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Abstract

This paper presents a new task, point cloud object co-
segmentation, aiming to segment the common 3D objects
in a set of point clouds. We formulate this task as an ob-
ject point sampling problem, and develop two techniques,
the mutual attention module and co-contrastive learning, to
enable it. The proposed method employs two point sam-
plers based on deep neural networks, the object sampler
and the background sampler. The former targets at sam-
pling points of common objects while the latter focuses on
the rest. The mutual attention module explores point-wise
correlation across point clouds. It is embedded in both sam-
plers and can identify points with strong cross-cloud cor-
relation from the rest. After extracting features for points
selected by the two samplers, we optimize the networks by
developing the co-contrastive loss, which minimizes feature
discrepancy of the estimated object points while maximizing
feature separation between the estimated object and back-
ground points. Our method works on point clouds of an
arbitrary object class. It is end-to-end trainable and does
not need point-level annotations. It is evaluated on the
ScanObjectNN and S3DIS datasets and achieves promis-
ing results. The source code will be available at https:
//github.com/jimmy15923/unsup_point_coseg.

1. Introduction

Point clouds retain 3D geometric structures and are
adopted in many 3D vision applications, such as remote
sensing [24], autonomous driving [9, 14, 30], and robotics
[21]. As an essential technique for 3D understanding, point
cloud segmentation gains significant progress owing to ad-
vanced network architectures [32, 33, 38, 43, 45, 51] and
large-scale datasets [3, 5, 6, 12, 14, 26, 30, 34, 40]. Despite
effectiveness, deep-learning-based methods for point cloud
segmentation rely on lots of training data with point-level
annotations. The high annotation cost for training data col-
lection impedes the utility of point cloud segmentation.

2D image object co-segmentation [16,17,20,23,50] aims
to segment the common objects in a set of images without
additional annotations. It significantly mitigates the prob-
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Figure 1: Overview of our method for unsupervised
point cloud co-segmentation. The input to our method is a
set of point clouds covering objects of a common category
(chairs, in this example). Our method only requires 3D co-
ordinates as the input. Color is added here for visualization.
Our method picks out the co-segmented points of the com-
mon objects (those in red). It formulates co-segmentation
as a sampling problem by employing two competitive sam-
plers: one for foreground points and the other for the rest.
A mutual attention module is embedded in each sampler for
capturing cross-cloud point correlation. The whole network
is end-to-end trained by the proposed co-contrastive loss.

lem of high annotation costs in object segmentation. How-
ever, it is challenging to apply 2D image co-segmentation
techniques to 3D point clouds as it must resolve three major
issues. First, most image co-segmentation methods rely on
object proposal generators or saliency detectors [16,17,50].
These generators and detectors work on the appearance do-
main of image pixels, but do not apply to the geomet-
ric domain of 3D points. Second, compared to images,
point clouds are unordered and unstructured. The extracted
point features are typically insufficient for co-segmentation.
Third, most 2D co-segmentation methods adopt a network
pre-trained on a large dataset, e.g. ImageNet [35], to ex-
tract high-level semantic features. Although point cloud
model pre-training has been studied [7,36,47], training from
scratch is still widely used in modern point cloud research.

In this paper, we present an unsupervised method for
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point cloud object co-segmentation. As shown in Figure 1,
our method comprises three components to tackle the three
aforementioned issues, respectively. First, we cast point
cloud co-segmentation as an object point sampling prob-
lem. A pair of point samplers are employed: The object
sampler targets at sampling points belonging to the com-
mon objects, while the background sampler grabs on the
rest. Through sampling, object proposals or saliency detec-
tors are no longer required. Sampling is non-differentiable.
This issue has been resolved by SampleNet [13, 22], which
offers differentiable point sampling from a point cloud. In
this work, both object and background samplers are devel-
oped upon SampleNet. SampleNet is originally designed
for supervised applications. To adapt it to unsupervised co-
segmentation, we develop novel co-contrastive learning to
derive a pair of competitive samplers. After optimization,
the two samplers complete co-segmentation.

Second, a mutual attention module is developed to ex-
plore point-wise correlation across different point clouds,
and is employed by both samplers. Identifying the common
2D pixels or 3D points in the given images or point clouds
is a key component for co-segmentation. To this end, this
module computes attention maps across clouds and com-
piles informative features for co-segmentation. Compared
with the self-attention module [41, 44] focusing on the cor-
relation of positions within a point cloud, it computes cross-
cloud attention to discover plausible foreground. The idea
behind this module is that points belonging to common ob-
jects typically have strong cross-cloud correspondences. It
turns out that samplers equipped with this module result in
better foreground-background separation.

