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Abstract

This paper presents a novel CNN model called Soft
Stagewise Regression Network (SSR-Net) for age
estimation from a single image with a compact
model size. Inspired by DEX, we address age esti-
mation by performing multi-class classification and
then turning classification results into regression
by calculating the expected values. SSR-Net takes
a coarse-to-fine strategy and performs multi-class
classification with multiple stages. Each stage is
only responsible for refining the decision of its pre-
vious stage for more accurate age estimation. Thus,
each stage performs a task with few classes and
requires few neurons, greatly reducing the model
size. For addressing the quantization issue intro-
duced by grouping ages into classes, SSR-Net as-
signs a dynamic range to each age class by allow-
ing it to be shifted and scaled according to the input
face image. Both the multi-stage strategy and the
dynamic range are incorporated into the formula-
tion of soft stagewise regression. A novel network
architecture is proposed for carrying out soft stage-
wise regression. The resultant SSR-Net model is
very compact and takes only 0.32 MB. Despite its
compact size, SSR-Net’s performance approaches
those of the state-of-the-art methods whose model
sizes are often more than 1500× larger.

1 Introduction
Predicting the real (biological) age of a person from a sin-
gle face image is a classic problem in computer vision and
artificial intelligence [Ramanathan et al., 2009]. It is useful
for many applications such as surveillance, product recom-
mendation, human-computer interface, and market analysis.
The problem is challenging because there are significant vari-
ations on appearance among people of the same age. Older
people may look younger than some younger people and vice
versa. Thus, the task of estimating the real age from appear-
ance is challenging even for humans.

It is intuitive to formulate the age estimation problem
as a regression problem since age is a continuous value
rather than a set of discrete classes [Agustsson et al., 2017;

Rothe et al., 2016b]. However, as pointed out by pre-
vious studies [Chang et al., 2011; Rothe et al., 2016a;
Tan et al., 2018], the regression-based age estimation ap-
proaches could suffer from overfitting because of randomness
in the aging process and ambiguous mapping between face
appearance and its real age. On the other hand, people can be
easily categorized into several age groups such as teenagers,
middle-aged or elderly people. Thus, many studies have ad-
dressed the age estimation problem using multi-class classi-
fication approaches by quantizing ages into groups [Rothe et
al., 2015; Rothe et al., 2016a; Tan et al., 2018]. However,
casting age estimation as a multi-class classification prob-
lem has to face the issue that age groups are ordinal and
highly correlated rather than independent classes. In addition,
quantizing ages into age groups could suffer from problems
with quantization error and ambiguity among age groups.
Some methods adopt ordinal information [Chang et al., 2011;
Zhang et al., 2017] for acquiring relative ordering between
ages and resolving ambiguity among age groups. Distribu-
tion learning approaches model ages as a learnable distribu-
tion [Geng et al., 2014; Hou et al., 2017] for addressing the
group ambiguity problem. However, approaches using ordi-
nal information and distribution learning usually need addi-
tional information such as similarities between distributions
or ranks. In addition, they often require more complex loss
functions and algorithms.

Most state-of-the-art CNN-based age estimation meth-
ods are built upon complex networks or ensembles of net-
works [Simonyan and Zisserman, 2014; Chen et al., 2017].
Their models are often bulky with model sizes larger than
500 MB. Hence, they are not suitable to be adopted on plat-
forms with limited memory and computation resource such as
mobile and embedded devices. Some efforts have been made
for compact general-purpose CNN models with small mem-
ory footprints [Howard et al., 2017; Huang et al., 2017] so
that intelligent applications can be run on such devices. For
age estimation, Niu et al. proposed ORCNN whose model
consumes around 1.7 MB of memory [Niu et al., 2016].

