net focuses on the image
segmentation task, while our method focuses on disentangling
the person and illumination features. 2) Different structures:
The Ladder Network consists of a supervised part and an
unsupervised part, the U-net has no ID supervision and pays
its attention to image generation, while our method introduces
two supervised parts to extract two kinds of features. 3)
Different outputs: The Ladder Network attempts to output a
label for each input, the U-Net tries to obtain an image output,
while our method attempts to extract features.

III. OUR METHOD

A. Overview

Figure 2 depicts the overall architecture of our Illumination-
Identity Disentanglement (IID) network. The encoder E takes
ResNet-50 as the backbone network and encodes the input
image x into a latent vector z = E(x), where z ∈ R2048.
Next, two independent fully-connected (FC) layers HP and
HI , are employed to project the latent z into two different
feature vectors, i.e., the person feature fP =HP(z) and the
identity-irrelevant feature fI =HI(z). Note that fP and fI
are expected to be respectively stable to illumination variations
and irrelevant to person identity. To enforce the disentangled
information fully represent the input image, the generator G is
used to reconstruct the image x̂=G(fP ,fI) to approximate
the input image x from the disentangled feature vectors, fP
and fI . Here, fP and fI are concatenated, and act as the
input of the generator G. The reason why we maintain the
disentangled illumination-relevant feature rather than simply
getting rid of it is to reduce the potential loss of discriminative
information in the identity-relevant feature. Specifically, we
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use the generator G and feed it with the disentangled identity-
relevant and identity-irrelevant features to reconstruct the input
with minimum loss of information. If we dump the disen-
tangled illumination-relevant feature without guaranteeing the
reconstruction, some useful information could slip away with
the removed illumination-relevant feature.

B. Disentangled Feature Learning

Identity-relevant feature learning. Given the encoded latent
vector z from the encoder E, the FC layer HP projects it
to the person feature fP , where fP = HP(z). Since the
feature fP is required to capture information relevant to
person identity, we use the ReID loss LP and person identity
information to supervise the training process. The ReID loss
LP combines the triplet loss LTP and the softmax loss LSP and
it can be written as

LP = λ1LTP + λ2LSP , (1)

where the weights λ1 and λ2 are used for balancing these
two losses. The training strategy is the same as the one in the
general ReID framework; hence the extracted feature can be
used for the identification task directly.

The triplet loss is used for similarity learning and it can be
formulated as

LTP =
∑

fa
P ,f

p
P ,f

n
P∈B

[D(faP ,f
p
P)−D(faP ,f

n
P) + ξ]+ , (2)

where B represents a mini-batch consisting of extracted person
features fP . For an anchor feature vector faP , the positive
sample fpP and the negative sample fnP respectively denotes
a feature vector having the same identity with faP and one
with different identity from faP . Note that faP 6= fpP . ξ is a
margin parameter; D(·) calculates the Euclidean distance; and
[d]+ = max(d, 0) truncates negative numbers to zero while
keeping positive numbers the same. Note that we exploit the
most primitive triplet loss function. While during the training
process, we select hard samples for each triplet. For each
anchor, we randomly select 16 samples with the same ID
and 64 samples with different IDs, and compute the feature
distance between the anchor and each selected sample. Then,
we select the farthest positive sample as the hard positive
sample, and the nearest negative sample as the hard negative
sample. They together construct a triplet.

The softmax loss is employed for identity information
learning, which is written as

LSP = − 1

N

N∑
j=1

log ŷjP , (3)

where N is the number of images in the mini-batch B and
ŷP is the predicted probability of the input belonging to
the ground-truth class with yP = softmax(WPfP +bP),
where WP and bP are the trainable weight and bias of HP
respectively.
Identity-irrelevant feature learning. Given the encoded la-
tent vector z from the encoder E, the FC layer HI projects it
to the identity-irrelevant feature fI , written as fI=HI(z). To
make the feature irrelevant to person identity, we need to feed

the network with images taken under different illuminations.
Thanks to our simulated dataset, each image is automatically
assigned an illumination label, indicating the scale of relative
illumination change. Note that the detail information of the
datasets is described in Section IV-A. The illumination label
is somehow coarse since we assumed that images in original
datasets are captured in a relatively uniform illumination
condition. To eliminate the reliance on this assumption, we
make two necessary modifications. 1) We adopt the classifier
problem to do regression. 2) We use a soft label strategy in-
stead of a hard label. The soft label strategy is used because we
would like to leave some room for tolerating slight changes,
possibly caused by camera styles and viewpoints, occurring
on this relatively uniform illumination condition. For the same
purpose, we also transform the classification problem into a
regression problem.