Third, a co-contrastive loss is developed to address the
lack of data for pre-training and the absence of supervisory
signals for co-segmentation. This loss is designed in both
object and point levels. It minimizes the feature discrepancy
of points sampled by the object sampler while maximizing
the feature discrepancy between points selected by different
samplers. We use this loss to derive the samplers as well as
their associated mutual attention modules.

The main contribution of this work is threefold. First, to
the best of our knowledge, our method is the first attempt to
develop an end-to-end trainable network for point cloud ob-
ject co-segmentation. Second, we formulate it as a discrim-
inative sampling task, which is carried out by the proposed
mutual attention module and co-contrastive learning. Third,
our approach is evaluated on two real datasets [3, 40], and
demonstrates promising results.

2. Related Work
Object co-segmentation in 2D images. Methods of this
category such as [10, 16, 17, 20, 23, 39, 50] aim to segment
the common objects in images without additional super-
vision and can save the manual annotation cost for ob-

ject segmentation. Due to the unsupervised nature, many
of them leverage contrastive learning, namely minimiz-
ing inter-image object discrepancy while maximizing intra-
image foreground-background separation. For example,
Hsu et al. [16] propose a co-attention generator to produce
co-segment maps with a frozen pre-trained feature extractor.
The generator is derived by contrastive learning with addi-
tional object proposals. Some methods such as [50] gener-
ate the co-occurrence map, which encodes both objectness
scores of images and similarity evidence from object pro-
posals across images. To address the unavailability of ob-
ject saliency detectors and object proposals on point clouds,
our method casts co-segmentation on point clouds as a fore-
ground point sampling problem and implements contrastive
learning to discriminatively derive the samplers.
Shape co-segmentation. This task parses objects into
parts [11, 18, 26, 27, 37, 53]. There are three major dif-
ferences between shape co-segmentation and object co-
segmentation. First, the tasks differ. Shape co-segmentation
decomposes objects into universal parts, while object co-
segmentation distinguishes common objects from the back-
ground. In the literature, shape co-segmentation is typically
applied to clean and complete 3D CAD models [11, 53].
Object co-segmentation need to deal with cluttered back-
ground and incomplete objects in real scenes. Second,
shape co-segmentation aims to find structural correspon-
dences across shapes of the same category, such as arm-
rests of chairs. Most methods learn proper embedding
and assume that structural correspondences bear similarity
in the embedding space. Object co-segmentation aims at
separating objects from their surroundings. However, ob-
ject surroundings often pose great variety and do not ex-
hibit similarity in the embedding space. Third, many shape
co-segmentation methods rely on online manual annota-
tion [11] or additional datasets [53].
Point cloud sampling. Advanced sensing technologies in-
crease the point densities of point clouds. Thus, sampling
crucial points helps reduce computational demands. Far-
thest point sampling (FPS) [31, 33] is a popular sampling
technique, but it is heuristic and does not consider down-
stream applications. Recent efforts [13,22,29,49] have been
made on point cloud sampling based on deep learning. For
example, SampleNet [22] is a differentiable module, and
can select crucial points to improve underlying applications.
Our method establishes a pair of samplers based on Sam-
pleNet for foreground and background point selection. Dis-
tinguished from SampleNet, the sampler pair in this work is
derived in an unsupervised and discriminative manner.
Weakly supervised point cloud segmentation. Two pop-
ular types of annotations exist for weakly supervised point
cloud segmentation. The first type is point-cloud-level an-
notations [44]. It is also referred to as inexact supervision,
which corresponds to object segmentation with image-level
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Figure 2: Approach overview. The network architecture is composed of two samplers So and Sb equipped with the mutual
attention modules, and a feature extractor f . The objective function comprises the SampleNet loss Lsam in (1), the repulsion
loss Lrep in (2), and the co-contrastive losses, Lpt in (3) and Lobj in (4). Please refer to the text for details.

annotations [2] on images. Wei et al. [44] propose multi-
path region mining for object segmentation with only cloud-
level labels. The second type is to annotate a few points for
each point cloud in the training set. It is referred to as in-
complete supervision, which is similar to segment objects
with coarse pixel annotations, e.g. scribble [25], on images.
Xu et al. [48] utilize multiple instance learning and a spa-
tial constraint loss for object and shape segmentation using
training data where a few points are labeled for each cloud.

