
1

A Low-Cost Portable Polycamera for Stereoscopic
360◦ Imaging

Hong-Shiang Lin, Chao-Chin Chang, Hsu-Yu Chang, Yung-Yu Chuang, Tzong-Li Lin, Ming
Ouhyoung Member, IEEE

Abstract—This paper proposes a low-cost and portable poly-
camera system and accompanying methods for capturing and
synthesizing stereoscopic 360◦ panoramas. The polycamera con-
sists of only four cameras with fisheye lenses. Synthesizing
panoramas from only four views is challenging because the
cameras view very differently and the captured images have
significant distortions and color degradation including vignetting,
contrast loss, and blurriness. For coping with these challenges,
this paper proposes methods for rectifying the polyview images,
estimating depth of the scene and synthesizing stereoscopic
panoramas. The proposed camera is compact in size, light
in weight, and inexpensive. The proposed methods allow the
synthesis of visually pleasing stereoscopic 360◦ panoramas using
the images captured with the proposed polycamera. We have
built a prototype of the polycamera and tested it on a set of
scenes with different characteristics of depth ranges and depth
variations. The experiments show that the proposed camera and
methods are effective in generating stereoscopic 360◦ panoramas
that can be viewed on popular virtual reality displays.

Index Terms—Omnistereo panoramas, Polycameras, Stereo-
scopic 360◦ cameras.

I. INTRODUCTION

Virtual reality (VR) enables users to navigate through an
artificial world and offers novel ways in which users can
interact with others and the digital world. VR has become
very popular recently. Quite a few head-mounted displays are
available in the market at affordable prices [1], [2]. Because
of these devices, VR is no longer a privilege of scientists and
developers to play with, and has become accessible to general
consumers for day-to-day use. In addition to stereoscopic 3D,
an important characteristic of VR is to allow users to look
around [3]. It is generally plausible to synthesize a synthetic
scene from different viewpoints. However, real scenes would
require omnidirectional capture to allow users to look around
though it can be achieved through stitching software [4], multi-
view stitching systems [5] or omnidirectional cameras [6].
Although there are several 360◦ cameras in the market, most of
them can only capture a single panorama. Thus, when viewing
their captured images with VR displays, which allows users
to look around, stereoscopic 3D is absent as both eyes see the
same image.

H.-S. Lin and Y.-Y. Chuang, and M. Ouhyoung are with CSIE, NTU,
Taiwan, email: amsdya@gmail.com.

H.-S. Lin, C.-C. Chang, H.-Y. Chang, and T.-L. Lin are with Toppano. Inc.,
Taiwan, e-mail: amsdya@gmail.com.

Copyright c© 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

A few attempts were made to develop stereoscopic 360◦

cameras. Some researchers proposed the use of a rotating
camera for constructing an omnistereo panorama [7]–[9].
Although effective in producing stereoscopic 360◦ panoramas,
a system with a rotating camera can only capture static scenes
as rotating the camera in a full circle takes time. To overcome
the limitation, based on the design by Peleg et al. [8], later
research employed multiple synchronized optical systems [10],
[11]. These systems are however often bulky and expensive.
For example, Google Jump [11], [12] consists of 16 GoPro
cameras in a circle of diameter 280 mm and weighs approxi-
mately 6.5 kg, making it cumbersome to carry and operate. In
addition, it costs approximately $10, 000. Facebook Surround
360 [13] has a similar design with 17 cameras and an estimated
cost of $30, 000. Although high-quality images are offered, the
relatively high cost and low portability make it more suitable
for professionals rather than the general consumers.

This paper proposes the design of a stereoscopic 360◦

camera of lower cost and better portability. To reduce the cost
and enhance the portability, we aim to use fewer cameras,
resulting in fewer views, as compared to previous designs
such as Google Jump. To encode stereoscopy on a fully
spherical field of view (FOV), the input views together should
span at least two times the 360◦ × 180◦ FOV. A possible
minimal configuration involves the use of three cameras with
ultra wide-angle fisheye lenses, each with a 240◦ horizontal
FOV. However, ultra-wide angle lenses are more expensive
than fisheye lenses with 180◦ × 180◦ to 190◦ × 190◦ FOVs
and image quality is even worse. Therefore, the proposed
system consists of four fisheye cameras. The fisheye cameras
are placed on a circle of diameter 100 mm and the viewing
directions of neighboring cameras are kept roughly orthogonal
to each other. Each fisheye camera captures a 190◦ × 190◦