The regression loss is written as

LI =
1

N

N∑
j=1

∥∥∥ĉjI − (WIf
j
I+bI)

∥∥∥2
2
, (4)

where WI and bI are the trainable weight and bias respec-
tively. The soft label ĉI is the summation of the ground truth
label cI and Gaussian noise ε.

ĉI=cI + ε , with ε ∈ N (0, 1) . (5)

Note that there is no difference between the datasets of
compared state-of-the-art ReID models and our network. Im-
ages with multiple illuminations are just used to separate the
illumination information from the person feature.

C. Identity-preserving Image Generation

The image generator G is employed to ensure that the
disentangled information has minimum information loss. It is
fed with the combination of fP and fI and generates the
reconstructed image x̂=G(fP ,fI). We use the MSE loss as
the supervision information, which is defined as

LG = ‖x− x̂‖22 . (6)

It is worth mentioning that, in addition to guiding the recon-
struction of the input and supervising the training process,
G can be used to synthesize images with same identity
but varying illuminations by altering the illumination-relevant
feature vector fI . For the network configure of generator G,
we use six decode modules. Each decode module consists
of a ReLU layer, a 2D transposed convolution layer, a batch
normalization layer and a dropout layer. We concatenate fP
and fI as the input of the generator, and the output of
generator is the generated image with size 128×64×3.

To enforce the reconstructed image x̂ identity-preserving,
we feed it into the network again. As Figure 2 shows, we
name this process as generated flow, in contrast to the original
flow. In the generated flow, the loss LP and LI are taken into
account in the total loss function. However, the features fP
and fI are not needed to utilize again to generate new images.
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D. Training Process

The training process has three phases: feature disentan-
glement training, generator training, and joint training. Their
details will be described as follows.
Phase I: Feature disentanglement training. In this phase,
parameters of the disentangled feature learning module are
updated. As mentioned above, the disentangled feature learn-
ing module consists of the encoder E, two feature embedding
layers HP and HI , and the weight and bias WP/I , bP/I for
loss functions defined in Equation (3) and Equation (4). We
denote the parameters of E by θE . The parameters of the FC
layer HP , the weights WP and the biases bP are denoted by
θP . Similarly, parameters of HI , WI and bI are denoted by
θI . The object function for this phase is

arg min
θE ,θP ,θI

LP + λ3LI . (7)

We set λ3 = 1. Note that LP is defined in Equation (1) with
the hyperparameters λ1 = λ2 = 0.5. The hyperparameter ξ in
Equation (2) is set to 0.3.

The encoder E is initialized with ImageNet pre-trained
weights [42]. Other parts are initialized with He’s method [43].
The optimizer utilizes SGD with momentum and weight decay
set to 0.9 and 5× 10−4. The learning rate for E is set to 0.05
initially and divided by 10 after every 40 epochs. The learning
rate for other parts is 1

10 of the learning rate for E. Algorithm 1
depicts the detailed training procedure of this phase.

Algorithm 1: Phase I of the training procedure.
Input: Training data {xi} along with the identity label

ciP and the illumination label ciI . Initialized
parameters θP and θI . Hyperparameters λ1,2,3, ξ
and learning rate µt. The number of iterations
t← 0.

Output: Parameters θE , θP and θI .
1 while not converge do
2 t← t+ 1.
3 Compute the joint loss by Lt=LtP+λ3LtI .
4 Compute the back-propagation error ∂Lt

∂xt
i

for each i

by ∂Lt

∂xt
i

=
∂Lt

P
∂xt

i
+λ3

∂Lt
I

∂xt
i

.
5 Update the parameters θE , θP and θI
6 end

Phase II: Generator training. With the disentangled feature
learning modules {E,HP/I ,WP/I ,bP/I} fixed, we opti-
mize the image generator G with the Adam optimizer in phase
II. The learning rate is set to 0.01 and reduced to 0.1 of its
previous value every 40 epochs. The training batchsize is 64.
Our task is to reconstruct the input images, i.e., minimize the
MSE loss. The objective function is

arg min
θG

LG , (8)

where θG represents parameters of the generator G.