This paper proposes a novel CNN model called Soft Stage-
wise Regression Network (SSR-Net) for age estimation. The
model is compact with only 0.32 MB memory overhead and
achieves the state-of-the-art performance1. SSR-Net is in-

1Source code available at https://github.com/shamangary/SSR-Net

https://github.com/shamangary/SSR-Net


spired by DEX [Rothe et al., 2015; Rothe et al., 2016a]. DEX
casts age estimation as a multi-class classification problem
and turns the classification results into regression by calculat-
ing the expected value as the age. One problem with DEX is
that it requires a large number of neurons, one for each of the
age classes. The number of links at the final fully-connected
layer is the product of the number of features and the num-
ber of neurons (classes). Thus, many neurons lead to many
parameters and a large model. SSR-Net addresses the prob-
lem with a coarse-to-fine strategy. Each stage only performs
intermediate classification with a small number of classes,
say “relatively younger”, “about right” and “relatively older”
within the current age group. The next stage refines the de-
cision within the age group assigned by the previous stage.
This way, each stage only requires a small number of neurons
and the model size can be much reduced. Another problem
with classification-based approaches is quantization of ages.
SSR-Net addresses this issue by introducing a dynamic range
to each age group. The age interval of each group can be
shifted and scaled depending on the input face image. These
ideas are incorporated into a formulation for soft stagewise
regression. A novel network structure is proposed for real-
izing soft stagewise regression. Compared to the approaches
based on ordinal information or distribution learning, SSR-
Net can be trained with a simple regression loss and an end-
to-end fashion without requiring extra information such as
distribution/rank similarities. Experiments show that SSR-
Net outperforms existing compact networks including Mo-
bileNet [Howard et al., 2017], DenseNet [Huang et al., 2017],
and ORCNN [Niu et al., 2016]. The performance of SSR-Net
approaches those of the state-of-the-art methods with much
larger model sizes, usually more than 1500× larger than ours.

2 Related work
In this section, we review the state-of-the-art age estimation
methods by organizing them into four categories.

Regression
It is intuitive to cast the age estimation problem as a regres-
sion problem. Rothe et al. fed CNN features to support vector
regression [Chang and Lin, 2011] for age estimation [Rothe
et al., 2016b]. Agustsson et al. proposed Anchored Regres-
sion Network (ARN) which combines multiple linear regres-
sors over soft assignments to anchor points [Agustsson et al.,
2017]. As pointed out by previous studies [Chang et al.,
2011; Rothe et al., 2016a], regression-based approaches of-
ten suffer from overfitting because of randomness in the aging
process and ambiguous mapping.

Multi-Class Classification and Age Grouping
DEX performs age estimation by carrying out multi-class
classification and then calculating the expected value as the
age estimation [Rothe et al., 2015; Rothe et al., 2016a].
Liu et al. used regression and classification simultaneously
for age estimation [Liu et al., 2015]. Malli et al. used age
groups and their age-shifted groupings for training an ensem-
ble of deep learning models [Malli et al., 2016].

Distribution Learning
Considering classification often suffers from group ambigu-
ity and quantization errors, Geng et al. proposed two differ-
ent adaptive distribution learning methods, IIS-ALDL and
BFGS-ALDL, for age estimation [Geng et al., 2014]. The
standard deviation of a distribution is updated according to
KL-divergence. For addressing the problem with shortage of
training data with exact ages, Hou et al. proposed Label Dis-
tribution Learning to utilize neighboring ages while learning
a particular age [Hou et al., 2017].

Ordinal Information
Some methods focus on learning relative ordering from
a dataset for age estimation. OHRank successfully har-
vests ordering relation for age estimation by developing
a cost-sensitive framework with multiple binary classifica-
tions [Chang et al., 2011]. Ranking-CNN pre-trains sev-
eral basic CNNs on a large dataset such as ImageNet and
fine-tunes them with ordinal age labels [Chen et al., 2017].
Zhang et al. proposed a paradigm for mapping multiple age
comparisons into an age distribution posterior for age estima-
tion [Zhang et al., 2017].

3 Soft Stagewise Regression Network
This section first states the problem. Then, we describe the
two key ideas, the stagewise regression and the dynamic
range. Finally, the network architecture is given and the for-
mulation for soft stagewise regression is presented.

