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Figure 1. Robust space-time synthesis from dynamic monocular videos. Our method takes a casually captured video as input and
reconstructs the camera trajectory and dynamic radiance fields. Conventional SfM system such as COLMAP fails to recover camera poses
even when using ground truth motion masks. As a result, existing dynamic radiance field methods that require accurate pose estimation
do not work on these challenging dynamic scenes. Our work tackles this robustness problem and showcases high-fidelity dynamic view

synthesis results on a wide variety of videos.

Abstract

Dynamic radiance field reconstruction methods aim to
model the time-varying structure and appearance of a dy-
namic scene. Existing methods, however, assume that ac-
curate camera poses can be reliably estimated by Structure
from Motion (SfM) algorithms. These methods, thus, are un-
reliable as SfM algorithms often fail or produce erroneous
poses on challenging videos with highly dynamic objects,
poorly textured surfaces, and rotating camera motion. We
address this robustness issue by jointly estimating the static
and dynamic radiance fields along with the camera param-
eters (poses and focal length). We demonstrate the robust-
ness of our approach via extensive quantitative and qualita-
tive experiments. Our results show favorable performance
over the state-of-the-art dynamic view synthesis methods.

1. Introduction

Videos capture and preserve memorable moments of our
lives. However, when watching regular videos, viewers ob-
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serve the scene from fixed viewpoints and cannot interac-
tively navigate the scene afterward. Dynamic view synthe-
sis techniques aim to create photorealistic novel views of
dynamic scenes from arbitrary camera angles and points
of view. These systems are essential for innovative ap-
plications such as video stabilization [33, 42], virtual real-
ity [7, 15], and view interpolation [13, 85], which enable
free-viewpoint videos and let users interact with the video
sequence. It facilitates downstream applications like virtual
reality, virtual 3D teleportation, and 3D replays of live pro-
fessional sports events.

Dynamic view synthesis systems typically rely on ex-
pensive and laborious setups, such as fixed multi-camera
capture rigs [7, 10, 15, 50, 85], which require simultaneous
capture from multiple cameras. However, recent advance-
ments have enabled the generation of dynamic novel views
from a single stereo or RGB camera, previously limited to
human performance capture [16,28] or small animals [65].
While some methods can handle unstructured video in-
put [1, 3], they typically require precise camera poses es-
timated via SfM systems. Nonetheless, there have been



Table 1. Categorization of view synthesis methods.
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many recent dynamic view synthesis methods for unstruc-
tured videos [24,25,39,52,53,56,71,76] and new methods
based on deformable fields [20]. However, these techniques
require precise camera poses typically estimated via SfM
systems such as COLMAP [62] (bottom left of Table 1).

However, SfM systems are not robust to many issues,
such as noisy images from low-light conditions, motion blur
caused by users, or dynamic objects in the scene, such as
people, cars, and animals. The robustness problem of the
SfM systems causes the existing dynamic view synthesis
methods to be fragile and impractical for many challenging
videos. Recently, several NeRF-based methods [3 1,40, 60,

] have proposed jointly optimizing the camera poses with
the scene geometry. Nevertheless, these methods can only
handle strictly static scenes (top right of Table 1).

We introduce RoDynRF, an algorithm for reconstructing
dynamic radiance fields from casual videos. Unlike exist-
ing approaches, we do not require accurate camera poses
as input. Our method optimizes camera poses and two ra-
diance fields, modeling static and dynamic elements. Our
approach includes a coarse-to-fine strategy and epipolar ge-
ometry to exclude moving pixels, deformation fields, time-
dependent appearance models, and regularization losses for
improved consistency. We evaluate the algorithm on multi-
ple datasets, including Sintel [9], Dynamic View Synthe-
sis [79], iPhone [25], and DAVIS [55], and show visual
comparisons with existing methods.

We summarize our core contributions as follows:

* We present a space-time synthesis algorithm from a
dynamic monocular video that does not require known
camera poses and camera intrinsics as input.

* Our proposed careful architecture designs and auxil-
iary losses improve the robustness of camera pose es-
timation and dynamic radiance field reconstruction.

* Quantitative and qualitative evaluations demonstrate
the robustness of our method over other state-of-the-
art methods on several challenging datasets that typical
StM systems fail to estimate camera poses.