(a) Market-1501++ (b) DukeMTMC-reID++

Figure 3: Sample images of the two simulated datasets. Each row
shows images of the same identity. For each identity, the images
have different illuminations. (a) The Market-1501++ dataset. (b) The
DukeMTMC-reID++ dataset.

Phase III: Joint training. Finally, we jointly train the entire
network in an end-to-end manner and the overall objective
function is expressed as

arg min
θE ,θP ,θI ,θG

LP + λ3LI + λ4LG . (9)

We use Adam optimizer for optimizing the overall objective
function. The initial learning rate for the feature disentan-
glement part and the generator part is set to 1× 10−4 and
1× 10−3 respectively. It decreases to 0.1 of its previous
value every 50 epochs. The hyperparameters are λ3 = 1
and λ4 = 2. The generation process gifts the network more
ability to disentangle the illumination feature. Hence, a joint
learning manner will better balance the network’s abilities of
re-identification and disentanglement.

IV. EXPERIMENTS

A. Experimental Settings

Datasets. There are two widely used datasets under nor-
mal illumination, i.e., Market-1501 [12] and DukeMTMC-
reID [13]. For Market-1501, it consists of 12,936 images of
751 identities for training and 19,281 images of 750 identities
in the gallery set for testing. For DukeMTMC-reID, it contains
16,522 training images with 702 identities, 2,228 query images
of the other 702 identities and 17,661 gallery images.

Based on these two datasets, we constructed two simulated
illumination-adaptive datasets. Considering that a slight il-
lumination variation does not change the representation too
much, and also that multiple scales of illuminations are
required to simulate a wide range of illumination variation,
we selected nine scales of illuminations. We adapt each image
to a random one of nine illuminations. We apply a random
gamma adjustment to each channel of the common images
to produce the illumination-adaptive images, which is similar
to [44]. The recorded value of an image captured by a camera
is usually nonlinearly mapped from its corresponding scene
radiance, and the nonlinearity often can be well approximated
by a power function. The variance in the real-world illu-
mination is then nonlinearly related to the image intensity.
Therefore, we applied the nonlinear gamma transform to the
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decomposed illumination for simulating images under different
illumination conditions. To make the illumination change
reasonable, we further add Poisson noise with peak value =
10 to illumination changed images. Finally, we constructed
the simulated illumination-adaptive datasets and named them
as Market-1501++ and DukeMTMC-reID++. Figure 3 gives
examples of these two simulated datasets. We consider that
the gamma transform is insufficient to model non-global
illumination variation. However, although local illumination
variation could affect face identification significantly, person
ReID relies mostly on global information and is consequently
less sensitive to local illumination variation. Thus, we only
consider global illumination variation.
Evaluation metrics. To indicate the performance, the standard
Cumulative Matching Characteristics (CMC) values and mean
Average Precision (mAP) are adopted [12], since one person
has multiple ground truths in the gallery set.
Real-world images. To prove the effectiveness of the proposed
method on reducing the effect of illuminations, we have also
collected some real-world images with different illuminations.
Note that we collected real-world images indoors. Because of
the controllable indoor environment, we can collect diverse
real-world images easily. We will collect more real-world
images outdoors (at morning, noon and nightfall) in the future.
Through calculating the distances, we show the ability of the
proposed IID network. Some examples are shown in Figure 5.

For analyzing illumination conditions of related datasets, we
use the average luminance value of each image to represent
its illumination and investigate the illumination distributions
of the Market-1501 and DukeMTMC-reID datasets. We also
made a comparison of the variance of the image illumination
on related datasets. Figure 4 shows the results. We can find
that the illumination variances of the simulated datasets and
the real dataset are much more significant than those of the
existing ReID datasets. Hence, existing ReID datasets were
captured in a short period of time, and the images have rela-
tively uniform illumination conditions. We introduce a person
re-identification task that has more significant illumination
variations and requires better illumination adaption.