3.1 Problem Formulation
In the problem of real age estimation from a single face
image, we are given a set of training face images X =
{xn | n = 1..N} and the real age yn ∈ Y for each image
xn, where N is the number of images and Y is the interval of
ages. The goal is to find a function F that predicts ỹ = F (x)
as the age for a given image x. For training, we search for the
function F by minimizing the mean absolute error (MAE)
between the predicted and the real ages,

J(X) =
1

N

N∑
n=1

|ỹn − yn| , (1)

where ỹn=F (xn) is the predicted age for training image xn.

3.2 Stagewise Regression
Previous work has turned the regression problem of age esti-
mation into solving a multi-class classification problem and
then calculating the expected value as the predicted age. For
example, DEX [Rothe et al., 2015; Rothe et al., 2016a] di-
vides the age interval Y = [0, V ] into s non-overlapping bins
uniformly. Thus, the width w of each bin is V

s . Let’s denote
the representative age of the i-th bin as µi and DEX chooses
µi = i

(
V
s

)
. DEX trains a network for the s-class age clas-

sification problem. For a given image x, the network outputs
a distribution vector ~p = (p0, p1, . . . , ps−1) indicating the
probability that x belongs to each of age groups. The age is
then predicted by calculating the following expected value,

ỹ = ~p · ~µ =

s−1∑
i=0

pi · µi =

s−1∑
i=0

pi · i
(
V

s

)
. (2)
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(a) SSR-Net (b) Fusion block and regression

Figure 1: (a) The network structure of the proposed Soft Stagewise Regression Network (SSR-Net) with three stages (K = 3). The size of
pooling is fixed at 2× 2 for all stages. (b) The detailed structure of the fusion block in SSR-Net and the structure of the prediction block (PB)
within the fusion block.

To have a more accurate estimation, DEX divides the age in-
terval finely and set the bin width as one year old, i.e., there
are 101 bins if Y = [0..100]. It leads to a large number of pa-
rameters for the fully-connected (FC) layer at the final stage
and consumes a lot of memory.

To reduce the model size without sacrificing much ac-
curacy, we propose to use a coarse-to-fine strategy with
multi-stage prediction. Assume that there are K stages and
there are sk bins for the k-th stage. For each stage, we
train a network Fk that generates the distribution �p(k) =

(p
(k)
0 , p

(k)
1 , . . . , p

(k)
sk−1) for that stage. The age is predicted

by the following formula for stagewise regression,

ỹ =
K∑

k=1

�p(k) · �µ(k) =

K∑
k=1

sk−1∑
i=0

p
(k)
i · i

(
V∏k

j=1 sj

)
. (3)

The last term in the above equation is the bin width wk =
V∏k

j=1
sj

for the k-th stage and i is the bin index. It is eas-

ier to understand the intuition behind stagewise regression by
walking through a concrete example. Assume that we want to
estimate an age within the range of 0∼90 years old (V =90).
Assume we have two stages (K=2) and there are three bins
for either stage (s1 = s2 = 3). From classification point of
view, stage #1 classifies the image as youth (0∼ 30), middle
age (30 ∼ 60) or old age (60 ∼ 90). For stage #2, each bin
in stage #1 is further divided into s2 = 3 bins. Thus, width
of the bins in stage #2 is 90

3·3 = 10. The classifier of stage
#2 classifies an image as relatively younger (+0∼10), in the
middle (+10∼ 20) or relatively older (+20∼ 30) within the
age group assigned by stage #1. Note that there is only one
classifier at stage #2, shared by all age groups of stage #1.
Turning the stagewise classification into regression gives us
the formula in Equation 3. Stage #1 predicts the age with a
coarse granularity while stage #2 refines it with a finer granu-
larity. The advantage of stagewise regression is that the num-
ber of classes is small at each stage, leading to much fewer

parameters and a more compact model.