FOV. A camera shares almost one half of its visual field
with each of its neighboring cameras. The compact size and
lightweight design make the camera portable to a greater
extent. The design is similar to the polycamera [14] which was
designed to capture monocular panoramas by packing fisheye
cameras with a much smaller FOV. Thus, we use the same
name, polycamera, to refer to the proposed camera system.
Fig. 1(a) shows a prototype of the proposed polycamera and
an example of the captured polyview image consisting of four
fisheye images. With the captured images, this paper proposes
methods for synthesizing two 360◦ panoramas, for the left and
right eyes, respectively, as shown in Fig. 1(b). Together, they
form a stereoscopic 360◦ panorama, and with VR displays,
users can view the captured scene from any direction with

2

L R

(a) (b) (c)

Fig. 1. Overview of the proposed camera, the synthesized panoramas and the VR viewing application. (a) A prototype of the proposed polycamera and
fisheye images captured by it (for example Library). (b) The two 360◦ panoramas for the left and right eyes, respectively, synthesized from the captured
fisheye images using the proposed stereoscopic panorama synthesis method. (c) A screenshot of the mobile phone for stereoscopic viewing when using the
Google VR Cardboard.

vivid depth perception (Fig. 1(c)).
Although the use of few views can lead to the devel-

opment of a polycamera system which is easy to carry
and inexpensive, it presents great challenges for omnistereo
panorama synthesis. Previous methods often require dense
views for synthesizing high-quality panoramas. For example,
the rotating slit camera [8] would require a large number
of views to reduce cross-view distortions and visible seams
caused by the limited angular resolution [15]. The flow-based
view interpolation method used by Jump [11] and Surround
360 [13] also requires dense views to work. If views are
sparse, flow-based interpolation could suffer from the problem
that occurs with holes. Fig. 2 illustrates such a problem. The
holes occur within non-overlapped FOVs because there is no
correspondence and no interpolation can be performed. It is
possible to reduce the number of holes by decreasing the
separation between the sampled image strips and central strips
of input views. However, doing so leads to less disparity values
in the omnistereo panorama (with a smaller radius for the
viewing circle), thus reducing 3D effects.

In using few views for view synthesis, the key idea is
to recover the depth information encoded in the overlapped
FOVs between the cameras and use depth-image-based ren-
dering. For obtaining sufficient view overlaps with only four
cameras, a much wider FOV is required for each camera
leading to the use of the fisheye lens. Accompanied by the
advantage of providing view overlaps, one has to deal with
the problems of significant image distortions and color degra-
dation caused by the fisheye lens. In addition, our viewing
directions are outward and nearly orthogonal to each other.
Such a viewing configuration results in large non-overlapped
visual fields between neighboring views, thus increasing the
matching ambiguity of stereo correspondence estimation. To
address the above challenges, this paper proposes methods for
polyview image rectification, panoramic depth estimation and
stereoscopic panoramic view synthesis.

• Polyview image rectification. The first step is to undistort
and align images so that image disparity values can be
inferred robustly along horizontal scanlines. Thus, the
paper proposes a robust and fully automatic polycam-
era calibration method for camera pose recovery and
lens distortion estimation. Next, the paper proposes a
compact spherical stereo view transformation to rectify
fisheye images to form a set of inverse-equirectangular

(a) (b)

(c) (d)

Fig. 2. The problem with holes in flow-based interpolation on sparse views.
The black dots and arrows denote the positions and viewing directions of
cameras. The black circles from inner to outer views are the image circle, the
circle of camera placement and the viewing circle. The red lines denote the
sampled image strips on input views for the right-eye panorama composition,
and the black dotted lines denote the boundaries of overlapped FOVs between
neighboring views. Correspondences can be computed within the regions with
view overlaps (the green regions). For non-overlap regions (gray regions),
there is no correspondence and view interpolation cannot be taken. Upon
setting the radius of the viewing circle at 45mm (the top view (a)), significant
holes can be observed in the synthesized panorama (b) with flow-based
interpolation. By decreasing the radius to 1.4mm (c), the holes can be reduced
in the panorama (d), but the 3D effects are also significantly reduced with
less disparity.

image pairs. The resulting view representation effectively
records stereo information of a fully spherical field of
view and removes non-overlapped regions of each image
pair.

• Panoramic depth estimation. The second step is to
estimate scene depth from a set of rectified inverse-
equirectangular image pairs. The images exhibit signif-
icant color degradation such as blurriness and vignetting
with large fisheye projection angles. Instead of applying
separate color transform steps which depend heavily
on quality of image alignment, the paper proposes a
trinocular matching cost blending method which aggre-
gates color information from all views with an adaptive
weighting scheme involving fisheye projection angles.
The algorithm greatly reduces depth discrepancy across
stereo visual fields.