2. Related Work

Static view synthesis. Many view synthesis techniques
construct specific scene geometry from images captured at
various positions [8] and use local warps [! 1] to synthe-
size high-quality novel views of a scene. Approaches to

light field rendering use implicit scene geometry to create
photorealistic novel views, but they require densely cap-
tured images [27,37]. By using soft 3D reconstruction [54],
learning-based dense depth maps [22], multiplane images
(MPIs) [14,21,67], additional learned deep features [30,58],
or voxel-based implicit scene representations [06], several
earlier work attempt to use proxy scene geometry to en-
hance rendering quality.

Recent methods implicitly model the scene as a contin-
uous neural radiance field (NeRF) [4, 44, 82] with multi-
layer perceptrons (MLPs). However, NeRF requires days of
training time to represent a scene. Therefore, recent meth-
ods [12,23,45,68] replace the implicit MLPs with explicit
voxels and significantly improve the training speed.

Several approaches synthesize novel views from a single
RGB input image. These methods often fill up holes in the
disoccluded regions and predict depth [38,49], additionally
learned features [75], multiplane images [72], and layered
depth images [34, 64]. Although these techniques have pro-
duced excellent view synthesis results, they can only han-
dle static scenes. Our approach performs view synthesis
of dynamic scenes from a single monocular video, in con-
trast to existing view synthesis techniques focusing on static
scenes.

Dynamic view synthesis. By focusing on human bod-
ies [74], using RGBD data [16], reconstructing sparse ge-
ometry [51], or producing minimal stereoscopic disparity
transitions between input views [|], many techniques re-
construct and synthesize novel views from non-rigid dy-
namic scenes. Other techniques break down dynamic
scenes into piece-wise rigid parts using hand-crafted pri-
ors [36,61]. Many systems cannot handle scenes with com-
plicated geometry and instead require multi-view and time-
synchronized videos as input to provide interactive view
manipulation [3,7,41,85]. Yoon et al. [79] used depth from
single-view and multi-view stereo to synthesize novel views
of dynamic scenes from a single video using explicit depth-
based 3D warping.

A recent line of work extends NeRF to handle dy-
namic scenes [20,24,39,52,53,56,71,76]. Although these
space-time synthesis results are impressive, these tech-
niques rely on precise camera pose input. Consequently,
these techniques are not applicable to challenging scenes
where COLMAP [62] or current SfM systems fail. Our ap-
proach, in contrast, can handle complex dynamic scenarios
without known camera poses.

Visual odometry and camera pose estimation. From
a collection of images, visual odometry estimates the 3D
camera poses [ 18, 19,46-48]. These techniques mainly fall
into two categories: direct methods that maximize photo-
metric consistency [78, 84] and feature-based methods that
rely on manually created or learned features [46, 47, 63].
Self-supervised image reconstruction losses have recently
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Figure 2. Overall framework. We model the dynamic scene with static and dynamic radiance fields. The static radiance fields take both
the sampled coordinates (z, y, z) and the viewing direction d as input and predict the density o and color ¢®. Note that the density of the
static part is invariant to time and viewing direction, therefore, we use summation of the queried features as the density (instead of using
an MLP). We only compute the losses over the static regions. The computed gradients backpropagate not only to the static voxel field and
MLPs but also to the camera parameters. The dynamic radiance fields take the sampled coordinates and the time ¢ to obtain the deformed
coordinates (z', 3y, 2") in the canonical space. Then we query the features using these deformed coordinates from the dynamic voxel fields
and pass the features along with the time index to a time-dependent shallow MLPs to get the color c¢, density o, and nonrigidity m? of
the dynamic part. Finally, after the volume rendering, we can obtain the RGB images C{*?} and the depth maps D%} from the static
and dynamic parts along with a nonrigidity mask M<. Finally, we calculate the per-frame reconstruction loss. Note that here we only

include per-frame losses.

been used in learning-based systems to tackle visual odom-
etry [2, 6, 26, 35,70,77, 80, 81, 83, 84]. Estimating cam-
era poses from casually captured videos remains challeng-
ing. NeRF-based techniques have been proposed to com-
bine neural 3D representation and camera poses for opti-
mization [31,40, 60, 73], although they are limited to static
sequences. In contrast to the visual odometry techniques
outlined above, our system simultaneously optimizes cam-
era poses and models dynamic objects models.