3.3 Dynamic Range
Dividing the age interval uniformly into non-overlapping bins
is less flexible on handling age group ambiguity and age con-
tinuity. The problem is even more serious at a coarse granu-
larity. We address this issue by introducing a dynamic range
for each bin; that is, we allow each bin to be shifted and scaled
according to the input image. There are several possible op-
tions to apply the shift and the scale to a bin. To use the same
stagewise regression formula in Equation 3, we opt to modify
the bin index i and bin width wk in Equation 3 for the ad-
justment of the bin shift and the bin scale respectively. For
adjusting the bin width wk at the k-th stage, we introduce a
term ∆k to modify sk into s̄k as follows,

s̄k = sk(1 + ∆k), (4)

where ∆k is the output of a regression network given the in-
put image. The detail of the regression network will be given
in Section 3.4. After modifying sk, the bin width now be-
comes

w̄k =
V∏k

j=1 s̄j
. (5)

Thus, the adjustment of sk effectively changes the bin width.
For shifting bins, we add an offset term η to each bin index
i. There are sk bins at the k-th stage. Thus, we need an off-
set vector for the k-th stage, �η(k) = (η

(k)
0 , η

(k)
1 , . . . , η

(k)
sk−1).

Again, the offset vector is the output of a regression network
on the input image. The bin index i is modified as follows,

ī = i+ η
(k)
i . (6)

The modified bin index ī effectively shifts the i-th bin. Both
the scale and shift of bins are regression results of the input
image. The input-dependent dynamic range provides more
accurate refinement according to the input image.



3.4 Network Structure
Figure 1(a) illustrates the overall network structure of the pro-
posed SSR-Net. Motivated by the complementary 2-stream
structure proposed by Yang et al. [Yang et al., 2017], we
adopt a 2-stream model where there are two heterogeneous
streams. For both streams, the basic building block is com-
posed of 3 × 3 convolution, batch normalization, non-linear
activation and 2× 2 pooling. However, different types of ac-
tivation functions (ReLU versus Tanh) and pooling (average
versus maximum) are adopted for each stream to make them
heterogeneous. This way, they could explore different fea-
tures and their fusion could improve the performance.

Features from different levels are adopted for different
stages. For each stage, features from both streams at some
level are fed into a fusion block which is illustrated in Figure
1(b). The fusion block is responsible for generating stage-
wise outputs, the distribution ~p(k), the offset vector ~η(k), and
the scale factor ∆k, for the k-th stage. In the fusion block,
features from both streams first go through 1 × 1 convolu-
tion, activation and pooling for having more compact fea-
tures. For obtaining ∆k, the two obtained feature maps are
fused by element-wise multiplication

⊗
. The product then

goes through a fully-connected layer and then a Tanh function
for obtaining a value in [−1, 1] as ∆k. Both ~p(k) and ~η(k) are
vectors and more complex. Thus, the features go through an
additional prediction block before taking element-wise mul-
tiplication, FC layer and activation. Since ~p(k) represents a
distribution, ReLU is used as its activation for obtaining pos-
itive values. On the other hand, Tanh is used for ~η(k) to allow
shift on both positive and negative sides.

3.5 Soft Stagewise Regression
Given the network’s stagewise outputs

{
~p(k), ~η(k),∆k

}
for

an input image x and the numbers of bins sk, the predicted
age ỹ for x is calculated as

ỹ =

K∑
k=1

sk−1∑
i=0

p
(k)
i · ī

(
V∏k

j=1 s̄j

)
, (7)

where ī is the shifted bin index defined in Equation 6 and s̄j
is adjusted bin number defined in Equation 4. We name the
formula in Equation 7 soft stagewise regression because the
bins are adjusted by fractional numbers. Softness is brought
into the bin indexes and the bin widths this way. With the pre-
dicted age ỹ, by minimizing the L1 loss defined by MAE in
Equation 1, we obtain the SSR-Net model for age estimation.