There are two major differences between weakly su-
pervised segmentation and object co-segmentation. First,
weakly supervised segmentation works on multiple pre-
defined object categories covered by training data. Co-
segmentation works on a single arbitrary object class. Sec-
ond, weakly supervised segmentation requires weakly an-
notated training data to train the model, and the model
remains fixed during testing. It requires re-training on
whole dataset when a new category is presented. A co-
segmentation model is online optimized by taking a set of
point clouds covering the same objects as the input. To sum
up, our method requires neither the label of objects nor any
point-level annotations, but only a set of point clouds cov-
ering objects of the same category for co-segmentation.

3. Proposed Method

Our method is described in this section.

3.1. Problem statement

We are given a set of N point clouds D = {Pn}Nn=1

covering objects of an unknown category. Without loss of
generality, we assume the number of points in each cloud
is M , i.e., Pn = {pnm}Mm=1, where point pnm ∈ R3 is
represented by its 3D coordinate. Point cloud object co-
segmentation aims to discover the subset Ôn ⊂ Pn that
contains all points belonging to the common object for each

point cloud Pn. Note that neither point-level nor point-
cloud-level annotations are provided. And only geometric
features are used (without any RGB information).

Figure 2 illustrates the proposed method. Taking D =
{Pn}Nn=1 as the input, the object sampler So and back-
ground sampler Sb infer a foreground subset On ⊂ Pn and
a background subset Bn ⊂ Pn for each point cloud Pn.
The mutual attention module with its details given in Fig-
ure 3 is embedded in both samplers So and Sb. It estimates
cross-cloud, point-wise mutual correlation that is then taken
into consideration during sampling. After applying the fea-
ture extractor f to all sampled points, we get point-level
foreground features {xo

n} and background features {xb
n}

for each Pn. The object-level foreground features Xo
n and

background features Xb
n are obtained via average pooling.

Training of the whole network is driven by the proposed
co-contrastive losses in both object and point levels.

3.2. Object and background samplers

We formulate point cloud object segmentation as a fore-
ground point sampling problem. Recent studies [13, 22]
present differentiable relaxation for point cloud sampling.
In this work, we develop the object sampler So and the
background sampler Sb upon SampleNet [22]. In the fol-
lowing, we will give a brief description of SampleNet and
specify our three modifications to it for co-segmentation.

SampleNet. Given a set of point clouds D = {Pn}Nn=1,
SampleNet targets at sampling a subset Rn ⊂ Pn for each
Pn with a pre-defined number of sampled points so that the
downstream task working on R = {Rn} can be optimized.
To keep the whole process differentiable, SampleNet first
determines a small point group Qn for each Pn, where Qn

may not be a subset of Pn. Then, Qn is projected onto
Pn to obtain Rn. The set of point clouds after sampling
R = {Rn} serve as the input to the downstream task. The
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objective function of SampleNet is defined by

Lsam =

[
N∑

n=1

αLs(Qn, Pn) + λLp(Qn, Pn)

]
+ Lt(R),

(1)
where α and λ are two coefficients for loss function weight-
ing; Ls(Qn, Pn) encourages the simplified counterpart Qn

to be similar to Pn by minimizing their Chamfer distance
[1]; After projecting Qn onto Pn, Lp(Qn, Pn) denotes the
approximation loss when using the nearest neighbor sam-
pling operation to construct Rn; Finally, Lt(R) is the loss
function of the downstream task working on R.

Modifications. To accomplish co-segmentation on point
clouds, we make three modifications to SampleNet, includ-
ing the downstream task, a pair of competing samplers, and
cross-cloud mutual attention as described below.

The downstream task in this work is unsupervised co-
segmentation. Due to the lack of data annotations, we de-
velop unsupervised co-contrastive losses, detailed in Sec-
tion 3.4, to optimize the samplers. Our model has a feature
extractor f to generate features for each sampled point. The
point-level features can be combined to yield object-level
features. The co-contrastive losses are applied in both point
and object levels for sampler optimization.