3. Method

In this section, we first briefly introduce the background
of neural radiance fields and their extension of camera pose
estimation and dynamic scene representation in Section 3.1.
We then describe the overview of our method in Section 3.2.
Next, we discuss the details of camera pose estimation with
the static radiance field reconstruction in Section 3.3. Af-
ter that, we show how to model the dynamic scene in Sec-
tion 3.4. Finally, we outline the implementation details
in Section 3.5.

3.1. Preliminaries

NeRF. Neural radiance fields (NeRF) [44] represent a static
3D scene with implicit MLPs parameterized by © and map

the 3D position (x,y, z) and viewing direction (6, ¢) to its
corresponding color ¢ and density o:

(cag) :MLP@(x,y,z,G,gb). (1)

We can compute the pixel color by applying volume render-

ing [17,32] along the ray r emitted from the camera origin:
R N
C(r) =) T(i)(1 —exp(=o()(i))c(i),
i=1
; 2
T(i) = exp(— Y _ o(7)8(7)),
i—1

where §(7) represents the distance between two consecutive
sample points along the ray, N is the number of samples
along each ray, and 7T'(¢) indicates the accumulated trans-
parency. As the volume rendering procedure is differen-
tiable, we can optimize the radiance fields by minimizing
the reconstruction error between the rendered color C and
the ground truth color C:
. 2

L= HC(I') —C(r)HQ. 3)
Explicit neural voxel radiance fields.  Although with
compelling rendering quality, NeRF-based methods model
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Figure 3. Training losses. For both the (a) static and (b) dynamic parts, we introduce three auxiliary losses to encourage the consistency
of the modeling: reprojection loss, disparity loss, and monocular depth loss. The reprojection loss encourages the projection of the 3D
volume rendered points onto neighbor frames to be similar to the pre-calculated flow. The disparity loss forces the volume rendered 3D
points from two corresponding points of neighbor frames to have similar z values. Finally, the monocular depth loss calculates the scale-
and shift-invariant loss between the volume rendered depth and the pre-calculated MiDaS depth. (a) We use the motion mask to exclude
the dynamic regions from the loss calculation. (b) We use a scene flow MLP to model the 3D movement of the volume rendered 3D points.

the scene with implicit representations such as MLPs for
high storage efficiency. These methods, however, are very
slow to train. To overcome this drawback, recent meth-
ods [12, 23,45, 68] propose to model the radiance fields
with explicit voxels. Specifically, these methods replace the
mapping function with voxel grids and directly optimize the
features sampled from the voxels. They usually apply shal-
low MLPs to handle the view-dependent effects. By elim-
inating the heavy usage of the MLPs, the training time of
these methods reduces from days to hours. We also lever-
age explicit representation in this work.

3.2. Method Overview

We show our proposed framework in Figure 2. Given
an input video sequence with /N frames, our method jointly
optimizes the camera poses, focal length, and static and dy-
namic radiance fields. We represent both the static and dy-
namic parts with explicit neural voxels V* and V¢, respec-
tively. The static radiance fields are responsible for recon-
structing the static scene and estimating the camera poses
and focal length. At the same time, the goal of dynamic
radiance fields is to model the scene dynamics in the video
(usually caused by moving objects).

3.3. Camera Pose Estimation

Motion mask generation. Excluduing dynamic regions in
the video helps improve the robustness of camera pose esti-
mation. Existing methods [39] often leverage off-the-shelf
instance segmentation methods such as Mask R-CNN [29]
to mask out the common moving objects. However, many
moving objects are hard to detect/segment in the input
video, such as drifting water or swaying trees. Therefore, in

W
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Figure 4. The impact of design choices on camera pose estima-
tion. (a) No coarse-to-fine strategy leads to sub-optimal solutions.
(b) No single-image depth prior results in poor scene geometry for
challenging camera trajectories. (c) The absence of late viewing
direction conditioning leads to wrong geometry and poses due to
minimizing photometric loss instead of consistent voxel space us-
ing MLP. (d) Our proposed method incorporates all components
and yields reasonable scene geometry and camera trajectory.

addition to the masks from Mask R-CNN, we also estimate
the fundamental matrix using the optical flow from consec-
utive frames. We then calculate and threshold the Sampson
distance (the distance of each pixel to the estimated epipolar
line) to obtain a binary motion mask. Finally, we combine
the results from Mask R-CNN and epipolar distance thresh-
olding to obtain our final motion masks.