4 Experiments
This section first describes preprocessing, experimental set-
tings, and competing methods. Next, we report experiments
on IMDB-WIKI, MORPH2 and MegaAge-Asian datasets.

4.1 Preprocessing and experimental setting
We performed experiments on several benchmark datasets
for age estimation, including the IMDB-WIKI [Rothe et al.,
2015; Rothe et al., 2016a], MORPH2 [Ricanek and Tesafaye,
2006], and MegaAge-Asian [Zhang et al., 2017] datasets.

Following the procedure suggested by previous work [Zhang
et al., 2017; Niu et al., 2016], for preprocessing, all face im-
ages were aligned using facial landmarks such as eyes and
the nose. After alignment, the face region of each image was
cropped and resized to the resolution of 64 × 64. Note that
the size is much smaller than the resolution 224 × 224 used
in previous state-of-the-art methods such as DEX [Rothe et
al., 2016a] and ARN [Agustsson et al., 2017]. The lower res-
olution is necessary for mobile and embedded devices with
limited resources.

The experiments were performed on a machine with an In-
tel i7 CPU and an NVIDIA GTX1080Ti. The program was
implemented with Keras. The custom layer for soft stage-
wise regression is powered by Keras’ automatic differentia-
tion. For training, common data augmentation tricks includ-
ing zooming, shifting, shearing, and flipping were randomly
activated. Unless specified otherwise, SSR-Net uses three
stages with s1 = s2 = s3 = 3, i.e., SSR-Net(3,3,3). The
Adam method [Kingma and Ba, 2014] was used for optimiz-
ing the network parameters with 90 epochs. The learning rate
is 0.002 initially and reduced by a factor 0.1 every 30 epochs.
The batch size is 128 for the IMDB dataset and 50 for other
datasets. The training time for SSR-Net is around three hours
including pre-training.

4.2 Competing methods
We compare the proposed SSR-Net model with a set of
state-of-the-art deep-learning-based age estimation methods.
The competing methods can be roughly categorized into two
groups, bulky models and compact models, according to their
model sizes.

The bulky models put more emphasis on prediction accu-
racy. They are usually more accurate, but at the expense of
bulky network models. Many such models are built upon
VGG16 [Simonyan and Zisserman, 2014]. DEX [Rothe et
al., 2015; Rothe et al., 2016a] casts the regression problem of
age estimation into a multi-class classification problem and
uses the expected value as age estimation. ARN [Agustsson
et al., 2017] solves the age regression problem by combin-
ing multiple linear regressors over soft assignments to anchor
points. AP [Zhang et al., 2017] trains a network that jointly
performs ordinal hyperplane classification and posterior dis-
tribution learning. Hot [Rothe et al., 2016b] feeds VGG16
features into support vector regression (SVR) for age predic-
tion. RankingCNN [Chen et al., 2017] ensembles a series of
binary classification networks, each of which is trained with
ordinal age labels.

Compact models emphasize reduced memory footprint and
could sacrifice accuracy for memory and speed. There are
less age estimation models in this category. ORCNN [Niu
et al., 2016] transforms the ordinal regression problem into
a series of binary classification problems and uses a mul-
tiple output CNN to collectively solve these sub-problems.
MRCNN [Niu et al., 2016] uses a similar network but for
metric regression. MobileNet [Howard et al., 2017] re-
places standard convolution with depthwise separable con-
volution for reducing parameters and computation overhead.
DenseNet [Huang et al., 2017] connects each layer to every
other layer in a feed-forward fashion and can achieve good
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Figure 2: Comparisons of the training progression for MobileNet, DenseNet, SSR-Net (from left to right), and their validation comparisons
on IMDB, WIKI and MORPH2 (from top to bottom). For each dataset, 80% of images were used as the training set while the remaining
20% acted as the validation set. For the first three columns, blue curves represent the progression of the training errors in MAE while orange
curves are for the validation errors. If the two curves are close, it means that the model obtained from the training data can be better applied
to the validation data. The models with this property suffer less from overfitting. From this point of view, SSR-Net outperforms the other two
methods on all three datasets. The last column shows that SSR-Net outperforms the others in every validation set.

performance with fewer parameters. Both MobileNet and
DenseNet are general-purpose network models with tunable
parameters. We chose the parameters so that their model sizes
are roughly 1 MB for fair comparison with SSR-Net.

