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Learning to See Through Obstructions with
Layered Decomposition

Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu Chuang and Jia-Bin Huang

Abstract—We present a learning-based approach for removing unwanted obstructions, such as window reflections, fence occlusions, or
adherent raindrops, from a short sequence of images captured by a moving camera. Our method leverages motion differences between
the background and obstructing elements to recover both layers. Specifically, we alternate between estimating dense optical flow fields of
the two layers and reconstructing each layer from the flow-warped images via a deep convolutional neural network. This learning-based
layer reconstruction module facilitates accommodating potential errors in the flow estimation and brittle assumptions, such as brightness
consistency. We show that the proposed approach learned from synthetically generated data performs well to real images. Experimental
results on numerous challenging scenarios of reflection and fence removal demonstrate the effectiveness of the proposed method.

Index Terms—reflection removal, fence removal, optical flow, layer decomposition, computational photography.

✦

1 INTRODUCTION

CAPTURING clean photographs through reflective sur-
faces (such as windows) or occluding elements (such

as fences) is challenging as the captured images inevitably
contain both the scenes of interests and the obstructions
caused by reflections or occlusions. An effective solution to
recover the underlying clean image is thus of great interest
for improving the quality of the images captured under such
conditions or allowing computers to form a correct physical
interpretation of the scene, e.g., enabling a robot to navigate
in a scene with windows safely.

Recent efforts have been focused on removing unwanted
reflections or occlusions from a single image [1], [2], [3], [4],
[5], [6], [7], [8]. These methods either leverage the ghosting
cues [9] or adopt learning-based approaches to capture the
prior of natural images [2], [3], [6], [7], [8]. While significant
advances have been shown, separating the clean background
from reflection/occlusions is fundamentally ill-posed and
often requires a high-level semantic understanding of the
scene. In particular, the performance of learning-based
methods often degrades significantly for out-of-distribution
images.

To tackle these challenges, multi-frame approaches exploit
the fact that the background scene and the occluding ele-
ments are located at different depths with respect to the
camera (e.g., virtual depth of window reflections). Conse-
quently, taking multiple images from a slightly moving
camera reveals the motion differences between the two
layers [10], [11], [12], [13], [14], [15]. A number of approaches
exploit such visual cues for reflection or fence removal from
a video [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]. Xue
et al. [20] propose a unified computational framework for
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obstruction removal and show impressive results on several
real input sequences. The formulation, however, requires a
computationally expensive optimization process and relies
on strict assumptions of brightness constancy and accurate
dense motion estimation. To alleviate these issues, recent
work [19] explores model-free methods by learning a generic
3D convolutional neural network (CNN). Nevertheless, the
CNN-based methods do not produce results with comparable
quality as optimization-based algorithms on real input
sequences.

In this work, we propose a multi-frame obstruction
removal algorithm that exploits the strength of both
optimization-based and learning-based methods. Inspired
by the optimization-based approaches [17], [20], our al-
gorithm alternates between the dense motion estimation
and background/obstruction layer reconstruction steps in
a coarse-to-fine manner. Our framework builds upon the
optimization-based formulation of [17], [20] but differs in
that our model is purely data-driven and does not rely on
classical assumptions such as brightness constancy [17], [20],
accurate flow fields [14], or planar surface [15] in the scene.
When these assumptions do not hold (e.g., occlusion/dis-
occlusion, motion blur, inaccurate flow), classical approaches
may fail to reconstruct clear foreground and background
layers.

On the other hand, data-driven approaches learn from
diverse training data and can tolerate errors when these
assumptions are violated. The explicit modeling of dense
motion within each layer facilitates us to progressively
recover detailed content in the respective layers. Instead
of relying on hand-crafted objectives for recovering these
layers, we use the learning-based method for fusing flow-
warped images to accommodate potential violations of
brightness constancy and errors in flow estimation. We
train our fusion network using a synthetically generated
dataset and demonstrate that it performs well to unseen
real-world sequences. In addition, we present an online
optimization process to further improve the visual quality
of particular testing sequences. We show that the proposed
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(a) Reflection removal (b) Fence removal (c) Adherent raindrop removal

Fig. 1: Seeing through obstructions. We present a learning-based method for recovering clean images from a given short
sequence of images taken by a moving camera through obstructing elements such as (a) windows, (b) fence, or (c) adherent
raindrop.

method performs favorably against existing learning-based
and optimization-based algorithms on a wide variety of
challenging sequences and applications.

The preliminary version of this work has been published
in CVPR 2020 [21]. In this paper, we further improve our
method in three key aspects.

1) We present an improved layer reconstruction model that
allows us to take an arbitrary number of input frames.

2) We apply meta-learning to facilitate the efficient adap-
tation of our pre-trained model to a particular testing
sequence. Our results show improvement for both the
runtime speed and visual quality.

3) We incorporate a realistic reflection image synthesis
model [8] and extend it with a variety of data augmen-
tation to generate more realistic and diverse training
sequences.

We show extensive experimental results to validate our
design choices. Experiments show that our improved method
significantly outperforms our CVPR work on both quantita-
tive and qualitative evaluations.

The main contributions of this work are:
1) We integrate the optimization-based formulation into

a learning-based method for robustly separating back-
ground/obstruction layers. Meta-learning is employed
to reduce the runtime.

2) We present a transfer learning strategy that first pre-
trains the model using synthetic data and then fine-tunes
on real sequence with an unsupervised optimization ob-
jective function to achieve state-of-the-art performance
in the context of obstruction removal.

3) We show our model can be easily extended to handle
other types of obstruction removal problems, e.g., fence
and adherent raindrop removal.

2 RELATED WORK

Multi-frame reflection removal. Existing methods often
exploit the differences of motion patterns between the
background and reflection layers [15], [20], and impose
natural image priors [15], [20], [22]. These methods differ
in modeling the motion fields, e.g., SIFT flow [14], homog-
raphy [15], and dense optical flow [20]. Recent advances
include optimizing temporal coherence [17] and learning-
based layer decomposition [19] for reflection removal. In
contrast to the scheme based on a generic spatio-temporal

CNN [19], our method explicitly models the dense flow fields
of the background and obstruction layers to obtain cleaner
results on real sequences.