• Stereoscopic panorama synthesis. This paper presents
dedicated depth-image-based rendering methods for om-

3

Camera Panorama Price Portablity Stitching Artifacts Effective
Configuration Resolution Disparity

Google Jump [11] 16 cameras 8K by 4K High Low No ghosting but the method Effective at all directionson a ring requires dense views to work

Surround360 [13] 17 cameras 8K by 4K High Low No ghosting but the method Effective at all directionson a ring requires dense views to work

NOKIA OZO [16] 8 cameras 8K by 4K High Low No ghosting but the method Effective at all directionson a spherical rig requires dense views to work
Fraunhofer 10 mirrors with 10K by 2K High Low No ghosting but the method Effective at all directionsHHI OmniCam [17] 20 micro cameras is limited to mirror-based systems

Samsung Gear [18] 2 cameras back 4K by 2K Low High Expose Ghosting No disparity (monocular)to each other
Low-cost 360 4 cameras on 6K by 3K Low High No ghosting No disparity

photography [19] a stereo rig along the rig baseline
The proposed 4 cameras on 6K by 3K Low High No ghosting Effective at all directionspolycamera a ring

TABLE I
COMPARISONS OF REPRESENTATIVE 360 DEVICES/METHODS ON THE BASIS OF THEIR RESOLUTIONS, PRICES, PORTABILITY, STITCHING ARTIFACTS, AND

THE VIEWING RANGES OF EFFECTIVE DISPARITY.

nistereo panorama synthesis. We derive formulations for
efficient forward and inverse mapping by exploring the
omnistereo projection model. In addition, the inverse
mapping incorporates depth consistency to resolve col-
liding candidates, greatly reducing artifacts on object
boundaries.

The paper is organized as follows. In Section II, we briefly
review the related work. The next three sections describe meth-
ods for polyview image rectification (Section III), panoramic
depth reconstruction (Section IV) and stereoscopic panorama
synthesis (Section V) respectively. Section VI provides evalua-
tion of the proposed methods and presents several synthesized
stereoscopic 360◦ panoramas. Finally, Section VII concludes
the paper and suggests future work.

II. RELATED WORK

Omnistereo cameras. Peleg et al. proposed a projection model
and an early camera design for capturing omnistereo panora-
mas [8], [9]. Their rotating slit camera system aggregates two-
sided strips of every captured image to construct a pair of
cylindrical panoramas. The stitching method however could
suffer from artifacts of visible seams and vertical parallax
due to the imperfection of camera setting in practice and
the limited angular resolution. Richardt et al. addressed these
issues by using structure from motion to recover camera
poses and performing cylindrical rectification to remove image
distortion and vertical parallax [20]. Their system further
computes the net flow field to guide image blending. A major
drawback of the rotating camera system is that it can only
capture static scenes. Aggarwal et al. presented Coffee-filter,
a customized mirror system which can capture panoramic
stereo videos without rotating optics [21]. However, it can
only synthesize images of a medium vertical resolution.

To handle dynamic scenes in general, several synchronized
camera systems have been proposed. Tanaka and Tachi re-
alized Peleg et al.’s omnistereo model [8] with a rotating
optic system composed of prism sheets, polarizing films, and
a hyperbolical mirror [10]. It constructs a complete panorama
using five frames and a high-speed shutter. The Fraunhofer

Institute proposed a mirror-based multi-camera system which
consists of ten 36◦ mirrors and twenty micro cameras (two
cameras for each mirror) [17]. It allows parallax-free stitching
but the vertical field of view is limited. Google Jump [11]
synchronizes 16 GoPro cameras and uses a dedicated optical
flow method for efficient view interpolation, generating visu-
ally pleasing results. The above systems are costly and often
cumbersome to carry and set up. Chapdelaine-Couture et al.
proposed to use few cameras using an omnipolar system with
wide-angle lens [22]. It can capture omnistereo panoramas
with a minimal set of three cameras. However, the horizontal
disparity degenerates around the stitching boundary. A recent
research aimed to propose a low-cost device which consists
of two 360◦ cameras on a stereo rig [19]. The camera,
however, cannot simulate a proper stereo at all directions.
Later, Robert et al. presented Vortex [23]— a rotated stereo
capture with a high-speed motor which can natively handle
challenging phenomena such as refraction and reflection.
However, the resulting images tend to be dark due to high-
speed spins and shorter exposures of the cameras. Table I
compares the proposed polycamera with other representative
360 devices/methods.
Omnidirectional camera calibration. There were calibration
systems [24]–[26] for panoramas generated from rotational
line scanning cameras. Schneider et al. adopted a general
rotation model considering imperfect camera rotation such
as eccentricity of the projection center, non-parallelism CCD
lines, and deviation from the planar move [24]. The de-
ployment consists of hundreds of targets in a calibration
room. Parian et al. formulated a 3D straight line constraint
on a panoramic image with multiple viewpoints to reduce
the required number of feature points for calibration [25].
Guan et al. simplified the calibration environment with a
calibration box, and formulated a multi-plane projection onto a
sphere [26]. The system adopts a single viewpoint projection
model and only estimates the vertical FOV of the spherical
image.
Omnidirectional depth estimation. There were quite a few
omnidirectional systems aiming to reconstruct scene depth