Coarse-to-fine static scene reconstruction. The first part
of our method is reconstructing the static radiance fields
along with the camera poses. We jointly optimize the 6D
camera poses [R|t];,i € [1..N] and the focal length f
shared by all input frames simultaneously. Similar to ex-



isting pose estimation methods [40], we optimize the static
scene representation in a coarse-to-fine manner. Specifi-
cally, we start with a smaller static voxel resolution and pro-
gressively increase the voxel resolution during the training.
This coarse-to-fine strategy is essential to the camera pose
estimation as the energy surface will become smoother.
Thus, the optimizer will have less chance of getting stuck
in sub-optimal solutions (Figure 4(a) vs. Figure 4(d)).

Late viewing direction conditioning.  As our primary
supervision is the photometric consistency loss, the opti-
mization could bypass the neural voxel and directly learn
a mapping function from the viewing direction to the out-
put sample color. Therefore, we choose to fuse the viewing
direction only in the last layer of the color MLP as shown
in Figure 2. This design choice is critical because we are re-
constructing not only the scene geometry but also the cam-
era poses. Figure 4(c) shows that without the late viewing
direction conditioning, the optimization could minimize the
photometric loss by optimizing the MLP and lead to erro-
neous camera poses and geometry estimation.

Losses. We minimize the photometric loss between the
prediction (AJS(r) and the captured images in the static re-
gions:
R 2
£=|ew-cap-a-Me)| . @
where M denotes the motion mask.

To handle casually-captured but challenging camera tra-
jectories such as fast-moving or pure rotating, we introduce
auxiliary losses to regularize the training, similar to [24,39].

(1) Reprojection loss L7, .: We use 2D optical flow esti-
mated by RAFT [69] to guide the training. First, we volume
render all the sampled 3D points along a ray to generate a
surface point. We then reproject this point onto its neighbor
frame and calculate the reprojection error with the corre-
spondence estimated from RAFT.

(2) Disparity loss L. Similar to the reprojection loss
above, we also regularize the error in the z-direction (in the
camera coordinate). We volume render the two correspond-
ing points into 3D space and calculate the error of the z
component. As we care more about the near than the far,
we compute this loss in the inverse-depth domain.

(3) Monocular depth loss L{oqepm: The two losses
above cannot handle pure rotating cameras and often lead to
the incorrect camera poses and geometry (Figure 4(b)). We
enforce the depth order from multiple pixels of the same
frame to match the order of a monocular depth map. We
pre-calculate the depth map using MiDaSv2.1 [57]. The
depth prediction from MiDaS is up to an unknown scale and
shift. Therefore, we use the same scale- and shift-invariant
loss in MiDaS to constrain our rendered depth values.

We illustrate these auxiliary losses in Figure 3(a). Since
the optical flow and depth map may not be accurate, we

Table 2. Quantitative evaluation of camera poses estimation on
the MPI Sintel dataset. The methods of the top block discard the
dynamic components and do not reconstruct the radiance fields;
thus they cannot render novel views. We exclude the COLMAP
results since it fails to produce poses in 5 out of 14 sequences.

Method ATE (m) RPE trans (m) RPE rot (deg)
R-CVD [35] 0.360 0.154 3.443
DROID-SLAM [70] 0.175 0.084 1.912
ParticleSTM [83] 0.129 0.031 0.535
NeRF - - [73] 0.433 0.220 3.088
BAREF [40] 0.447 0.203 6.353
Ours 0.089 0.073 1.313

apply annealing for the weights of these auxiliary losses
during the training. As the input frames contain dynamic
objects, we need to mask out all the dynamic regions while
applying all these losses and the L2 reconstruction loss. The
final loss for the static part is:

s _ ps s s s s s s
L= ﬁc + Areproj ‘Creproj + /\disp‘Cdisp + )‘monodepthﬁmonodepth‘

®)

3.4. Dynamic Radiance Field Reconstruction

Handling temporal information. = To query the time-
varying features from the voxel, we first pass the 3D coor-
dinates (x, y, z) along with time index ¢; to a coordinate de-
formation MLP. The coordinate deformation MLP predicts
the 3D time-varying deformation vectors (Az, Ay, Az).
We then add these deformations onto the original coordi-
nates to get the deformed coordinates (2,3, 2'). This de-
formation MLP indicates that the voxel is a canonical space
and that each corresponding 3D point from a different time
should point to the same position in this voxel space. We
design the deformation MLP to deform the 3D points from
the original camera space to the canonical voxel space.