Single-image reflection removal. A number of approaches
have been proposed to remove unwanted reflections with
only one single image as input. Existing methods exploit
various cues, including ghosting effect [9], blurriness caused
by depth-of-field [23], [24], image priors (either hand-
designed [1] or learned from data [7], [8]), and the defocus-
disparity cues from dual pixel sensors [25]. Despite the
demonstrated success, reflection removal from a single image
remains challenging due to the nature of this highly ill-posed
problem and the lack of motion cues. Our work instead
utilizes the motion cues from image sequences captured with
a slightly moving camera for separating the background and
reflection layers.

Occlusion and fence removal. Occlusion removal aims to
eliminate the captured obstructions, e.g., fence or adherent
raindrops on an image or sequences, and provide a clear
view of the scene. Existing methods detect fence patterns
by exploiting visual parallax [26], dense flow field [20],
disparity maps [27], or using graph-cut [28]. One recent work
leverages a CNN for fence segmentation [18] and recovers the
occluded pixels using optical flow. Our method also learns
deep CNNs for optical flow estimation and background
image reconstruction. Instead of focusing on fence removal,
our formulation is more general and applicable to different
obstruction removal tasks.

Layer decomposition. Image layer decomposition is a
long-standing problem in computer vision, e.g., intrinsic
image [29], [30], depth, normal estimation [31], [32], relight-
ing [33], [34], and inverse rendering [35], [36]. Our method is
inspired by the development of these layer decomposition
approaches, particularly in the ways of leveraging both the
physical image formation constraints and data-driven priors.

Video completion Video completion aims to fill in plausible
content in missing regions of a video [37], with applications
ranging from object removal, full-frame video stabilization,
and watermark/transcript removal. State-of-the-art methods
estimate the flow fields in both known and missing regions
to constrain the content synthesis [38], [39], [40], and generate
temporally coherent completion. The obstruction removal
problem resembles a video completion task. However, the
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crucial difference is that no manual mask selection is required
for removing the fences/obstructions from videos.

Online optimization (training on testing data) Learning
from the test data has been an effective way to reduce the do-
main discrepancy between the training/testing distributions.
Examples abound, including using geometric constraints [41],
[42], self-supervised losses [43], deep image priors [44], [45],
[46], and online template update [47]. Similar to these meth-
ods, we fine-tune our background/obstruction reconstruction
network on a particular test sequence to further improve the
separation. Our unsupervised loss directly measures how
well the recovered background/obstruction and the dense
flow fields explain all the input frames.

Meta-learning. Meta-learning refers to a class of algorithms
that aim to learn a “learner" which can quickly adapt to a
new task with few training examples. Existing meta-learning
algorithms can be categorized as black-box adaptation [48],
[49], metric-based [50], [51], [52], [53], and optimization-
based methods [54], [55]. Our work applies an optimization-
based meta-learning algorithm [54], [55], [56] for learning a
weight initialization that can adapt to a new task with few
gradient updates from a small number of training examples.
Specifically, we apply Reptile [55] to improve the model
adaptation to the testing sequence.

3 PROPOSED ALGORITHM

Given a sequence {Ik}Tk=1 of T frames, our goal is to
decompose each frame Ik into two layers, one for the
target (clean) background and the other for the obstruc-
tion caused by reflection/fence/raindrops. Decomposing an
image sequence into background and obstruction is difficult
as it involves solving two tightly coupled problems: motion
decomposition and layer reconstruction. Without an accurate
motion decomposition, the layers cannot be reconstructed
faithfully due to the misalignment from inaccurate motion
estimation (e.g., optical flow). On the other hand, without
well-reconstructed background and obstruction layers, the
motion cannot be accurately estimated because of the mixed
contents. Due to the nature of this chicken-and-egg problem,
there is no ground to start with because we do not have
information for both motion and layer content.

3.1 Algorithmic overview
In this work, we propose to learn deep CNNs to tackle the
above-mentioned challenges. Our proposed method mainly
consists of three modules: 1) initial flow decomposition,
2) background and obstruction layer reconstruction, and
3) optical flow refinement. Our method takes T frames
as input and decomposes the keyframe frame Ik into a
background layer Bk and reflection layer Rk at a time. We
reconstruct the output images in a coarse-to-fine manner
within an L-level hierarchy. First, we estimate the flows
at the coarsest level from the initial flow decomposition
module (Section 3.2). Next, we progressively reconstruct
the background/obstruction layers (Section 3.3) and refine
optical flows (Section 3.4) until the finest level. Figure 2
shows an overview of our method. Our framework can be
applied to several layer decomposition problems, such as
reflection/obstruction/fence/rain removal. Without loss of

generality, we use the reflection removal task as an example
to introduce our algorithm. We describe the details of the
three modules in the following sections.

3.2 Initial flow decomposition
We first predict optical flows for both the background and
reflection layers at the coarsest level (l = 0), which is
the essential starting point of our algorithm. Instead of
estimating dense flow fields, we propose to learn a uniform
motion vector for each layer. Our initial flow decomposition
network consists of two sub-modules: 1) a feature extractor,
and 2) a layer flow estimator. The feature extractor first
generates feature maps for all the input frames at a 1/2L×
spatial resolution. We then construct a cost volume between
frame j and frame k via a correlation layer [57]:

CVjk(x1,x2) = cj(x1)
⊤ck(x2), (1)

where cj and ck are the extracted features of frame j and k,
respectively, and x indicates the pixel index. Since the spatial
resolution is quite small at this level, we set the correlation
layer’s search range to only 4 pixels. The cost volume CV is
then concatenated with the feature cj and fed into the layer
flow estimator.

The layer flow estimator uses the global average pooling
and fully-connected layers to generate two global motion
vectors. Next, we tile the global motion vectors into two
uniform flow fields (at a 1/2L× spatial resolution): {V 0

B,j→k}
for the background layer and {V 0

R,j→k} for the reflection
layer. We provide the detailed architecture of our initial flow
decomposition module in the supplementary material.