4

within a single shot [27]–[29]. These systems aim at real-
time depth sensing via vertical disparity computation. Nayar
proposed to use two specular balls to record light rays and
a perspective camera to capture the specular reflection [27],
whereas Southwell et al. used double lobed mirrors [28].
Both systems have multiple centers of projection, leading to
more complicated calibration. Therefore, Gluckman et al. used
parabolic mirrors with a single center of projection to simplify
the calibration [29]. The above devices cannot generate high-
resolution depth maps due to limited image resolution.

There were also researches aiming to acquire omnidirec-
tional depth by matching cameras at multiple viewpoints.
Arican et al. formulated a global optimization framework
and used graph cut to match single-viewpoint panoramas
captured at two different viewpoints [30]. Lee et al. pro-
posed a multi-resolution approach to refine depths in tex-
ture less regions [31]. For large-scale scene reconstruction,
Schönbein et al. used a stereo omnidirectional camera rig
which can acquire a complete 360◦ depth map from two
consecutive frames [32]. The proposed system extracts plane
candidates from virtual 360◦ disparity maps and refines depth
maps by using the global depth plane assignment. All the
above systems cannot compute the depth for dynamic scenes
and require more than two viewpoints for acquiring effective
disparity value at every viewing direction.

III. POLYVIEW IMAGE RECTIFICATION

The first step of our system is to rectify the captured
fisheye images (e.g., the top row of Fig. 7) to form a compact
stereo view representation (e.g., the middle row of Fig. 7).
For the rectification, we first relate the cameras through
calibration and then use the recovered camera parameters
for view transformation. The proposed calibration procedure
includes a simple calibration deployment and a robust camera
parameter estimation method, where the camera parameters
are formulated based on our proposed polycamera projection
model. The proposed view transformation includes view over-
lap computation and compact spherical image rectification
methods, where the spherical image rectification compactly
undistorts input fisheye images into a set of rectified stereo
image pairs on the inverse-equirectangular space.

A. Polycamera Calibration

Calibration deployment. For the proposed multi-camera
wide-angle setting, it would be tedious and time-consuming
to move a chessboard to cover a full 360◦ × 180◦ FOV. To
ease the calibration process, we design a six-sided calibration
cube covered by multiple chessboards (Fig. 3(a)). The deploy-
ment ensures that each camera captures a sufficient number
of uniformly distributed features. With the calibration cube,
the polycamera can be calibrated with a single shot1. The
dimensions of the calibration cube are 190 cm × 190 cm
× 190 cm, and each chessboard consists of 12 × 6 grids of
dimensions 7.5 cm × 7.5 cm. Each of the four horizontally

1Although it is possible to move the cameras for capturing more images,
experiments show that a single shot is enough for image rectification.

(a) (b)

Fig. 3. Calibration deployment and the captured images. (a) The calibration
cube. (b) The four images captured by fisheye cameras in a single shot. Each
chessboard is captured by two cameras. The shared views are outlined with
the same color.

oriented faces is covered with six chessboards, whereas each
of the two vertically oriented faces is only covered with four
chessboards. For calibration, the polycamera is put at the
center of the calibration cube and each camera is oriented
towards the center of each of the four horizontally orientated
faces. With this deployment, each fisheye camera roughly
captures sixteen chessboards and each pair of neighboring
cameras captures roughly eight chessboards in common, as
shown in Fig. 3.
Polycamera projection estimation. First, we describe the
polycamera projection model. We use Vi to denote the i-th
fisheye camera in order, where i = 0..n, n being the number
of cameras with n = 4 for our polycamera. Let Pi denote
the projection function for Vi, consisting of the intrinsic
projection of each camera and relative poses between the
cameras. Ri,i+1 and Ti,i+1 denote, respectively, the relative
rotation and translation between two consecutive cameras Vi

and Vi+1 (the addition in the camera index is actually modulo
n because Vn−1 and V0 are next to each other). Ki is the
intrinsic projection for Vi and incorporates the polynomial
model [33] for modeling the wide-angle fisheye lens distortion.
As the fisheye cameras in our polycamera are configured on a
loop trajectory, the relative pose between the first and the last
cameras, Rn−1,0 and Tn−1,0, can be further formulated as:

Rn−1,0 =

n−2∏
i=0

RT
i,i+1,Tn−1,0 = −

n−2∑
i=0

(

i∏
j=0

Rj,j+1)TTi,i+1

(1)

The polycamera projection parameters can be estimated by
minimizing the reprojection error of the chessboard corners.
We relate all pairwise transformations with the loop trajectory
formulation (Equation 1) and jointly refine all projection pa-
rameters Pi for all views with the Gauss-Newton algorithm2.