For co-segmentation, we target at separating foreground
points from the rest. To this end, we employ an object sam-
pler So and a background sampler Sb to respectively in-
fer a foreground subset On ⊂ Pn and a background sub-
set Bn ⊂ Pn for each point cloud Pn. By using the co-
contrastive losses, samplers So and Sb tend to collect fore-
ground and background points, respectively. To further pre-
vent the two samplers from selecting the same points, we
integrate the repulsion loss [42] into sampler training, i.e.,

Lrep =

N∑
n=1

max(σ − dc(On, Bn), 0), (2)

where dc is the Chamfer distance and the hyperparameter
σ = 1 controls the separation margin.

SampleNet infers a point cloud at a time, and cannot ex-
plicitly discover common patterns for co-segmentation. As
described in the following, we integrate a mutual attention
module into SampleNet so that mutual point correlations
across point clouds can be leveraged for co-segmentation.

3.3. Mutual attention module

Inspired by the self-attention module [41] where non-
local operations help capture long-range dependencies, we
develop a mutual attention module to discover cross-cloud
point correlation. Compared with the self-attention module
exploring position correlation within an image, our mutual
attention module illustrated in Figure 3 focuses on the mu-
tual point correlation across point clouds in a mini-batch.
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Figure 3: Architecture of the mutual attention module.
Symbols ⊗, ⊕, ⊤, Sm., Avg., Rep. and Cat. denote ma-
trix multiplication, element-wise sum, matrix transposition,
softmax, averge, repeat, and concatenation respectively. A
green box represents a multilayer perceptron.

Let {Fn ∈ RMn×C}Bn=1 be the feature maps of point
clouds in a mini-batch, where B is the mini-batch size, Mn

is the number of points in the n-th cloud, and C is the
feature dimension. Similar to [41], three different layers,
query U , key K, and value V , are applied to all feature
maps {Fn}, to get {FU

n ∈ RMn×C′
, FK

n ∈ RMn×C′
, FV

n ∈
RMn×C′}, where C ′ is the new feature dimension.

To explore cross-cloud mutual attention, we focus on a
pair of feature maps Fi and Fj , and treat the former as a
reference and the latter as the anchor. As illustrated in Fig-
ure 3, we take the query of the anchor FU

j and the key
of the reference FK

i , and apply the softmax operation to
each row of matrix FU

j (FK
i )⊤ ∈ RMj×Mi . The matrix

FU
j (FK

i )⊤ ∈ RMj×Mi stores pair-wise point correlation
between the anchor and reference clouds. The row-wise
softmax operation softly assigns each point of the anchor
cloud to its nearest point of the reference cloud. After row-
wise softmax, column-wise average pooling is applied, and
yields a row vector v ∈ R1×Mi , which highlights points
of the reference cloud with strong mutual correlation across
clouds. We repeat the vector M times to obtain the fore-
ground attention map F o, and matrix multiplies it by the
reference’s value FV

i . This way, we emphasize the fea-
tures of points with strong mutual correlation. Symmetri-
cally, background points can be emphasized by considering
F b = 1 − F o. As illustrated in Figure 3, residual learning
is included for better performance. The mutual attention
module is embedded on the last layer of both samplers.

3.4. Co-contrastive loss

Contrastive learning [4,8,15,47] has been studied for un-
supervised representation learning. In this work, we imple-
ment it in both point and object levels where intra-cloud and
inter-cloud contrastive learning are enabled, respectively. A
training data pair for contrastive learning is often gener-
ated from one data example via augmentation. In the ob-
ject level, a data pair is created from different point clouds.
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Table 1: Segmentation results (mIoU) on the OBJ BG test set of ScanObjectNN of different methods with diverse supervision
levels and settings. 100%, 10%, and 1pt denotes the methods trained with 100%, 10%, and single labeled points per object
category, respectively. Cloud indicates the methods trained with cloud-level labels.

Setting Model Label CatAvg Bag Bin Box Cabinet Chair Desk Display Door Shelf Table Bed Pillow Sink Sofa Toilet

Full Sup.
BGA-DGC [43]

100%
0.753 0.76 0.81 0.73 0.73 0.84 0.72 0.76 0.83 0.60 0.76 0.80 0.78 0.64 0.79 0.82

BGA-PN++ [33] 0.775 0.75 0.83 0.79 0.75 0.84 0.77 0.79 0.83 0.62 0.77 0.81 0.75 0.68 0.81 0.85

Weak Sup.
Xu et al. [48] 10% 0.602 0.57 0.67 0.56 0.55 0.76 0.49 0.66 0.80 0.36 0.56 0.61 0.58 0.55 0.68 0.58
Xu et al. [48] 1pt 0.494 0.30 0.62 0.23 0.48 0.67 0.35 0.62 0.70 0.36 0.42 0.54 0.53 0.44 0.57 0.51
Xu et al. [48] Cloud 0.288 0.34 0.42 0.14 0.15 0.02 0.28 0.63 0.32 0.15 0.38 0.28 0.49 0.41 0.10 0.21
MPRM [44] Cloud 0.518 0.47 0.66 0.26 0.59 0.66 0.32 0.60 0.76 0.48 0.41 0.50 0.50 0.51 0.64 0.43