3.3 Background/Reflection layer reconstruction
The layer reconstruction module aims to reconstruct a
clean background image Bk and a reflection image Rk.
Although the goals of these two tasks are similar in spirit, the
characteristics of the background and reflection layers are
essentially different. For example, the background layers are
often more dominant in appearance but could be occluded
in some frames. On the other hand, the reflection layers
are often blurry and darker. Consequently, we train two
independent networks for reconstructing the background
and reflection layers. These two models have the same
architecture but do not share the network parameters. In
the following, we only describe the details for background
layer reconstruction; the reflection layer is reconstructed in a
similar fashion.

We reconstruct the background layer in a coarse-to-fine
fashion. At the coarsest level (l = 0), we first use the
flow fields estimated from the initial flow decomposition
module to align the neighboring frames. Then, we compute
the average of all the background-registered frames as the
predicted background image:

B0
k =

1

T

T∑
j=1

W (I0j , V
0
B,j→k), (2)

where I0j is the 1/2L× downsampled frame j, and W () is
the warping operation with bilinear sampling.

At the l-th level, the network takes as input the recon-
structed background image Bl−1

k , reflection image Rl−1
k ,
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Fig. 2: Algorithmic overview. We reconstruct the background/reflection layers in a coarse-to-fine manner. At the coarsest level,
we estimate uniform flow fields for both the background and reflection layers, and reconstruct coarse background/reflection
layers by averaging the aligned frames. At level l, we apply (1) the background/reflection reconstruction modules to
decompose an image, and (2) the PWC-Net to predict the refined flow fields for both layers. Our framework progressively
reconstructs the background/reflection layers and flow fields until the finest level.

background optical flows {V l−1
B,k→j} from the previous level

as well as the input frames {I lt} at the current level. To
reconstruct the background image of the keyframe Bl

k at the
current level, the background reconstruction module consists
of three steps: 1) frame registration, 2) feature extraction, and
3) image reconstruction.

Frame registration. We first upsample the background flow
fields {V l−1

B,k→j} by 2× and align all the input frames {I lj} to
the keyframe {I lk}:

Ĩ lB,j→k = W (I lj , (V
l−1
B,j→k)↑2), (3)

where ()↑2 denotes the 2× bilinear upsampling operator.

Feature extraction. For each non-keyframe image Bl
j,j ̸=k, we

first concatenate the following five features into a group:
1) background-registered frame Ĩ lB,j→k,
2) difference map Dl

B,j→k = |I lB,j→k − I lk|,
3) visibility mask M l

B,j→k,
4) upsampled background (Bl−1

k )↑2, and
5) upsampled reflection layers (Rl−1

k )↑2.
The visibility mask M l

B,j→k is computed by warping the
grid coordinates with the flow V l−1

B,j→k and checking whether
each pixel stays within the image boundary.

For T input frames, we can construct T − 1 groups. We
then apply 5 convolutional layers to extract features from

each group:

θlj→k = gθ
(
{Ĩ lB,j→k}, {Dl

B,j→k}, {M l
B,j→k}, (Bl−1

k )↑2,

(Rl−1
k )↑2

)
, (4)

where gθ is the feature extraction network. We use a max
pooling layer to collapse these T − 1 groups of features into
one representative feature. Note that the weights in gθ are
shared among all the groups. By using the weight sharing
and max pooling, our layer reconstruction module is capable
of processing arbitrary numbers of input frames.

Image reconstruction. Our background reconstruction net-
work takes the collapsed feature as input and learns to
predict the residual map of the background keyframe. The
background frame Bl

k is reconstructed by:

Bl
k = gB

(
T

max
j=1,j ̸=k

(θlj→k)
)
+ (Bl−1

k ) ↑2, (5)

where gB is the background reconstruction network.
Note that the reflection layer is also involved in the

reconstruction of the background layer, which couples the
background and reflection reconstruction networks together
for joint training. Figure 3 illustrates an overview of the
background reconstruction network at the l-th level.
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Fig. 3: Overview of layer reconstruction module. At level l, we first upsample the background flows {V l−1
B,j→k} from level

l − 1 to warp and align the input frames {I lj} with the keyframe I lk. We then compute the difference maps between the
background-registered frames and the keyframe. For each non-keyframe image, we group the following five frames as
a group: (1) background-registered frames {Ĩ lB,j→k}, (2) difference maps {Dl

B,j→k}, (3) visibility masks {M l
B,j→k}, (4)

upsampled background (Bl−1
k ) ↑2, and (5) reflection layers (Rl−1

k ) ↑2. After collecting these T − 1 groups, where T is the
number of input frames, we apply convolutional layers (with weights sharing) to extract the features from each group. We
then apply a max operation to collapse these groups into one feature map. The background reconstruction network takes
the collapsed feature as input, and learns to predict the residual map of the background keyframe. We add the predicted
residual map to the upsampled background frame (Bl−1

k ) ↑2 and generate the reconstructed background frame Bl
k at level l.

For the reflection layer reconstruction, we use the same architecture but learn a different set of network parameters. Thanks
to the use of max operation, our layer reconstruction module is able to take an arbitrary number of input frames.

3.4 Optical flow refinement
After reconstructing all the background images {Bl} at level
l, we then refine the background optical flows. We use the
pre-trained PWC-Net [57] to estimate the flow fields between
a paired of background images:

V l
B,j→k = PWC(Bl

j , B
l
k), (6)

where PWC denotes the pre-trained PWC-Net. Note that
the PWC-Net is fixed and not updated with the other sub-
modules of our model during the training stage.

3.5 Network training
To improve training stability, we employ a two-stage training
procedure. At the first stage, we train the initial flow
decomposition network with the following loss:

Ldec =
T∑

k=1

T∑
j=1,j ̸=k

∥V 0
B,j→k − PWC(B̂j , B̂k)↓2

L

∥1+

∥V 0
R,j→k − PWC(R̂j , R̂k)↓2

L

∥1 ,

(7)

where ↓ is the bilinear downsampling operator, B̂ and R̂
denote the ground-truth background and reflection layers,
respectively. We use the pre-trained PWC-Net to compute op-
tical flows and downsample the flows by 2L× as the pseudo
ground-truth flows to train the initial flow decomposition
network.