B. View Transformation

View overlap determination. The FOVs of fisheye lenses and
the camera placement determine the stereo viewing coverage
of the proposed polycamera. Fig. 4 shows the top view of
the viewing configuration. Ideally, if all cameras are placed
correctly with 180◦ FOV, each point can be viewed by two
cameras. However, the camera placement may not be perfect.

2For incorporating the loop constraint into the bundle optimization, the
derivatives of the projection to Rn−1,0 and Tn−1,0 can be expressed as
the combinations of derivatives of the projection with other rotations and
translations by using the chain rule.

5

𝑓 = 180°

𝑓 = 180°

𝑓 > 180°

Fig. 4. The top view of the viewing configuration. The solid lines represent
180◦ horizontal FOV per camera. The dotted arrows and lines represent
viewing directions with 180◦ FOV deviated from the ideal viewing directions
represented by solid arrows with 180◦ FOV. The red region denotes a “blind
matching area” resulting from the viewing deviation, which can be remedied
by using a lens with a wider FOV denoted by red dotted lines.

I i I i+1

! !

""

~
I

i

~
I

i+1

colatitude (𝜃)

lo
n

g
it

u
d

e
(𝜙

)

(0,0) (𝜋, 0)

(0, 2𝜋)

colatitude (𝜃)

lo
n

g
it

u
d

e
(𝜙

)

(0,0) (𝜋, 0)

(0, 2𝜋)

𝜃 =
𝜋

2
 𝜃 =

𝜋

2

𝜙 = 𝜋 𝜙 = 𝜋

~
I

i

~
I

i+1

colatitude (𝜃)

lo
n

g
it

u
d

e
(𝜙

)

(0,0) (𝜋, 0)

(0, 2𝜋)

𝜃 =
𝜋

2

𝜙 = 𝜋

colatitude (𝜃)

lo
n

g
it

u
d

e
(𝜙

)

(0,0) (𝜋, 0)

(0, 2𝜋)

𝜃 =
𝜋

2

𝜙 = 𝜋

(a) (b) (c)

Fig. 5. View overlaps of V0 and V1 (denoted by the yellow color) using
190◦ × 190◦ FOV for each camera. All red curves (lines) and blue curves
(lines) denote colatitudes θ = 90◦ and longitudes φ = 180◦ on the rectified
viewing spheres. (a) The fisheye view overlaps. (b)(c) Spherical rectification
results for V0 and V1. Yellow regions denote the transformed view overlaps
on inverse-equirectangular images. (b) The results of transformed view over-
laps. (c) Undesirable split view overlaps. This figure shows the transformation
results by reversing the new viewing direction as described in step #2 of the
rectification process.

Fig. 4 illustrates the viewing deviation that can occur. In this
case, there could be a “blind matching area” which can only
be seen with one camera. Fortunately, fisheye lenses usually
have around 200◦ FOV. The problem with an imperfect camera
placement can be remedied by using a larger FOV (red dotted
lines in Fig. 4). Given a specified FOV for each fisheye image,
we compute view overlaps on the fisheye space. For each
pixel, we generate the corresponding viewing ray using the
recovered intrinsic projection parameters. Then we compute
the angle between the viewing ray and the viewing direction
of the neighboring view. If the angle is smaller than the largest
projection angle, the pixel is marked as an overlapped pixel.
Fig. 5(a) shows the computed view overlaps for the proposed
polycamera.
Compact spherical rectification. Given the calibrated camera
parameters and computed fisheye view overlaps, the four
fisheye images Ii can be transformed into a set of rectified
images required for stereo matching. Because traditional per-
spective rectification results in severe stretch effects on large
projection angles, we choose to rectify the fisheye images on
the inverse-equirectangular space rather than the perspective
space. This paper proposes a dedicated application of the
spherical rectification theory [34] to construct a compact stereo
view representation for the proposed polycamera.