Unsup.
K-means - 0.389 0.43 0.42 0.41 0.38 0.40 0.38 0.38 0.45 0.34 0.31 0.38 0.37 0.39 0.41 0.40
AdaCoSeg [53] - 0.385 0.38 0.31 0.48 0.33 0.55 0.37 0.44 0.35 0.26 0.23 0.37 0.29 0.43 0.54 0.44
Ours - 0.605 0.66 0.70 0.68 0.55 0.58 0.46 0.62 0.74 0.48 0.44 0.64 0.60 0.57 0.64 0.68

Besides, it is used for co-segmentation. Thus, we name the
resultant objective functions as co-contrastive losses.

As shown in Figure 2, the two samplers, So and Sb, infer
a foreground subset On = {po

nm}Mo

m=1 and a background
subset Bn = {pb

nm}Mb

m=1 for each point cloud Pn respec-
tively, where Mo and M b are the numbers of the sampled
foreground and background points. The feature extractor f
is applied to each sampled foreground point po

nm and gets
its 256-dimensional feature vector xo

nm = f(po
nm). The

object-level foreground feature vector Xo
n for point cloud

Pn is obtained by global max pooling over {xo
nm}Mo

m=1.
Similarly, we have the point-level feature vector xb

nm for
each sampled background point pb

nm and object-level back-
ground feature vector Xb

n for each point cloud Pn.
Point co-contrastive loss. It is designed to realize intra-
cloud contrastive learning. Namely, for a point cloud, its
sampled foreground points should be highly similar to each
other while far away from its sampled background points.
This point-level co-contrastive loss is defined by

Lpt =

N∑
n=1

Mo∑
i,j=1

− log
exp(

〈
xo
ni,x

o
nj

〉
)∑Mb

k=1 exp(
〈
xo
ni,x

b
nk

〉
)
, (3)

where pair-wise similarity is measured by using inner prod-
uct and N is the number of the given point clouds.

Object co-contrastive loss. It is developed to implement
inter-cloud contrastive learning. We maximize the feature
similarity of the estimated objects across different point
clouds while minimizing the similarity of the estimated ob-
ject and background, i.e.

Lobj =

N∑
i,j=1

− log
exp(

〈
Xo

i , X
o
j

〉
)∑N

k=1 exp(
〈
Xo

i , X
b
k

〉
)
. (4)

Objective function. After replacing the downstream loss
Lt in (1) by the co-contrastive losses in (3) and (4), the
objective function we use for co-segmentation is

L = Lsam + Lrep. (5)

3.5. Implementation details

The proposed method is implemented in Pytorch [28].
We use DGCNN [43] as the feature extractor and pre-train
it on the ModelNet40 dataset [46] with rotation, jitter, scale
and random size of input points for augmentation. Like
[22], the feature extractor is fixed during training. We set
Mo = 512 and M b = 512 for the object and background
samplers, respectively. Note that the performance is insen-
sitive to these values since only crucial points are sampled
by SampleNet, as illustrated in Figure 6a. The point fea-
ture dimension C in the mutual attention module is set to
256. The three layers U , K, and V are applied to generate
C ′=128 features. During inference, we simply use k nearest
neighbor matching between the sampled object points and
the input point cloud to spread the predictions. Like [22],
PointNet [32] is used as the backbone for both samplers.

4. Experimental Results
This section evaluates the proposed method for point

cloud object co-segmentation. We present both quantita-
tive and qualitative results, and conduct ablation studies for
analyzing individual components of our method.

4.1. Datasets and evaluation metrics

Since point cloud object co-segmentation is a new task,
there is no established benchmark dataset for its evalu-
ation yet. We investigate two datasets for this new co-
segmentation task, ScanObjectNN [40] and S3DIS [3], with
their details described below.