Next, we freeze the initial flow decomposition network
and train the layer reconstruction networks with an image
reconstruction loss:

Limg =
1

T×L

T∑
t=1

L∑
l=0

(∥B̂l
t −Bl

t∥1 + ∥R̂l
t −Rl

t∥1), (8)

and a gradient loss:

Lgrad =
1

T×L

T∑
t=1

L∑
l=0

(∥∇B̂l
t−∇Bl

t∥1+∥∇R̂l
t−∇Rl

t∥1), (9)

where ∇ is the spatial gradient operator. The gradient loss
encourages the network to reconstruct faithful edges to
further improve visual quality. The overall loss for training
the layer reconstruction networks is:

Lsupervised = Limg + λgradLgrad, (10)

where the weight λgrad is empirically set to 1 in all our ex-
periments. We train both the initial flow decomposition and
layer reconstruction networks with the Adam optimizer [58]
with a batch size of 2. We set the learning rate to 10−4 for the
first 100K iterations and then decrease to 10−5 for another
100K iterations. The number of pyramid levels L is set to
5. We describe the training steps of our two-stage training
strategy Algorithm 1.

3.6 Meta-learning for fast adaptation

To ensure that our model can be adapted to handle real data
more effectively and efficiently, we apply a meta-learning
technique to finetune our pre-trained model with both the
synthetic and real sequences. Specifically, we use the first-
order meta-learning algorithm [59] and describe our meta
training step in Algorithm 2. When a training batch is
sampled from synthetic data, we minimize the supervised
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Algorithm 1 Pre-training

Output: Initial flow decomposition network ΘF , back-
ground reconstruction network ΘB , and reflection re-
construction network ΘR

1: % Stage 1.
2: Randomly initialize ΘF , ΘB , and ΘR.
3: while iterations k < 100K do
4: Update ΘF with loss function Ldec in (7).
5: % Stage 2.
6: Fix the weights of ΘF .
7: while iterations k < 200K do
8: Update ΘB and ΘR for all pyramid levels with loss

function in (10).

loss (10). On the other hand, when a training batch is sampled
from real data, we optimize a warping consistency loss:

Lwarp =
T∑

k=1

T∑
j=1
j ̸=k

L∑
l=0

∥I lj − Ĩ lj∥1, (11)

where Ĩ lj = W (Bl
k, V

l
B,j→k) + W (Rl

k, V
l
R,j→k) is the re-

constructed input frame from the warped background and
reflection layers. The warping consistency loss enhances
fidelity by enforcing that the predicted background and
reflection layers should be warped back and composited into
the original input frames. In addition, we also incorporate
the total variation loss:

Ltv =
T∑

t=1

L∑
l=0

(∥∇Bl
t∥1 + ∥∇Rl

t∥1), (12)

which encourages the network to generate natural images
by following the sparse gradient image prior. The overall
unsupervised loss for training on real data is defined as:

Lunsupervised = Lwarp + λtvLtv, (13)

where the weight λtv is empirically set to 0.1 in all our
experiments. The update parameter ϵ is set to 0.1 in our
experiment. We show in Section 4.2 that the meta-learning is
able to speed up the online optimization as well as improve
the reconstruction performance.

3.7 Online optimization
We adopt an online refinement method to fine-tune our pre-
trained model with a real test sequence by optimizing the
unsupervised loss in (13). Note that we freeze the weights
of the PWC-Net and only update the background/reflection
layer reconstruction modules in both the meta-learning and
online optimization stages. We fine-tune our model on every
single input sequence for 200 iterations. The fine-tuning
step takes about 3 minutes for a sequence with a 1296 ×
864 spatial resolution. We describe the training steps of our
unsupervised online optimization in Algorithm 3.

3.8 Extension to other obstruction removal tasks
Our proposed framework can be easily extended to handle
other obstruction removal tasks, such as fence and adherent
raindrop removal. First, we remove the reflection layer

Algorithm 2 Meta-learning training with Reptile [55]

Input: Pre-trained initial flow decomposition network ΘF ,
background reconstruction network ΘB , and reflection
reconstruction network ΘR.

Output: Updated background reconstruction network Θ′
B

and reflection reconstruction network Θ′
R.

1: Fix the weights of ΘF .
2: Initialize Θ′

B ← ΘB .
3: Initialize Θ′

R ← ΘR.
4: while iterations k < 100K do
5: Randomly sample a training mini-batch, denoted as

task τ .
6: if τ is sampled from synthetic data then
7: Get the updated weights Θτ

B and Θτ
R by minimiz-

ing the supervised loss function (10).
8: else
9: Get the updated weights Θτ

B and Θτ
R by minimiz-

ing the unsupervised loss function (13).
10: Update Θ′

B ← Θ′
B + ϵ(Θτ

B −Θ′
B)

11: Update Θ′
R ← Θ′

R + ϵ(Θτ
R −Θ′

R)

Algorithm 3 Online optimization

Input: Pre-trained initial flow decomposition network ΘF ,
updated background reconstruction network Θ′

B , and
reflection reconstruction network Θ′

R.
Output: Fine-tuned background reconstruction network Θ′′

B

and reflection reconstruction network Θ′′
R.

1: Fix the weights of ΘF .
2: Initialize Θ′

B ← ΘB .
3: Initialize Θ′

R ← ΘR.
4: while iterations k < 200 do
5: Update ΘB and ΘR with unsupervised loss function
Lonline in (13).

reconstruction module and only predict the background
layers. Second, the background image reconstruction net-
work outputs an additional channel as the alpha map for
segmenting the obstruction layer. We do not estimate flow
fields for the obstruction layer as the flow estimation network
cannot handle the repetitive structures (e.g., fence) or tiny
objects (e.g., raindrops) well and often predicts noisy results.
With such a design change, our model is able to perform
well on the fence and adherent raindrop removal tasks. We
use the fence segmentation dataset [18] and alpha matting
dataset [60] to generate training data for both tasks. Fig. 4
gives an overview of adapting our framework to the fence
removal task.

To apply our online optimization for obstruction removal,
we first extract the foreground layer by F l

k = I lk ·Al
k, where

A denotes the predicted alpha map. Then, we compute the
foreground flow V l

F,j→k with the pre-trained PWC-Net. The
reconstructed frame Ĩ lj can be approximated by:

Ĩ lj = W (F l
k, V

l
F,j→k)

+W (1−Al
k, V

l
F,j→k) ·W (Bl

k, V
l
B,j→k).