The basic idea of spherical rectification is to rotate viewing
spheres so that north poles are aligned with the epipoles
and a 3D point projects onto the same longitude on the
rotated viewing spheres [34]. Our goal is to compute rota-
tion matrices R̃i such that the computed view overlaps get
transformed into compact image regions. Fig. 6 illustrates the
rectification process for V0 and V1. First, we build an initial
spherical coordinate system for each view. The up vector

𝑽𝟎

𝑧

𝑥 𝑦

𝜙 = 0°

𝑥

𝑧

𝑦

𝑽𝟏

𝐞𝟏𝟎

𝑆

𝑁

𝜙 = 0°

𝑆

𝑁

𝑽𝟎

𝜙 = 0°

𝑥

𝑦

𝑽𝟏

𝐞𝟏𝟎

𝑁‘

𝜙 = 0°

𝑆‘

𝑁’
𝑆’

𝑦′

𝑦′

𝑧′

𝑧′

𝑥′

𝑥′

𝑋

Fig. 6. A 3D view of spherical rectification for the viewing spheres V0

and V1 of the proposed camera. Viewing directions and up vectors are not
shown here for brevity. After spherical rectification, a 3D point X projects
on the same longitudes (green curves) of the viewing spheres. In addition,
the view overlaps denoted by yellow colors are located on the regions close
to φ = 180◦, resulting in a compact transform of the inverse-equirectangular
space.

u = [0 − 1 0]T is aligned to the north pole, and the
viewing direction v = [0 0 1]T is aligned to the Greenwich
(longitude = 0◦). Then R̃0 and R̃1 are computed by the
following procedure where we construct R̃0 first and then
compute R̃1 accordingly:

1) Assign the new up vector u′ of V0 to be aligned with
the epipole e10 (i.e., the projection of the viewpoint of
V1 on the viewing sphere of V0). For achieving this,
the second column vector r2 of R̃0 is assigned as u′.

2) Any vector orthogonal to the new up vector can be a
candidate for the new viewing direction v′. However, the
new viewing direction gives regard to the new Green-
wich projection. To prevent splitting view overlaps on
the rectified images, the new Greenwich projection can
be achieved at the back of the input views. Therefore,
we set the new viewing direction v′ = (v · e10)e10 − v
For achieving this, the third column vector r3 of R̃0 is
assigned as v′.

3) Finish the construction of R̃0 by computing its first
column vector r1 as r2 × r3.

4) Compute R̃1 = R0,1R̃0 where R0,1 is the extrinsic
parameter obtained from calibration.

After rotations, corresponding pixels are located at the same
height as that of inverse-equirectangular images and view
overlaps are transformed into compact regions, as shown in
Fig. 5(b). Finally, we apply spherical rectification to all image
pairs and fit the view overlaps into bounding boxes to remove
non-overlapped regions. Fig. 7 demonstrates the rectification
result for a real scene using the proposed method, where Ĩji
denotes the rectified image of Vi with respect to the view
shared with Vj . The compact stereo view representation re-
tains the fully spherical stereo coverage while largely reducing
disparity search ranges in the subsequent stereo matching.

IV. PANORAMIC DEPTH RECONSTRUCTION

To handle the challenge of view synthesis from very sparse
views, we leverage the depth information encoded in the
overlap of views. This section describes our method for depth
estimation. One thing to note is that, for our application, it is
not necessary to have accurate depth information everywhere.

6

~
I

0
1

I 0 I 1 I 2 I 3

~
I

1
0

~
I

1
2

~
I

2
1

~
I

2
3

~
I

3
2

~
I 3

0
~
I

0
3

D
1
0 D

0
1 D

1
2 D

2
1 D

2
3 D

2
3 D

3
0 D

0
3

Fig. 7. A polyview depth estimation result for a real scene. The top row shows
the four input images captured by fisheye cameras. The middle row shows
the compact stereo view representation generated by the proposed compact
spherical rectification. The bottom row shows the disparity maps of rectified
images by the trinocular matching method.

Because our goal is view synthesis, not 3D modeling, the
recovered depth can be erroneous at places as long as the
synthesized view looks visually plausible. We first outline the
requirements of depth estimation for offering reasonable depth
perception in our application.

1) Depth discontinuity alignment. Occlusion is arguably
the most effective cue for depth perception. We rely
heavily on occlusion to sense the depth relationship
among objects in a scene. The depth discontinuity should
be aligned well with the object boundary to enhance the
depth perception.

2) Depth smoothness. The application is not sensitive to
depth within texture less regions. Depth smoothness is
often more crucial than accuracy in these regions.

3) Cross-view depth consistency. A viewing space of inter-
est may cross visual fields of different sampled views.
It is important to preserve depth continuity across views
even if the views are processed separately. This is a
particular issue that needs to be addressed in our system.

The proposed method incorporates a trinocular spherical stereo
matching framework to preserve cross-view depth consistency
(requirement #3), and an edge-aware filtering to smooth out
the potentially erroneous initial depth estimation to ensure
depth discontinuity alignment (requirement #1) and depth
smoothness (requirement #2).