B. Comparison with State-of-The-Arts
In this subsection, we make comparisons with the state-

of-the-art methods. We exploit the Market-1501++ and the
DukeMTMC-reID++ datasets to evaluate the methods. As IA-
ReID is new, there are barely methods for comparisons. We
selected DenseNet121 [45], PCB [46] and ResNet50 [47] as
the comparison methods. DenseNet121 and ResNet50 are two
popular baseline networks in ReID. PCB is one of the state-
of-the-art ReID methods. Table I list their results. Note that
the notation with a ‘w/ Train’ suffix means that the indicated
model has been trained on the illumination-adaptive datasets
before testing. From the table, we can find that the results
of DenseNet121, PCB and ResNet50 drop dramatically when
dealing with the IA-ReID datasets. However, all of these
three deep networks can receive very high promotions when
training on the illumination-adaptive data, which means that
the deep learning network can somehow deal with part of the
illumination-adaptive issue if given proper training data.
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Figure 4: Illumination analysis of related datasets. We use the
average value of the pixel luminance of each image to represent its
illumination. The top two figures show the illumination distributions
of Market-1501 and DukeMTMC-reID datasets. We can find that
images were captured around one and two hours respectively, and
their illuminations do not change too much from the mean value
100. The bottom figure shows the variance of the image illumination
on related datasets. We can find that the illumination variances of the
simulated datasets (Market-1501++ and DukeMTMC-reID++) and
the real dataset are much larger than that of the existing ReID datasets
(Market-1501 and DukeMTMC-reID).

We took ResNet50 as our baseline. From Table I, we can
find that comparing with the baseline (serving as our backbone
network), our method improves the performance on both the
simulated Market-1501++ and DukeMTMC-reID++ datasets.
Thus, The improvement against the baseline better shows the
effectiveness of the proposed method as they share the same
backbone architecture. Although we do not report improve-
ments against other methods, from Table I, it is clear that our
method outperforms all methods. Note that our method uses
a very basic baseline (ResNet50), and makes a considerable
improvement (8.51% mAP on the Market-1501++ dataset and
6.57% mAP on the DukeMTMC-reID++ dataset). However,
compared with PCB (designed to address the misalignment
challenge in general ReID tasks), our method does not pay
attention to the misalignment problem, which still exists in
the ReID task, making our improvement less remarkable. We
consider that if we design a new module for the misalignment
problem as PCB does, our method will outperform PCB with
a much larger gain.

C. Ablation Study

Our method consists of four kinds of losses. The triplet
loss LTP and the cross-entropy loss LSP are responsible for
extracting robust person features. The regression loss LI is
responsible for predicting proper illumination features. The
MSE loss LG is used for image reconstruction. Removing LTP
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Table I: Comparison with the state-of-the-art methods on the Market-1501++ and DukeMTMC-reID++ datasets. CMC-1, CMC-5, CMC-
10 (%) and mAP (%) are reported.

Method Market-1501++ DukeMTMC-reID++
CMC-1 CMC-5 CMC-10 mAP CMC-1 CMC-5 CMC-10 mAP

DenseNet121 [45] 0.74 2.29 3.53 0.73 1.21 2.74 4.13 0.80
DenseNet121 w/ Train 70.60 85.36 89.66 49.79 64.45 77.82 82.45 45.12
PCB [46] 0.56 1.69 2.91 0.54 0.72 2.15 3.23 0.49
PCB w/ Train 72.55 85.22 90.08 53.11 65.98 77.93 82.21 45.15
ResNet50 [47] 0.42 1.16 2.05 0.39 0.54 1.97 3.14 0.50
ResNet50 w/ Train (Baseline) 66.18 81.97 87.02 47.71 62.07 75.54 88.08 42.63

IID 73.37 86.55 91.01 56.22 68.11 79.75 91.27 49.20
Improvement over baseline 7.19↑ 4.58↑ 3.99↑ 8.51↑ 6.04↑ 4.21↑ 3.19↑ 6.57↑

Table II: Ablation study on the Market1501++ dataset. CMC-1 (%) and mAP (%) are reported.