(14)

We replace Ĩ lj in (11) as the warping consistency loss used in
the meta-learning and online optimization stages for fence
removal.
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Fig. 4: Overview of the fence removal task.

3.9 Synthetic sequence generation
Since it is difficult to collect real sequences with ground-truth
reflection and background layers, we use the Vimeo-90k
dataset [61] to generate synthetic sequences for training.
Out of the 91,701 sequences in the Vimeo-90k training set,
we randomly select two sequences as the background and
reflection layers. In our preliminary work [21], we adopt
the following three steps to generate a synthetic sequence.
First, we warp the sequences using random homography
transformations. We then randomly crop the sequences to
a spatial resolution of 320× 192 pixels. The composition is
applied frame by frame using the realistic reflection image
synthesis model proposed by previous work [2], [8].

In this work, we improve the data synthesis pipeline
in [21] to generate more diverse training data. During the
training stage, we apply on-the-fly random color augmen-
tation, including hue, saturation, brightness, and contrast,
on both background and reflection layers. As suggested by
previous work [2], [8], to simulate the effect that the reflection
layer is usually out-of-focus, we apply a Gaussian filter on
the reflection layer with kernel size randomly selected from
[3, 17] and standard deviation randomly sampled from [0.8,
2.9].

After blending the background and reflection layers, we
apply Gaussian noise with standard deviation randomly
selected from [0, 0.02] and JPEG compression artifacts with
compression quality randomly selected from [50, 100]. In
addition, for simulating vignetting, we add a Gaussian
falloff with a randomly selected kernel size to the synthetic
image. As our model is able to tackle arbitrary input frames,
we randomly sample 2 to 7 input frames at each training
iteration. We also provide examples of the training pairs
generated from our pipeline in the supplementary materials.

4 EXPERIMENTAL RESULTS

In this section, we present visual and quantitative compar-
isons with the state-of-the-art obstruction removal algorithms

St
on

e
To

y
H

an
oi

Input (keyframe) Recovered background Recovered obstruction

Fig. 5: Visual results on controlled sequences [20]. For each
sequence, we show the keyframe (left), recovered background
layer (middle), and reflection/occlusion layer (right).

as well as provide detailed ablation study justifying the
design choices our method. Complete visual results can
be found at https://alex04072000.github.io/SOLD/. We
also provide the source code and pre-trained models at
https://github.com/alex04072000/SOLD.

4.1 Comparisons with State-of-the-arts

Controlled sequences. We first evaluate on the controlled
sequences provided by Xue et al. [20], which contain three
videos with ground-truth background and reflection layers.
We evaluate the proposed method with the approaches by Li
and Brown [14], Guo et al. [15], Xue et al. [20], and Alayrac
et al. [19] and report the SSIM, normalized cross-correlation
(NCC) scores [20], [62], and LMSE [63] in TABLE 1. SSIM
measures the structural similarity between the recovered
and ground-truth images. NCC measures the overall quality
while ignoring the global scaling of the intensity since the

https://alex04072000.github.io/SOLD/
https://github.com/alex04072000/SOLD
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TABLE 1: Quantitative evaluation on controlled sequences [20]. We report the SSIM, NCC, and LMSE of the recovered
background and reflection layers on each sequence.

Method
Stone Toy Hanoi

Background Reflection Background Reflection Background Obstruction
SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓

Li and Brown [14] 0.7993 0.9334 0.0114 0.2038 0.3668 0.01340.01340.0134 0.6877 0.7068 0.0196 0.1092 0.6607 0.0105 - - - - - -
Guo et al. [15] 0.5292 0.7251 0.0571 0.4749 0.1006 0.2664 0.7081 0.7215 0.0231 0.4892 0.6625 0.0983 - - - - - -
Xue et al. [20] - 0.97380.97380.9738 - - 0.84330.84330.8433 - - 0.8985 - - 0.7536 - - 0.9921 - - 0.7079 -
Alayrac et al. [19] 0.7942 0.9351 0.0092 0.76330.76330.7633 0.1641 0.0407 0.7569 0.7972 0.0088 0.3652 0.5260 0.0152 - - - - - -
Liu et al. [21] 0.8598 0.9632 0.00520.00520.0052 0.2041 0.7002 0.0277 0.7696 0.9477 0.0053 0.53420.53420.5342 0.8696 0.0100 0.9238 0.9929 0.00180.00180.0018 0.2991 0.5621 0.2034
Ours 0.86350.86350.8635 0.9315 0.0062 0.5146 0.3018 0.0268 0.84940.84940.8494 0.95420.95420.9542 0.00480.00480.0048 0.3371 0.90460.90460.9046 0.00560.00560.0056 0.94570.94570.9457 0.99380.99380.9938 0.00180.00180.0018 0.31150.31150.3115 0.85490.85490.8549 0.15830.15830.1583

ground-truth images are only defined up to a scaling factor.
LMSE is also a scale-invariant metric but often used to mea-
sure errors locally. They are not always consistent since they
are designed to compare images from different aspects and
characteristics. Fig. 5 shows our method performs favorably
against other approaches in reconstructing background and
reflection/obstruction layers.

Other than the three sequences provided by Xue et
al. [20], to the best of our knowledge, there are no other
publicly available sequences with obstruction having ground
truths. In light of this, we collect six sequences with ground
truth. Specifically, we put a camera on a tripod to cap-
ture the background scenes behind the obstructions (e.g.,
glasses or fences). The captured images, therefore, contain
the background objects and the obstructions (reflections or
obstacles). We then lace a black flannel behind the obstruction
to occlude the background for capturing the ground-truth
obstruction images. Finally, we remove the obstruction to
capture the ground-truth images of the background scenes.
We repeat the process for five different camera positions.
Our dataset contains six scenes: two with reflection, two
with a fence, and two with semi-transparency. For the
scenes with semi-transparency, we cannot obtain the ground-
truth obstruction images. The reason is, after we occlude
the background with a black flannel, the captured image
becomes extremely dark as there is no light from behind.
Thus, we only provide ground-truth background images for
the scenes with semi-transparency. We conduct quantitative
comparisons with other methods with these six sequences,
and TABLE 2 shows the results. Note that Li and Brown [14]
and Guo et al. [15] are not methods designed for removing
fences and semi-transparent objects. We still include the
results as references. Our method significantly outperforms
the compared methods, including the preliminary version of
this work [21]. Fig. 6 displays the dataset and visual results
of our method.