4.3 Experiments on IMDB-WIKI
The IMDB-WIKI dataset is the largest face image dataset
with age labels. It contains 523,051 face images of 20,284
celebrities. Among them, 460,723 images were collected
from IMDB and the remaining 62,328 were from Wikipedia.

Although the IMDB-WIKI dataset is the largest for age es-
timation, as pointed out by previous work [Tan et al., 2018], it
contains more noise such as inaccurate ages and images with
no face or multiple faces. Therefore, it is not suitable to be
used for performance evaluation with MAE. Like most pre-
vious work, we used it for pre-training. In addition, we used
the IMDB-WIKI dataset for observing the overfitting prop-
erties of different methods. The IMDB and WIKI dataset
were separately trained with 80% of the images. The other
20% served as the validation set. Since the IMDB dataset is
much larger, we trained our model on IMDB first and used the
trained model as the starting point for training on the WIKI
dataset. Figure 2 compares the progression of the training
processes for MobileNet, DenseNet and the proposed SSR-
Net on the IMDB, WIKI and MORPH2 datasets. The blue
curves show the progression of the training error while the or-
ange ones for the validation sets. It is clear that the blue and
orange curves of SSR-Net are closer than other two methods.

It means that our model trained on the training set can be ap-
plied to the validation set more successfully. The discrepancy
between the training errors and the validation errors shows
that MobileNet and DenseNet suffer more from overfitting.

4.4 Experiments on MORPH2
MORPH2 is the most popular benchmark dataset for age es-
timation. It has around 55,000 face images of 13,000 people.
Their ages range from 16 to 77 years old. Similiar to previ-
ous work [Niu et al., 2016; Zhang et al., 2017], we randomly
divided the dataset into independent training (80%) and test-
ing (20%) sets. MAE is used as the metric for performance
evaluation.

Table 1 reports MAE values on MORPH2 for a set of state-
of-the-art network models for age estimation, including both
bulky and compact ones. For better accuracy, the bulky mod-
els often use higher-resolution inputs (224× 224× 3) for re-
taining more information. They often consume more than 500
MB memory because of a large number of parameters. For
training models with massive parameters, more images are re-
quired. Thus, in addition to IMDB-WIKI, some of them also
use ImageNet [Russakovsky et al., 2015] for pre-training,
leading to a much longer training time. Ranking-CNN takes
an ensemble of binary classification networks and consumes
even more memory, up to 2.2 GB. Although achieving better
performance, it is difficult to adopt bulky models on mobile
and embedded devices with limited resource because of their
bulky model sizes.



Bulky models Compact models
Methods AP ARN DEX Hot RankingCNN SSR-Net MobileNet DenseNet MRCNN ORCNN

Pr
e. ImageNet

√ √ √ √ √
unflitered

faces
– – –

unknown unknown
IMDB-WIKI

√ √ √
– –

√ √ √

Input size 224× 224× 3 64× 64× 3

Model size VGG16 ≈ 500 MB 2.2 GB 0.32 MB 1.0 MB 1.1 MB 1.7 MB
inference time on

GPU/CPU (10−3sec) – 0.17/2.69 0.10/1.07 0.75/28.8 –

MAE 2.52 3.00 2.68 3.25 3.45 2.96 3.16 6.50 5.05 3.42 3.27

Table 1: Comparisons of state-of-the-art methods on the MORPH2 dataset. There are two categories, bulky models and compact models. The
former takes inputs with a larger resolution and consumes more memory while the latter uses a smaller resolution and has a smaller memory
footprint. Both MAE values and inference time are reported.