A. Trinocular Stereo Matching

Given a rectified image Ĩji , the goal of depth reconstruction
is to estimate the corresponding disparity map Dj

i , where Vi

is the reference view and Vj is one of its neighboring views
(j = i− 1 or j = i+ 1). For a hypothesized disparity d in
a pixel p on Ĩji , the matching point mp can be found by
p + d (the addition is actually with (d, 0). For brevity, we
use p + d for the addition of p and (d, 0).). As introduced
in Section III, all rectified images contain a fully stereo
viewing coverage outside a viewing sphere with a specified
minimum depth value. The specified depth range can be

𝒑 𝒑𝒄

~
I

0
1

~
I

1
0

~
I

0
3

~
I

3
0

𝒎𝒑
𝒎 𝒑𝒄 𝜃𝑝

𝛾𝑑 𝛾𝑑𝑐

𝜃𝑝𝑐

𝑇𝑖𝑘 𝑇𝑖𝑗 𝑽𝟎

𝑽𝟏 𝑽𝟑

𝑅

𝑋

(a) (b)

Fig. 8. Cross-view correspondence between the rectified images. (a) Top
row: Rectified images related to three views V0, V1, and V2. mp and mpc

are corresponding points of p (and pc) given the disparity values d and dc,
respectively. Bottom row: Corresponding pixel confidence maps for the four
rectified images. (b) The top view for the 3D triangulation on viewing spheres
of V0, V1, and V3. Ĩ10 and Ĩ01 correspond to the view overlap denoted by red
regions; Ĩ30 and Ĩ03 correspond to the view overlap denoted by blue regions.
The 3D point X in this case is trinocularly visible.

converted into a disparity search range for each image pair.
As d is within the disparity range, we can ensure that p must
be visible in at least two of the views. That is, p with a
given d must have a correspondence in Vi−1 or Vi+1 with
the proposed polycamera. Based on this prior, we aggregate
three views to estimate Dj

i . The use of trinocular matching
would ensure cross-view depth consistency. It is especially
beneficial for the pixels around the border of the cropped
view, which is potentially invisible in the neighboring view
if binocular matching is used. These pixels also exhibit severe
color degradation owing to the fisheye lenses as shown in
Fig. 8. Fortunately, they could retain the color better in the
other view.
Cross-view disparity transformation. The paper presents a
cross-view spherical disparity transformation formulation to
transform the correspondence (p, p + d) of Vi and Vj (Ĩji
and Ĩij) to (pc, pc + dc) of Vi and Vk (Ĩki and Ĩik), where
Vk is the other neighboring view of Vi. Note that p and pc

represent the same point in Ĩji and Ĩki respectively. Let θp and
θpc denote the co-latitudes of p and pc; γd and γdc denote the
angular disparity values of d and dc. Then, γdc and γd are
related using the following triangulation formula:

R = Tij
sin(θp + γd)

sin(γd)
= Tik

sin(θpc + γdc)

sin(γdc)
, (2)

where R is the distance from the triangulated 3D point to
the camera center of Vi; Tij is the baseline between Vi

and Vj ; and Tik is the baseline between Vi and Vk. Fig. 8
demonstrates such a relationship by taking V0, V1, and V3

as in the example. On the basis of Equation 2, the disparity
can be effectively transformed without using the expensive
computation involved in 3D re-projection:

γdc = tan−1
sin(θpc)

Tij sin(θp+γd)
Tik sin(γd)

− cos(θpc)
. (3)

Matching cost blending. To integrate the information from
the three views, for the given pixel p on Ĩji , we define the cost
function Cji (p, d) for the hypothesized disparity d as

Cji (p, d) = vj(2− vk)w(p, d)ρi,j(p, d)
+vk(2− vj)w(pc, dc)ρi,k(pc, dc).

(4)

7

We use ρi,j(p, d) to measure the color discrepancy for the
hypothesized disparity d,

ρi,j(p, d) = ∆(Ĩji (p), Ĩ
i
j(p+ d)), (5)

where ∆ is a function obtained using lighting invariant mea-
sures, such as census transform [35] and Sobel transform. ρi,k
is defined similarly. Equation 4 uses vj and vk to incorporate
the visibilities in Vj and Vk, respectively. There are two
possible visibility conditions for the proposed polycamera:
• case 1: p is visible only in one of the two images Ĩij and

Ĩik. In this case, either (vj = 1, vk = 0) or (vj = 0, vk =
1) holds. Equation 4 becomes either 2w(p, d)ρi,j(p, d)
or 2w(pc, dc)ρi,k(pc, dc). Note that the constant 2 is for
balancing the power in this case and case 2.

• case 2: p is visible in both images Ĩij and Ĩik. In this
case, vj = 1 and vk = 1; and Equation 4 reduces to
w(p, d)ρi,j(p, d) + w(pc, dc)ρi,k(pc, dc).