Synthetic sequences. We synthesize 100 sequences from the
Vimeo-90k test set using the method described in Section 3.9.
We evaluate our approach with five single-image reflection
removal methods [2], [3], [6], [7], [8], and three multi-frame
approaches [14], [15], [19]. We use the default parameters
of each method to generate the results. Since the source
code or pre-trained models of Alayrac et al. [19] are not
available, we re-implement their model and train on our
training dataset (with the help from the authors). Note that
our reimplementation results for Alayrac et al. [19] are not as
good as those presented in their paper. The reason is that we
train their method using our data generation scheme for fair
comparison while their model was trained on a much large
dataset containing 400k 250-frame videos. It shows, thanks

to having more inductive bias, our method does not require
a large training dataset of long sequences compared to their
method. TABLE 3 shows the average PSNR, SSIM [64], NCC,
and LMSE [63] metrics. Note that the proposed method
without the online optimization already performs favorably
against existing approaches. By incorporating the online
optimization, we can further improve the average SSIM and
NCC on both the background and reflection layers.

Real sequences. In Fig. 7, we present visual comparisons of
real input sequences from [20]. Our method is able to separate
the reflection layers better and reconstruct clearer and
sharper background images than existing approaches [14],
[19], [20], [21]. In addition, we capture another 35 real
sequences using iPhone 11 and Google Pixel 3. Some of the
sequences contain non-planar background or moving objects
in the scenes, which make these sequences particularly chal-
lenging. In Fig. 8, we present visual comparisons with [14],
[15], [19], [21] on self-captured real input sequences. Fig. 10
shows one example where the inputs contain semi-transparant
obstruction such as texts on the glass. Our method can re-
move the obstruction layer and reconstruct clear background
images. Our method can also be applied to remove dense
static water drops that attach to the glass. Fig. 11 shows the
visual comparisons between our method and a state-of-the-
art adherent raindrop removal method DeRaindrop [65]. Our
method can better remove the raindrops and maintain details
in the recovered background in the scenarios that the method
targets for.

4.2 Analysis and Discussions

Initial flow decomposition. We demonstrate that the uniform
flow field initialization plays an important role in our
algorithm. We train our model with the following settings: 1)
removing the initial flow decomposition network, where
the flows at the coarsest level are set to zero, and 2)
predicting spatially-varying dense flow fields as the initial
flows. TABLE 4(a) reports the validation loss of (10) on our
Vimeo-90k validation set, where the model with uniform
flow prediction achieves a lower validation loss compared
to other alternatives. Initializing the flow fields to zero
makes it difficult for the following levels to decompose the
background and reflection layers.

Image reconstruction network. To demonstrate the effective-
ness of the image reconstruction network, we replace it with
a simple temporal filter to fuse the neighbor frames after
warping and aligning them with the optical flows. We show
in TABLE 4(b) that both the temporal mean and median
filters result in large errors (in terms of the validation loss
of (10)) as the errors are accumulated across levels.
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TABLE 2: Quantitative comparisons on collected controlled scenes.

Method
Reflection 1 Reflection 2 Fence 1

Background Reflection Background Reflection Background Obstruction
SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓

Li and Brown [14] 0.7829 0.9259 0.0177 0.3546 0.3971 0.01480.01480.0148 0.5746 0.6991 0.0846 0.3064 0.0822 0.01870.01870.0187 0.6576 0.7571 0.0406 0.0964 0.0134 0.2921
Guo et al.[15] 0.6034 0.6690 0.0702 0.3279 0.1013 0.2005 0.6213 0.6784 0.0694 0.3288 0.0073 0.2953 0.6227 0.8791 0.0275 0.2088 -0.1744 0.5705
Alayrac et al.[19] 0.8304 0.9641 0.0085 0.68840.68840.6884 0.0630 0.0540 0.7947 0.9287 0.0161 0.60600.60600.6060 -0.1024 0.0876 0.7478 0.9106 0.0311 0.3593 0.0822 0.3448
Liu et al.[61] 0.8852 0.9788 0.0054 0.3475 0.4181 0.2371 0.8543 0.9674 0.00650.00650.0065 0.3425 0.2245 0.1486 0.9519 0.9956 0.0017 0.36980.36980.3698 0.91700.91700.9170 0.07970.07970.0797
Ours 0.91670.91670.9167 0.98670.98670.9867 0.00360.00360.0036 0.4839 0.49680.49680.4968 0.0412 0.89390.89390.8939 0.98260.98260.9826 0.0069 0.3639 0.52650.52650.5265 0.0396 0.97110.97110.9711 0.99750.99750.9975 0.00100.00100.0010 0.3530 0.8932 0.0994

Method
Fence 2 Semi-transparency Adherent raindrop

Background Reflection Background Reflection Background Obstruction
SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓ SSIM ↑ NCC ↑ LMSE ↓

Li and Brown [14] 0.7458 0.9162 0.0116 0.2102 0.4125 0.1109 0.7694 0.8618 0.0272 - - - 0.8102 0.8584 0.0095 - - -
Guo et al.[15] 0.7536 0.9339 0.0228 0.4345 0.4920 0.10590.10590.1059 0.6630 0.6953 0.0649 - - - 0.7375 0.7958 0.0255 - - -
Alayrac et al.[19] 0.8003 0.9754 0.0069 0.48160.48160.4816 0.3996 0.1946 0.8073 0.8880 0.0213 - - - 0.8043 0.8514 0.0119 - - -
Liu et al.[61] 0.9118 0.9904 0.0038 0.3658 0.6800 0.3509 0.9009 0.9832 0.0078 - - - 0.9031 0.9763 0.0034 - - -
Ours 0.94160.94160.9416 0.99410.99410.9941 0.00250.00250.0025 0.3392 0.68650.68650.6865 0.3619 0.93780.93780.9378 0.99030.99030.9903 0.00470.00470.0047 - - - 0.93120.93120.9312 0.98690.98690.9869 0.00190.00190.0019 - - -
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Fig. 6: Visual results on the collected controlled sequences. For each sequence, from left to right, we show the keyframe,
the ground-truth background, the ground-truth obstruction (if available), the background layer and reflection/occlusion
layer recovered by our method.
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TABLE 3: Quantitative comparison of reflection removal on synthetic sequences. We evaluate on our synthetic dataset
with 100 sequences, where each sequence contains five consecutive frames. For the single-image based methods [2], [3], [6],
[7], [8], we generate the results frame-by-frame. For multi-frame algorithms [14], [15], [19], [21] and our method, we use five
input frames to generate the results.