However, using a single compact canonical voxel to rep-
resent the entire sequence along the temporal dimension
is very challenging. Therefore, we further introduce time-
dependent MLPs to enhance the queried features from the
voxel to predict time-varying color and density. Note that
the time-dependent MLPs with only two to three layers are
much shallower than the ones in other dynamic view syn-
thesis methods [24, 39] as the purpose of the MLPs here is
further to enhance the queried features from the canonical
voxel. Most of the time-varying effects are still carried out
by the coordination deformation MLP. We show the above
architecture at the bottom of Figure 2. And the photometric
training loss for the dynamic part is:

E(r) — C(r)”2, ©6)

2

Scene flow modeling. We introduce three losses based
on external priors to better model the dynamic movements.
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Figure 5. Qualitative results of moving camera localization on
the MPI Sintel dataset.

Figure 6. The sorted error plots showing both the accuracy and
completeness/robustness in the MPI Sintel dataset.

The three losses are similar to the ones in the static part, but
we need to model the movements of the 3D points. There-
fore, we introduce a scene flow MLP to compensate the 3D
motion.

(Simit1, Simvi—1) = MLPy (2,9, 2, t;), @)

where S;_,; 1 represents the 3D scene flow of the 3D point
(z,y, z) at time ¢;. With the 3D scene flow, we can apply
the losses for the dynamic radiance fields. We show the
training losses in Figure 3(b).

(1) Reprojection loss Ere roj: We induce the 2D flow us-
ing the poses, depth, and the estlmated 3D scene flow from
the scene flow MLP. And we compare the error of this in-
duced flow with the one estimated by RAFT.

(2) Disparity loss Edls Similar to the disparity loss in
the static part, but here we additionally have the 3D scene
flow. We get the corresponding points in the 3D space, add
the estimated 3D scene flow, and calculate the difference of
the z components in the inverse-depth domain.

(3) Monocular depth loss [lffmodepth: We calculate scale-
and shift-invariant loss between the rendered depth with the
pre-calculated depth map using MiDaSv2.1.

We further regularize the 3D motion prediction from the
MLP by introducing the smooth and small scene flow loss:

Lres

gf - HSZ—>Z+1 + Sz—m 1”1 + ||Sz—>z+1||1 + ||Sz—>z 1”1
®)
Note that the scene flow MLP is not part of the rendering
process but part of the losses. By representing the 3D scene
flow with an MLP and enforcing proper priors, we can make
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Figure 7. Qualitative results of static view synthesis on the
DAVIS dataset from unknown camera poses and ground truth
foreground masks.

the density prediction better and more reasonable. We also
detach the gradients from the dynamic radiance fields to the
camera poses. Finally, we supervise the nonrigidity mask
M¢ with motion mask M:

£t = M - M), ©

The overall loss of the dynamic part is:

‘C’ ‘Cd + /\rdeprOJ ‘CrdeprOJ + )‘dispﬁ((iiisp—i_

Ie, e, ( 1 0)
)‘glonodepth‘cmonodeplh + )‘ g'c ¢ + )‘ﬁln[’gn

We then linearly compose the static and dynamic parts
into the final results with the predicted nonrigidity m®:

ZT w1 —exp(—o It
(1= m)(1 = exp(=" (1)3(0)))e" (1),

Total training loss. The total training loss is:

L= HC@)-c@H}ﬁHL% (12)

3.5. Implementation Details

We simultaneously estimate camera poses, focal length,
static radiance fields, and dynamic radiance fields. For
forward-facing scenes, we parameterize the scenes with
normalized device coordinates (NDC). To handle un-
bounded scenes in the wild videos, we parameterize the
scenes using the contraction parameterization [5]. To
encourage solid surface scene reconstruction and prevent
floaters, we add the distortion loss [5, 68]. We set the
finest voxel resolution to 262,144,000 and 27,000,000 for
NDC and contraction, respectively. We also decompose the
voxel grid using the VM-decomposition in TensoRF [12]
for model compactness. The entire training process takes
around 28 hours with one NVIDIA V100 GPU. We provide
the detailed architecture in the supplementary material.



oA |l 2} \
( Y

NSFF [39] micNeRF [24]  HyperNeRF [ iNeuVox 2()

Figure 8. Novel view synthesis. Compared to other methods, our results are sharper, closer to the ground truth, and contain fewer artifacts.