Method Components Market-1501++
LTP LSP LI LG CMC-1 mAP

Baseline X X × × 66.18 47.71
IID (no G) X X X × 71.54 55.17
IID (no triplet for id) × X X X 64.14 45.87
IID (no softmax for id) X × X X 65.21 46.53
IID (no illum.) X X × X 70.79 54.57
IID X X X X 73.37 56.22

Figure 5: Sample images of the collected real-world images. Each
row shows images of one identity.

or LSP will give less constraint to the person feature, and
thus degrade the re-identification performance. LI and LG
influence the effectiveness of illumination disentanglement.
Removing either of them will degrade the re-identification
performance indirectly.

Table III: Comparison with the baseline on the Market-1501 and
DukeMTMC-reID datasets. CMC-1 (%) and mAP (%) are reported.

Method Market-1501 DukeMTMC-reID
CMC-1 mAP CMC-1 mAP

Baseline 88.84 71.49 79.71 61.77
IID 88.45 71.46 78.10 60.56

Here, we take the Market-1501++ dataset for the ablation
study. When removing both of LI and LG (the baseline),
the performance drops to 66.18% CMC-1 and 47.71% mAP,
as it can only rely on the person feature without separating
the illumination feature. When removing LG , the performance
does not drop so much as the baseline. The loss LI is use-
ful for separating the illumination information and promotes
the re-identification result. When removing LTP or LSP , the
performance drops dramatically to be even worse than the
baseline. So the loss for re-identification is essential for the
IA-ReID task. When removing LI , the performance does not
drop so much as the baseline. So even without the loss of
illumination regression, the generation process can also benefit
the illumination disentanglement.

D. Experiments on General ReID Datasets

Although we design a new network for the IA-ReID task,
we do not expect the proposed IID network performing poorly
on the general ReID dataset. As our network is proposed based
on the baseline network Resnet50, we make a comparison with
the baseline. The results are listed in Table III. We can find that
the results do not change too much. Although the IID network
is specially designed for the illumination-adaptive condition,
it is still suitable for the general ReID task.
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Figure 6: The average values of intra-person distances and
inter-person distance for real-world images. The experiments are
respectively conducted by the baseline method, the baseline method
fed with image after histogram equalization (w/ HE) and our IID
method.

E. Experiments on Illumination Prediction

As we know, the disentangled illumination feature can be
used to predict the illumination scale of each image. We test its
prediction accuracy on the Market-1501++ and DukeMTMC-
reID++ datasets. The accuracy values are very high, which are
98.74% and 98.53% respectively for the Market-1501++ and
DukeMTMC-reID++ datasets. It means that the disentangled
illumination feature can well represent the illumination scale.

F. Experiments on Local Illumination Change

The synthetic datasets above are generated by the global
illumination change. In this subsection, we generate datasets
with local illumination changes and investigate the effective-
ness of the proposed method.

We have tried to synthesize local illumination changes in
two ways. 1) We exploite a person segmentation method [48]
to obtain the foreground person of each image and then change
its illumination by using gamma correction. We set seven
different gamma values. We name this synthesis process as
foreground-based illumination change. Some generated exam-
ples are shown in Figure 8(a) and Figure 8(b). 2) We randomly
select a patch in each image and then change its illumination
by using gamma correction. We use three different sizes of
patches, i.e., 32×32, 32×64 and 64×32. We also set seven
different gamma values. We name this synthesis process as
patch-based illumination change. Some generated examples
are shown in Figure 8(c) and Figure 8(d). We exploit these
two kinds of synthesis processes to generate new Market and
Duke datasets, respectively.

Then, we conduct experiments on these four synthetic
datasets with local illumination changes. We compare our
methods with ResNet50, DenseNet, and PCB. Figure 9 shows
the results, which demonstrates that the proposed method is
more effective in the condition of local illumination changes.

G. Experiments on the Real-world Images

We recruited 15 volunteers, and for each volunteer, we
collected ten images under different illumination conditions.
Some examples are shown in Figure 5. We calculated the
intra-person distances and inter-person distances respectively
with the baseline model, the baseline model with histogram

equalization, and the proposed IID network. Figure 6 shows
the average intra-person and inter-person distances calculated
by different methods. We can find that the proposed IID is
more effective in reducing the intra-person distance, i.e., to
alleviate the effect of the illumination change.
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Figure 7: Results on low illumination conditions.