Method Background Reflection
PSNR ↑ SSIM ↑ NCC ↑ LMSE ↓ PSNR ↑ SSIM ↑ NCC ↑ LMSE ↓

Single image

CEILNet [2] CNN-based 18.64 0.6808 0.8102 0.0408 - - - -
Zhang et al. [8] CNN-based 17.27 0.6861 0.8142 0.0272 15.61 0.4271 0.5368 0.1173
BDN [7] CNN-based 15.49 0.6654 0.7076 0.0426 - - - -
ERRNet [6] CNN-based 20.19 0.7530 0.8157 0.0198 - - - -
Jin et al. [3] CNN-based 16.78 0.6993 0.7321 0.0242 9.13 0.3069 0.3779 0.1276

Multiple images

Li and Brown [14] Optimization-based 15.36 0.5950 0.6155 0.0802 7.00 0.2047 0.2809 0.1335
Guo et al. [15] Optimization-based 13.51 0.4835 0.5460 0.0909 11.85 0.2408 0.2517 0.1975
Alayrac et al. [19] CNN-based 21.12 0.7277 0.8520 0.0248 16.84 0.5283 0.6225 0.1706
Liu et al. [21] CNN-based 23.82 0.8082 0.8936 0.0150 17.65 0.5338 0.6299 0.1103
Ours w/o online optimization CNN-based 26.7526.7526.75 0.8742 0.9247 0.01140.01140.0114 20.4020.4020.40 0.6329 0.7731 0.0974
Ours CNN-based 25.98 0.89160.89160.8916 0.95160.95160.9516 0.0169 19.81 0.71410.71410.7141 0.78940.78940.7894 0.09210.09210.0921
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Fig. 7: Visual comparisons of background-reflection separation on natural sequences provided by [20].

TABLE 4: Ablations. We analyze the design choices of the proposed method and report the validation loss of (10) on the
synthetic reflection-background Vimeo-90k test set.

(a) Initial flow decomposition: Predict-
ing uniform flow fields as initialization
achieves better results.

(b) Fusion method: Our image reconstruction
network recovers better background/reflection
than temporal mean/median filtering.

(c) Model training: Both the network pre-
training and online optimization are important
to the performance of our method.

[t]

Flow initialization Loss

Zero initialization 0.478
Dense flow field 0.236
Uniform flow field (Ours) 0.1970.1970.197

Image fusion method Loss

Temporal mean filtering 0.652
Temporal median filtering 0.555
Image reconstruction network (Ours) 0.1970.1970.197

Online optimization Pre-training Loss

✓ - 0.468
- ✓ 0.283
✓ ✓ 0.1970.1970.197
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Fig. 8: Visual comparisons of background-reflection separation on natural sequences.

TABLE 5: Ablation study on the number of pyramid levels.

Pyramid level Validation loss

1 (without coarse-to-fine) 0.382
2 0.321
3 0.308
4 0.289
5 0.283
6 0.281

Online optimization. TABLE 4(c) shows that both the
network pre-training with synthetic data and online opti-
mization with real data are beneficial to the performance
of our model. In Fig. 9, we show that the model without
pre-training cannot separate the reflection (or fence) well on
the real input sequence. Without online optimization, the
background image contains residuals from the reflection
layer. After online optimization, our method is able to
reconstruct both background and reflection layers well.

Pyramid level. TABLE 5 shows the ablation study on the
number of pyramid levels L. Without the coarse-to-fine
strategy (L = 1), the method gives the worst validation
loss. By increasing the pyramid levels, the loss decreases. We

choose L = 5 because (1) the performance nearly saturates
after five levels and (2) more levels consume more memory.
Fig. 12 compares the visual results of the reconstructed
background and reflection with different pyramid levels.
With more pyramid levels, our method can reconstruct
the background more faithfully. In Fig. 13, we plot the
distributions of the validation losses on the 200 images in
the validation set. The plot clearly shows that the validation
losses distribute more toward the left end (i.e., more images
with lower validation losses) when using more pyramid
levels. In Fig. 14, we plot the PSNR improvement of the
coarse-to-fine (multi-scale) scheme compared to the single-
scale baseline. The plot shows that with the pyramid level
L = 2, about 75% of the images in the validation set have
higher PSNR than those with only a single scale. With more
pyramid levels, the winning ratio further increases. With the
pyramid level L = 5, about 50% of the images have more
than 2.5dB PSNR improvement compared to the single-scale
scheme. About 10% of the images do not gain improvements
from the multi-scale scheme with the pyramid level L = 5.

Realistic training data generation. We conduct an experi-
ment to demonstrate the impact of training data generation
using controlled sequences Stone and Toy. TABLE 6 shows
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Fig. 9: Effect of pre-training, online optimization, and meta-learning. All three steps are crucial to achieving high-quality
results.

Input Xue et al. [20]
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Fig. 10: Occlusion removal. The proposed method can also
be applied to other obstruction removal tasks, e.g., adherent
raindrop, fence, and occlusion.
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Fig. 11: Visual comparisons on scenes with dense adherent
raindrops.
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Fig. 14: PSNR improvement compared to L = 1.

that the NCC scores of reconstructed background and
reflection layers are higher by using the proposed realistic
training data generation. By training with proposed realistic
training data generation, the reconstructed background and
reflection layers are much sharper and contain more details.