ScanObjectNN. It is a new real-world point cloud ob-
ject dataset built on two previous datasets collected from
scanned indoor scene data, SceneNN [19] and Scan-
Net [12]. It has 15 object classes and 2,902 objects. The
dataset was collected for object recognition, but it also
provides point-level annotation for object segmentation.
For offering more practical challenges and different lev-
els of difficulties, ScanObjectNN provides several variants

5



Table 2: Segmentation results (mIoU) on different variants
of the ScanObjectNN dataset.

Setting Model Label T25 T25R T50R T50RS

Full
Sup.

BGA-DGC [43]
100%

0.75 0.74 0.76 0.75
BGA-PN++ [33] 0.77 0.77 0.76 0.76

Weak
Sup.

Xu et al. [48] 10% 0.55 0.53 0.50 0.52
Xu et al. [48] 1pt 0.48 0.50 0.47 0.46
Xu et al. [48] Cloud 0.21 0.19 0.17 0.13
MPRM [44] Cloud 0.43 0.43 0.41 0.40

Unsup.
K-means - 0.33 0.33 0.32 0.34
AdaCoSeg [53] - 0.31 0.35 0.33 0.34
Ours - 0.51 0.48 0.46 0.48

by including background points, over-covering, and under-
covering objects [40]. There are five variants: OBJ BG,
PB T25, PB T25 R, PB T50 R, and PB T50 RS. The basic
variant is OBJ BG, where objects are attached with back-
ground data cropped with the ground-truth bounding boxes.
In reality, the detected bounding boxes could be inaccurate.
For modeling the inaccuracy, four variants are derived from
OBJ BG by perturbing the ground-truth bounding boxes
and over/under-covering the objects. The prefix PB denotes
perturbation while T, R, and S represent translation, rota-
tion and scaling to the bounding boxes, respectively. T25
and T50 respectively denote randomly shifting bounding
boxes by up to 25% and 50% of their sizes along axes. The
object/background ratios in OBJ BG, PB T25, PB T25 R,
PB T50 R, and PB T50 RS are 0.64, 0.52, 0.50, 0.48, and
0.54, respectively.

S3DIS. This dataset [3] is proposed for indoor scene under-
standing and widely used in the point cloud semantic seg-
mentation task. To establish the dataset for object segmen-
tation, we follow a similar process as ScanObjectNN to crop
the object point cloud. Instead of the object’s bounding box,
we use a sphere whose origin is at the object’s center for
cropping the object and including more background points.
The object/background ratio is 0.364 in this dataset. The
dataset consists of six areas covering several rooms. Fol-
lowing previous work [48], we use Area 5 for evaluation.
We use five object classes (bookcase, chair, door, table, and
sofa) with only xyz coordinates in S3DIS for evaluation.

Evaluation metric. Object co-segmentation can be viewed
as a two-class (foreground, background) segmentation
problem. Hence, we follow the convention of previous
work [44, 48] and use mean Intersect over Union (mIoU)
as the evaluation metric.

4.2. Competing methods and comparisons

To the best of our knowledge, our method is the first
one for point cloud object co-segmentation. Hence, there
is no method of the same kind for performance compari-

Table 3: Segmentation results (mIoU) on the S3DIS dataset.

Setting Model Label CatAvg bkcase chair door sofa table

Full
Sup.

BGA-DGC [43]
100%

0.716 0.34 0.96 0.69 0.69 0.90
BGA-PN++ [33] 0.729 0.44 0.92 0.71 0.75 0.83

Weak
Sup.

Xu et al. [48] 10% 0.706 0.47 0.84 0.87 0.70 0.65
Xu et al. [48] 1pt 0.491 0.16 0.77 0.62 0.44 0.46
Xu et al. [48] Cloud 0.252 0.11 0.18 0.32 0.19 0.46
MPRM [44] Cloud 0.312 0.32 0.31 0.28 0.27 0.38

Unsup.
K-means - 0.267 0.36 0.18 0.32 0.27 0.20
AdaCoSeg [53] - 0.248 0.34 0.24 0.15 0.38 0.28
Ours - 0.463 0.36 0.51 0.45 0.50 0.49

son. Thus, we compare our method with point cloud object
segmentation methods with three different supervision set-
tings. First, fully supervised methods [40] for point cloud
segmentation are compared, and they serve as the refer-
ences for performance upper bound. Second, two types
of state-of-the-art weakly-supervised segmentation meth-
ods [3, 12] are compared. They aim to segment 3D objects
using either partial point-level labels or cloud-level labels
as the weak form of annotations. Third, the state-of-the-
art shape co-segmentation method, AdaCoSeg [53], is com-
pared. Despite the differences between shape and object co-
segmentation discussed in Section 2, the method is relevant
and we make a comparison with it by setting the number of
parts to 2, i.e., foreground and background.