H. Experiments on Low Illumination Conditions

In this subsection, we report experiments on low illumi-
nation images. We created four low-illumination testing sets
based on Market-1501 by using four gamma corrections. Our
model was trained on the Market-1501++ dataset (random
illuminations) and tested on these four testing sets. Figure 7
shows the results. We can find that the performances decrease
as the illumination becomes lower. We consider that some
useful information disappears and some noise is introduced in
very low illumination conditions, and the proposed model can
not extract enough useful information from the input image.
However, in an appropriate low illumination range, our method
can still work well.

I. Experiments on Different Parameters

To investigate the parameter λ3 and λ4 in the Equation
(9), we conducted experiments on the Market-1501++ dataset
with 1) fixed λ4 and different λ3 values, and 2) fixed λ3 and
different λ4 values. Table IV reports the results. We can find
that when λ3 = 1 and λ3 = 2, our model achieves the best
result.

λ3 λ4 mAP(%)

0.1 1 44.78
0.5 1 50.44
1 1 54.31
2 1 53.81
5 1 52.75

1 0.1 53.19
1 0.5 53.31
1 2 56.22
1 5 48.47
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Table IV: Results on different parameters λ3 and λ4.
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(a) Foreground Duke (b) Foreground Market (c) Patch Duke (d) Patch Market

Figure 8: Examples of synthetic datasets with local illumination changes. (a) and (b) show samples by the foreground-based illumination
change on the Duke and Market datasets, respectively. The images are respectively the original image, the person segmentation result, and
the corresponding generated image. (c) and (d) show samples by the patch-based illumination change on the Duke and Market datasets,
respectively.
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Figure 9: ReID results on four synthetic datasets with local illumination changes.
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Figure 10: Examples and results of synthetic datasets with Y channel illumination changes. (a) and (b) show samples by the Y UV illumination
change on the Duke and Market datasets, respectively. (c) and (d) show the ReID results.

J. Experiments on Illumination-adaptive Datasets with Y
Channel Changes

We exploit a non-parametric simulation method to generate
images with different illuminations. We transfer the format of
the image from RGB to Y UV . The Y channel often reflects
the illumination condition, and we change the illumination of
each image by adjusting its Y value. In the experiments, we
set seven different ∆Y values and adjust Y by adding ∆Y
to Y . Some generated examples are shown in Figure 10(a)

and Figure 10(b). We compare our methods with ResNet50,
DenseNet, and PCB. Figure 10(c) and Figure 10(d) show
the results, which demonstrate that our proposed method is
more effective for illumination-adaptive datasets synthesizing
by varying the Y values.

V. CONCLUSION

This paper raises a new issue, which has not been inves-
tigated before as far as we know. Traditional models for the
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multi-illumination condition may not work well for this task.
We propose to disentangle the illumination feature apart to
address the new problem. Experimental results illustrate that
the traditional model has a significant drop of performance
when the illumination of gallery images are different and
the scales vary unsteadily, and demonstrate the effective-
ness of the proposed network. The idea of addressing the
multi-illumination problem can be extended to related video
surveillance applications, such as tracking [49] and activity
analysis [50], [51], [52].

Disentangled representation learning is an effective mech-
anism to distill meaningful information from the mixed fea-
ture representation. As far as we know, we are the first to
explore this mechanism to the novel illumination-adaptive
person ReID problem. Our illumination-adaptive setting is
more practical for long-term ReID. Compared with the work in
the field of the face identification, the proposed model further
predicts the scale of the illumination and strengthens the re-
identification ability of identity features. By showing its effec-
tiveness, we hope the method can also help address problems
in other application domains. Also, our main contribution lies
in pointing out an important problem for illumination-adaptive
person ReID and demonstrating promising initial results. We
believe that our paper could inspire more work in this direction
and make the ReID techniques more practical.

In the future, we will improve our method in the following
aspects: 1) Experiments show that our method does not work
very well in very low-light conditions, because of the lose
of person-related information. We will investigate how to
recover person-related information under such a condition. 2)
Although we have used a soft label strategy and adopted the
classifier problem to do regression, the framework still tends to
disentangle the illumination to different levels of scales. We
will study how to estimate the illumination to a continuous
value, and make our framework a genuine regression way for
the illumination disentanglement. 3) Our method focuses on
the illumination problem, while ignoring the other challenges,
such as misalignment, occlusion, low-resolution. In the future,
we will integrate with other modules to improve ReID perfor-
mance as a whole.
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