Dyna 3] ] Ground truth

Table 3. Novel view synthesis results. We report the average PSNR and LPIPS results with comparisons to existing methods on Dynamic
Scene dataset [79]. *: Numbers are adopted from DynamicNeRF [24].

PSNR 1 /LPIPS | Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground ‘ Average

NeRF* [44] 20.99/0.305 23.67/0311 22.73/0229 21.29/0.440 19.82/0.205 24.37/0.098 21.07/0.165 | 21.99/0.250
D-NeRF [56] 22.36/0.193 22.48/0.323 24.10/0.145 21.47/0.264 19.06/0.259 20.76/0.277 20.18/0.164 | 21.48/0.232
NR-NeRF* [71] 20.09/0.287 23.95/0.227 19.33/0.446 19.63/0.421 17.39/0.348 22.41/0.213 15.06/0.317 | 19.69/0.323
NSFF* [39] 24.65/0.151 29.29/0.129 25.96/0.167 22.97/0.295 21.96/0.215 24.27/0.222 21.22/0.212 | 24.33/0.199
DynamicNeRF* [24] 24.68/0.090 32.66/0.035 28.56/0.082 23.26/0.137 22.36/0.104 27.06/0.049 24.15/0.080 | 26.10/0.082
HyperNeRF [53] 18.34/0.302 21.97/0.183 20.61/0.205 18.59/0.443 13.96/0.530 16.57/0.411 13.17/0.495 | 17.60/0.367
TiNeuVox [20] 20.81/0.247 23.32/0.152 23.86/0.173 20.00/0.355 17.30/0.353 19.06/0.279 13.84/0.437 | 19.74/0.285
Ours w/ COLMAP poses ~ 25.66/0.071 28.68/0.040 29.13/0.063 24.26/0.089 22.37/0.103 26.19/0.054 24.96/0.048 | 25.89/0.065
Ours w/o COLMAP poses  24.27/0.100 28.71/0.046 28.85/0.066 23.25/0.104 21.81/0.122 25.58/0.064 25.20/0.052 ‘ 25.38/0.079

4. Experimental Results

Due to the space limit, we leave the experimental setup,
including datasets, compared methods, and the evaluation
metrics to the supplementary materials.

4.1. Evaluation on Camera Poses Estimation

We conduct the camera pose estimation evaluation on
the MPI Sintel dataset [9] and show the quantitative re-
sults in Table 2. Our method performs significantly bet-
ter than existing NeRF-based pose estimation methods.
Note that our method also performs favorably against ex-
isting learning-based visual odometry methods. We show
some visual comparisons of the predicted camera trajecto-
ries in Figure 5, and the sorted error plots that show both
the accuracy and completeness/robustness in Figure 6. Our
approach predicts accurate camera poses over other NeRF-
based pose estimation methods. Our method is a global op-
timization over the entire sequence instead of local registra-
tion like SLAM-based methods. Therefore, our RPE trans
and rot scores are slightly worse than ParticleSfM [83] as
consecutive frames’ rotation is less accurate.

To further reduce the effect of the dynamic parts, we
use the ground truth motion masks provided by the DAVIS
dataset to mask out the loss calculations in the dynamic re-
gions for all the NeRF-based compared methods. We show
the reconstructed images and depth maps in Figure 7. Our
approach can successfully reconstruct the detailed content
and the faithful geometry thanks to the auxiliary losses. On
the contrary, other methods often fail to reconstruct consis-
tent scene geometry and thus produce poor synthesis results.

4.2, Evaluation on Dynamic View Synthesis

Quantitative evaluation. We follow the evaluation proto-
col in DynamicNeRF [24] to synthesize the view from the
first camera and change time on the NVIDIA dynamic view
synthesis dataset. We report the PSNR and LPIPS in Ta-
ble 3. Our method performs favorably against state-of-the-
art methods. Furthermore, even without COLMAP poses,
our method can still achieve results comparable to the ones
using COLMAP poses.

We also follow the evaluation protocol in DyCheck [25]
and evaluate quantitatively on the iPhone dataset [25]. We
report the masked PSNR and SSIM in Table 4 and show that
our method performs on par with existing methods.