Fully supervised. Ut et al. [40] proposed a background-
aware classification network (BGA), which can be built
on top of PointNet++ [33] (BGA-PN++) or DGCNN [43]
(BGA-DGC) by joint learning of classification and segmen-
tation. Their method is trained on ground-truth annotations.

Weakly supervised with partial point-level labels. Xu et
al. [48] proposed a weakly-supervised method that requires
only 10 percent of point-level annotations per object or even
a single-point annotation for object segmentation. We apply
the method on ScanObjectNN and S3DIS datasets by giving
10 percent labeled points or a single labeled point for each
class (including the background class).

Weakly supervised with cloud-level labels. Wei et al. [44]
proposed NPRM, a 3D semantic segmentation method that
only requires cloud-level labels indicating the presence of
semantic classes in a cloud. For getting segmentation from
classification, the method extends class activation maps [52]
to 3D point clouds for locating points of a class. For
ScanObjectNN, we train the method on 15 object classes
by giving the object-level labels and report the segmentation
performance. S3DIS is processed in the same way. More-
over, we extend Xu et al. [48] method to cloud-level labels
by removing the incomplete branch for comparison.
Unsupervised. Zhu et al. [53] proposed an unsupervised
shape co-segmentation method. They first conduct offline
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Figure 4: Qualitative results on the ScanObjectNN dataset.
We show examples of ten different classes. From left to
right and top to down, they are bag, bed, bin, chair, door,
pillow, shelf, sink, sofa, and table. For each example, we
show the input cloud, the ground-truth label, and our seg-
mentation result.

training for the part prior network. Co-segmentation is car-
ried out by minimizing a group consistency loss. We set
the number of co-segmented shapes to 2, indicating the
foreground and background, in their method for compari-
son. Moreover, we use K-means to cluster the embeddings
(K = 2) from the model pre-trained on ModelNet40 as an-
other unsupervised method for comparison.

Table 1 compares the proposed method with competing
methods with different supervision settings on the ScanOb-
jectNN dataset. Our method considerably outperforms the
shape co-segmentation model AdaCoSeg, since AdaCoSeg
is originally designed for synthetic object part decomposi-
tion and cannot deal with cluttered backgrounds in the real-
world dataset. With similar settings, the proposed method
performs favorably against the weakly supervised method
with cloud-level labels [44] by a large margin, around 0.09
in mIoU. Their method utilizes CAM for obtaining segmen-
tation from classification. It is well-known that CAM tends
to concentrate on the discriminative parts for classification.
On the contrary, our method focuses on feature contrastive
learning instead of discriminative classification, leading to
better results. Our method even outperforms the weakly su-
pervised method with partial point-level labels [48] in most
settings, although requiring much less supervision. Given
the labels for 10% of points, their method achieves 0.602
in mIoU, while our co-segmentation method achieves 0.605
without requiring any point-level labels. Our method only
requires a set of point clouds covering the same class. When
working with single-point labels or cloud-level labels, al-
though the annotation effort is much reduced, their perfor-
mance significantly drops to 0.494 and 0.288, respectively.

Figure 5: Qualitative results on the S3DIS dataset. We show
examples of five object classes: from top to bottom, book-
case, chair, door, sofa, and table, with two examples for
each class. For each example, we show the input cloud, the
ground-truth label and our segmentation result.

The supervised BGA methods exhibit superior performance
with a much higher annotation cost than ours.

Table 2 reports the performance on different variants of
the ScanObjectNN dataset. Our method can keep up with
others at a similar pace despite the challenges that its unsu-
pervised nature could suffer due to more clutter and missing
parts. Table 3 tabulates the results for the S3DIS dataset.
Figure 4 and Figure 5 show several 3D object segmentation
results with our method for the ScanObjectNN and S3DIS
datasets, respectively. Our method gets promising results
across object classes and datasets. In Figure 4, our method
can separate the background points from the object well,
even with proximity, e.g. the chair on the right of the sec-
ond row. For the more challenging dataset (with more back-
ground points included), our methods still achieve the en-
couraging result. Through contrastive learning, our method
can train on an arbitrary class, even with very different
scales, e.g. bookcase and chair in Figure 5.