Number of input frames. We analyze the effect of the
number of input frames on the reconstruction quality using
our synthetic sequences. Fig. 15 shows that the results
of fence removal are better by giving additional input
frames. Fig. 15 also shows that adding additional frames
as input leads to improvement in NCC of the reconstructed
background and reflection layers.

Input features. TABLE 7 studies the impact of the five input
features. Among all the input features, the most important is
the registered frames, and the least important is the difference

2 4 6
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(a) NCC of the background layer (b) NCC of the obstruction layer

(c) 3 input frames (d) 5 input frames

(e) 7 input frames (f) 9 input frames

Fig. 15: Effect of number of input frames. Introducing new
frames as input is always likely to improve the result accu-
racy of reconstructed background and obstruction images.

TABLE 6: Effect of realistic training data generation.

Method B R

Data generation used in [21] 0.9390 0.5886
Ours realistic training data generation 0.94280.94280.9428 0.60320.60320.6032

maps. The combination of all five features gives the best
performance.

Meta-learning. We use the controlled sequence Toy to demon-
strate the effectiveness of the meta-learning. Fig. 16 shows
that the model pre-trained with meta-learning (blue curve)
is able to converge faster and achieve better NCC scores at
the same number of online optimization steps. With meta-
learning, the number of online optimization steps can be
reduced from 1,000 to 200 and achieve similar quality as
in [21]. Fig. 9 also demonstrate that the meta-learning can
improve the visual quality of the reconstructed background
and reflection/fence layers. TABLE 8 shows the comparisons
of running time.

Running time. In TABLE 9, we compare the execution time
of two optimization-based algorithms [14], [15] and a recent
CNN-based method [19] with different input sequences
resolutions on a computer with Intel Core i7-8550U CPU and
NVIDIA TITAN Xp GPU. Alayrac et al. [19] use a 3D CNN
architecture without explicit motion estimation, which results
in a faster inference speed. In contrast, our method computes
bi-directional optical flows for every pair of input frames in
a coarse-to-fine manner, which is slower but achieves much
better reconstruction performance.

Video obstruction removal. The proposed method takes
multiple neighboring frames as input and generates the
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TABLE 7: Ablation study on the input features.

Registered frame Difference map Visibility mask Upsampled background Upsampled reflection Validation loss

✓ ✓ ✓ ✓ 0.416
✓ ✓ ✓ ✓ 0.288
✓ ✓ ✓ ✓ 0.294
✓ ✓ ✓ ✓ 0.314
✓ ✓ ✓ ✓ 0.322
✓ ✓ ✓ ✓ ✓ 0.283

TABLE 8: Running time comparison (in seconds) of the
proposed method. With meta-learning, our model can run
about 4× to 5× faster while achieving similar or better
reconstruction quality.

Online
optimization

Meta-
learning

QVGA
(320× 240)

VGA
(640× 480)

720p
(1280× 720)

× × 1.107 2.216 9.857
✓ × 66.056 264.227 929.182
✓ ✓ 28.436 69.224 187.439
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Fig. 16: Effect of meta-learning. Online optimization trained
with meta-learning convergences faster than without.

separation results for a single reference frame at a time.
Although predicting each reference frame independently, our
method still generates temporally coherent results on the
entire video. Here, we compare our method with four video
reflection removal approaches [17], [20], [66] and report
results in Fig. 17. Both the methods of Xue et al. [20] and
Yang et al. [66] take multiple frames as input and generates
the middle frame, similar to our model. Xue et al.+ [20]
is an extension of [20] which uses the moving window
strategy in [66] to improve the temporal consistency. Both
Xue et al.++ [20] and Yang et al.++ [66] adopt a temporal
average filtering to further reduce the temporal flickering.
Nandoriya et al. [17] use a spatiotemporal optimization
method to process the entire video sequence jointly.

Failure cases. Our method has difficulty in handling complex
scenes with multiple layers and highly dynamic objects.
Fig. 18 shows that our method does not separate the reflection
layer well. This example is particularly challenging as there
are two layers of reflections: the top part contains the wooden

TABLE 9: Running time comparison (in seconds). CPU: Intel
Core i7-8550U, GPU: NVIDIA TITAN Xp. * denotes methods
using GPU.

Method QVGA
(320× 240)

VGA
(640× 480)

720p
(1280× 720)

Li and Brown [14] 82.591 388.235 1304.231
Guo et al. [15] 64.251 369.200 1129.125
*Alayrac et al. [19] 0.549 2.011 6.327
*Ours 28.436 69.224 187.439
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Fig. 17: Evaluation different reflection removal methods
on a controlled synthetic sequence provided by [17]. Our
method generates the best temporal coherency and layer
separation.

beams, and the bottom part comes from the street behind the
camera. Fig. 19 shows an example of a sequence containing
a highly dynamic object (e.g., cat). As flow estimation cannot
compensate for the motion well, our method produces blurry
background reconstruction. Severe occlusions could also
cause problems. In Fig. 20, we show a scene with severe
adherent raindrops, which cause all methods to fail to remove
the raindrops. In the blue zoom-in regions, our method
successfully removes the adherent raindrops and recovers
scene content better than DeRaindrop [65]. However, in
the orange zoom-in regions, all methods fail to remove the
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Fig. 18: A failure case. Our method fails to recover the correct
flow fields for each layer, leading to ineffective reflection
removal.
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Fig. 19: A failure case with a highly dynamic scene.

Input DeRaindrop [65] Liu et al. [21] Ours

Fig. 20: A failure example with severe raindrops.

adherent raindrops due to severe occlusions.

5 CONCLUSIONS

In this work, we propose a novel method for multi-frame
reflections and obstructions removal. Our key insight is to
leverage a CNN to reconstruct background and reflection
layers from flow-warped images. Integrating optical flow
estimation and coarse-to-fine refinement enable our model
to robustly recover the underlying clean images from chal-
lenging real-world sequences. Our method can be applied to
different tasks such as fence or adherent raindrop removal
with minimum changes in our design. We also show that
online optimization on testing sequences leads to improved
visual quality. Extensive visual comparisons and quantitative
evaluation demonstrate that our approach performs well on
a wide variety of scenes.
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