Qualitative evaluation. We show some visual com-
parisons on the NVIDIA dynamic view synthesis dataset
in Figure 8 and DAVIS dataset in Figure 9. COLMAP fails
to estimate the camera poses for 44 out of 50 sequences in
the DAVIS dataset. Therefore, we first run our method and
give our camera poses to other methods as input. With the
joint learning of the camera poses and radiance fields, our
method produces frames with fewer visual artifacts. Other
methods can also benefit from our estimated poses to syn-
thesize novel views. With our poses, they can reconstruct
consistent static scenes but often generate artifacts for the
dynamic parts. In contrast, our method utilizes the auxil-
iary priors and thus produces results of much better visual
quality.



Table 4. Novel view synthesis results. We compare the mPSNR and mSSIM scores with existing methods on the iPhone dataset [25].

mPSNR 1/ mSSIM 1 Apple Block Paper-windmill Space-out Spin Teddy Wheel \ Average

NSFF [39] 17.54/0.750 16.61/0.639  17.34/0.378  17.79/0.622 18.38/0.585 13.65/0.557 13.82/0.458 | 15.46/0.569
Nerfies [52] 17.64/0.743 17.54/0.670  17.38/0.382  17.93/0.605 19.20/0.561 13.97/0.568 13.99/0.455 | 16.45/0.569
HyperNeRF [53] 16.47/0.754 14.71/0.606  14.94/0.272  17.65/0.636 17.26/0.540 12.59/0.537 14.59/0.511 | 16.81/0.550
T-NeRF [25] 17.43/0.728 17.52/0.669  17.55/0.367 17.71/0.591 19.16/0.567 13.71/0.570 15.65/0.548 | 16.96/0.577
Ours 18.73/0.722 18.73/0.634  16.71/0.321  18.56/0.594 17.41/0.484 14.33/0.536 15.20/0.449 | 17.09/0.534

NSFF [39] DynamicNeRF [24] HyperNeRF [53] TiNeuVox [20] Ours

Figure 9. Novel space-time synthesis results on the DAVIS dataset with our estimated camera poses. COLMAP fails to produce reliable
camera poses for most of the sequences in the DAVIS dataset. With the estimated camera poses by our method, we can run other methods
and perform space-time synthesis on the scenes that are not feasible with COLMAP. Our method produces images with much better quality.

Table 5. Ablation studies. We report PSNR, SSIM and LPIPS on
the Playground sequence.

(a) Pose estimation design choices
| PSNRT SSIM?T LPIPS |

Ours w/o coarse-to-fine 12.45 0.4829 0.327
Ours w/o late viewing direction fusion 18.34 0.5521 0.263
Ours w/o stopping the dynamic gradients 21.47 0.7392 0.211
Ours 25.20 0.9052 0.052

(b) Dynamic reconstruction achitectural designs
Dyn. model Deform. MLP  Time-depend. MLPs ‘ PSNR1T SSIMT LPIPS |
21.34 0.8192 0.161

v v 22.37 0.8317 0.115

v v 23.14 0.8683 0.083

v v v 25.20 0.9052 0.052
4.3. Ablation Study

We analyze the design choices in Table 5. For the cam-
era poses estimation, the coarse-to-fine voxel upsampling
strategy is the most critical component. Late viewing di-
rection fusion and stopping the gradients from the dynamic
radiance field also help the optimization find better poses
and lead to higher-quality rendering results. Please refer
to Figure 4 for visual comparisons. For the dynamic ra-
diance field reconstruction, both the deformation MLP and
the time-dependent MLPs improve the final rendering qual-

1ty.

(b) Changing focal length

(a) Fast moving camera

Figure 10. Failure cases. (a) In the cases that the camera is mov-
ing fast, the flow estimation fails and leads to wrong estimated
poses and geometry. (b) Our method assumes a shared intrinsic
over the entire video and thus cannot handle changing focal length
well.

4.4. Failure Cases

Even with these efforts, robust dynamic view synthesis
from a monocular video without known camera poses is still
challenging. We show some failure cases in Figure 10.

5. Conclusions

We present robust dynamic radiance fields for space-
time synthesis of casually captured monocular videos with-
out requiring camera poses as input. With the proposed
model designs, we demonstrate that our approach can re-
construct accurate dynamic radiance fields from a wide
range of challenging videos. We validate the efficacy of the
proposed method via extensive quantitative and qualitative
comparisons with the state-of-the-art.
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