4.3. Analysis and ablation study

We report analysis on parameters and ablation studies to
evaluate the components of the proposed method.
Number of sampled points. The numbers of sampled
foreground and background points, Mo and M b, are pre-
determined. Figure 6a shows the performance of our
method with different configurations of foreground and
background sample numbers. Although the numbers of
points in objects could be very different, our experiments
show that the samplers’ performance is not sensitive to
the pre-determined numbers. It is because that SampleNet
learns to pick up crucial points for contrastive learning.
Feature extractor pre-training. Our method needs a fea-
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Figure 6: (a) Segmentation performance in mIoU on
ScanObjectNN OBJ BG with different configurations of
sampled FG/BG points. (b) Feature similarity of points in
ScanObjectNN OBJ BG by using the feature extractors pre-
trained on ScanObjectNN and ModelNet40.

ture extractor that can extract useful features for guiding
the learning of SampleNet. We experiment with two ways
for pre-training. First, we pre-train the feature extractor
on clean object data (without background points) of the
ScanObjectNN dataset. The setting is too ideal since it re-
quires ground-truth segmentation. We report this setting
only for reference. Second, we pre-train the feature ex-
tractor using a synthetic CAD dataset, ModelNet40 [6], for
classification. Although there is a significant domain gap
between real-world scans and CAD models [40, 47], we
find that the feature extractor pre-trained on ModelNet40
can yield good performance. Figure 6b reports the aver-
age object-object and object-background similarity values
of points on the ScanObjectNN OBJ BG dataset for pre-
training on both datasets. It shows that the feature extrac-
tor pre-trained on CAD models offers useful features for
real-world scans despite the semantic gap. By focusing on
learning the similarity, contrastive learning can further re-
duce the gap. In all experiments, we pre-train the feature
extractor using ModelNet40 for our method. Although our
feature extractor is pre-trained on ModelNet40, we consider
our model unsupervised because it can be applied to object
categories that are not covered by ModelNet40.
Ablation studies. We conduct ablation studies to evaluate
the contributions of the developed components, including
the two co-contrastive losses, Lobj in (4) and Lpt in (3), the
repulsion loss Lrep in (2), and the mutual attention module.
As a reference, the self-attention module [41] is included for
comparison. Table 4 shows the performance by using dif-
ferent combinations of these losses and the attention mod-
ules. The results validate the effectiveness of each of these
developed components for co-segmentation.

4.4. Application to improve classification

Uy et al. [40] find that joint classification and seg-
mentation improve real-world point cloud classification.
They propose a background-aware network (BGA) to han-
dle the presence of clutter in real-scan point clouds and

Table 4: Segmentation performance in mIoU with different
losses, attention modules, and their combinations.

Loss Attention Dataset
Lobj Lpt Lrep Self [41] Mutual ScanObject S3DIS
√

0.54 0.41√
0.49 0.36√ √
0.54 0.43√ √
0.50 0.37√ √
0.55 0.42√ √ √
0.57 0.43√ √ √ √
0.59 0.45√ √ √ √
0.61 0.46

Table 5: Accuracy (%) on ScanObjectNN PB T50 RS.

PointNet++ DGCNN

classification alone 78.5 78.1
BGA (pseudo label) 79.4 79.1
BGA (ground truth) 80.2 79.7

improve classification results by adding a segmentation-
guided branch. For segmentation, training BGA requires
point-level annotations that are much more expensive than
the cloud-level labels required for classification alone. Our
method can serve to obtain the pseudo labels for training
the BGA network with nearly no extra effort. Table 5 shows
that training with pseudo labels can improve classification
accuracy. Taking PointNet++ as an example, its classifica-
tion accuracy is 78.5%. By joint segmentation and classifi-
cation, BGA improves the accuracy to 80.2% at the expense
of high annotation cost. By using our method for generating
pseudo labels, the accuracy is 79.4% with minimal cost.

5. Conclusions
This paper presents a new problem, point cloud object

co-segmentation, and proposes a method to solve it without
using expensive annotations. The method comprises three
key components, a pair of samplers, a mutual attention mod-
ule, and a contrastive learning task to accomplish the point
cloud object co-segmentation task. Our method is exten-
sively evaluated on two challenging real-world datasets fea-
turing incomplete data and clutter. Results show that our
method performs favorably against state-of-the-art weakly-
supervised object segmentation methods. Furthermore, we
demonstrate that our method can provide pseudo labels for
improving object classification in a real-world dataset.
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