Figure 3: Comparisons on the number of parameters for SSR-Net
with different configurations and ORCNN.

On the other hand, for reducing memory footprint, com-
pact models usually take lower-resolution images as inputs
(64× 64× 3) and contains much fewer parameters. The pro-
posed SSR-Net is very compact and only consumes 0.32 MB
of memory while MobileNet and DenseNet take roughly 1
MB and MRCNN/ORCNN consumes 1.7 MB. Before train-
ing with MORPH2, we used the IMDB-WIKI dataset for
pre-training. SSR-Net achieves 3.16 MAE, the best among
compact models. It even surpasses several bulky models de-
spite that it consumes less than 1/1500 of their model sizes.
With the extremely compact model (0.32 MB) and reason-
able performance, SSR-Net is suitable to be adopted on mo-
bile and embedded platforms. The last row of Figure 2 shows
the training/validation curves for MobileNet, DenseNet and
SSR-Net on MORPH2. Again, SSR-Net suffers less from
overfitting compared to the other two compact models.

Table 1 also reports inference times for compact models if
running on a GPU or a CPU. MobileNet is slightly faster than
SSR-Net, but its age estimation performance is much worse.
DenseNet is much slower than SSR-Net along with its larger
model size and worse performance. We are not able to report
the inference time and training progression for MRCNN and
ORCNN as their source code is not made publicly available.

The use of soft dynamic range is important for SSR-Net.
Without it, the MAE is 9.29 for SSR-Net. It shows that the
flexibility provided by the dynamic range is essential to multi-
stage regression. The coarse-to-fine stagewise regression ap-
proach reduces the number of neurons, one for each of classes
in classification. For SSR-Net(s1, s2, s3), s1 + s2 + s3 neu-
rons are required. With roughly the same number of classes,
the single-stage approach would require s1×s2×s3 neurons.
Figure 3 compares the number of parameters for SSR-Net
with different configurations and ORCNN. The multi-stage
design generally leads to fewer parameters than its single-

MobileNet DenseNet SSR-Net (3,3,3)
CA(3) 0.440 0.517 0.549
CA(5) 0.606 0.694 0.741

Table 2: Results on the MegaAge-Asian dataset.

stage counterpart, especially when V is large. In addition,
the proposed network structure also helps in reducing param-
eters. Overall, compared with ORCNN, SSR-Net consumes
fewer parameters while achieving better MAE.

4.5 Experiments on MegaAge-Asian
Most face image datasets contain images of Westerners, and
human races could play an important role on age estimation.
To validate how the proposed SSR-Net performs for other
races such as Asians, we have also performed experiments on
the MegaAge-Asian dataset [Zhang et al., 2017]. It contains
40,000 face images of Asians with ages from 0 to 70. Follow-
ing the protocol of Zhang et al., 3,945 images were reserved
for testing and the cumulative accuracy (CA) was used as the
evaluation metric. CA is defined as CA(n) = Kn/K×100 in
which K is the total number of testing images and Kn repre-
sents the number of testing images whose absolute errors are
smaller than n. The SSR-Net model trained on IMDB-WIKI
was used as the starting point for training and the training
images of MegaAge-Asian were used to train SSR-Net. The
same training procedure was used to train both MobileNet
and DenseNet. Table 2 reports CA(3) and CA(5) for the com-
pared methods. It is clear that SSR-Net performs better than
the other two compact models.

5 Conclusion
In this paper, we propose a novel method for age estimation,
Soft Stagewsie Regression Network (SSR-Net). It is both
compact and efficient. It also achieves good performances
on multiple age estimation datasets. The stagewise predic-
tion structure avoids a large number of neurons and leads to
a more compact model. By leveraging the dynamic range,
quantization error can be better addressed so that the perfor-
mance of SSR-Net can be comparable to those of bulky mod-
els. With its compact size and efficiency, SSR-Net is suitable
to be employed on mobile or embedded devices for age esti-
mation. In the future, we would like to explore the proposed
ideas for other regression problems.
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