We now discuss the weighting function w in Equation 4. It
considers both pixel visibility and color confidence, and is
defined as follows

w(p, d) = vif(p,d)
vif(p,d)+vkf(pc,dc)

,

w(pc, dc) = vkf(p
c,dc)

vif(p,d)+vkf(pc,dc)
,

(6)

where f(p, d) gives the confidence of the pixel p with the
disparity d. Due to vignetting and blurriness of the large
fisheye projection angle, we rely on the measurement of the
pixels closer to the center of the source image more than the
ones near the boundary. Thus, for a pixel p, we define its
confidence as e−αp so that it is inversely proportional to its
incident angle αp in its source viewing sphere. Fig. 8(a) shows
an example with confidence maps. For a pair of match points,
p and mp = p + d, we define the confidence as the lesser of
their confidence values,

f(p, d) = min(e−αp , e−αmp), (7)

because we want both pixels to be reliable. f(pc, dc) is defined
similarly. Note that, from Equation 6, the weight equals 1
when there is only one visible view (case 1); and the weight is
proportional to the confidence value when both views include
the pixel (case 2).

B. Depth Assignment

Given the trinocular matching cost function defined in
Equation 4, the initial disparity of a given pixel p is determined
by a typical local stereo matching method [36]. In the cost
aggregation step, we adopt the edge-preserving guided filter
[37] for computed cost maps with a support window of size
9 × 9. The initial disparity dp for a pixel p is determined
by finding the disparity value with the minimal filtered cost,
dp = arg mind C

j
i (p, d). After disparity initialization, the

method removes outlier disparity values in texture less and
occluded regions using trinocular cross checking, and then
uses another guided filter to propagate the disparity values
of the reliable pixels to the unlabeled regions. Although
the guided filter does not guarantee the construction of the
correct disparity values, its edge-preserving property fulfills

the requirements for depth discontinuity alignment and depth
smoothness mentioned at the beginning of this section. This
way, we obtain the disparity map Dj

i for the fisheye image
Ĩji . Fig. 7 demonstrates the example’s results. Although the
disparity maps are not particularly accurate, they provide
sufficiently good depth samples for the view synthesis in our
experiments. Finally, we convert the disparity map Dj

i into the
depth map D̃j

i by triangulation using Equation 2.

V. STEREOSCOPIC PANORAMA SYNTHESIS

As described in Section I, limited angular samples on
the viewing circle introduces visible seams for synthesizing
omnistereo panoramas. Although flow-based stitching methods
can reduce the visible seams, they require dense views to
work properly. In addition, they often generate ghosting with
sparse views even if cross-view optical flows are estimated
correctly. Our goal is to synthesize omnistereo panoramas
without visible seams and ghosting. Using the depth recon-
struction method described in Section IV, we obtain eight
rectified images Ĩji and their corresponding depth maps D̃j

i .
Together with the camera parameters recovered from cali-
bration (Section III-A), they define a 3D color point cloud
depicting the scene captured by the proposed polycamera.
The paper proposes a dedicated 3D warping method for
efficient omnistereo panorama synthesis with the given 3D
color point cloud. In Section V-A we review the omnistereo
projection model. Section V-B introduces efficient projection
formulations for forward and inverse mapping. Section V-C
presents a rasterization-based backward ray tracing method
which utilizes the efficient mappings.

A. The Omnistereo Projection Model

We first describe the omnistereo model [8] for projecting a
3D point onto the two cylinders corresponding to the image
planes respectively for the left and right eyes. We set the
center of the polycamera as the origin of the world coordinate
system for panorama synthesis. The center of the polycamera
is defined as the center of mass of the four fisheye cameras.
The z axis is defined along the viewing direction of the first
fisheye camera V0 whereas the x−y plane is parallel to the
image plane of V0.

The omnistereo model uses the circular projection in which
the left-eye and right-eye images share the same cylindrical
image plane, called image cylinder. The left and right eyes
are located on an inner circle, called viewing circle. Without
loss of generality, we assume that the viewing circle is located
on the viewing plane, y = 0. The viewing direction is along a
tangent to the viewing circle. Fig. 9 depicts the configuration
for the circular projection. The radius of the viewing circle
rv is provided by the user, defining the separation between
the two eyes. The radius of the image cylinder rc can be
set by the user and its default value is the sum of f of the
polycamera and r, where f is the average focal length of the
four fisheye cameras and r is the average distance of the four
fisheye cameras from the polycamera’s center.

Given a 3D point X , its projections (xL, xR) on the left-
eye and right-eye images correspond to the intersections of

8

viewing circle

image cylinder image cylinder

viewing circle

viewing plane

source rectified image

(a) (b) (c)

Fig. 9. The omnistereo projection model. (a) The configuration of the circular projection from the top view. This figure illustrates the angular relationship
between the 3D point X , its projections (xL, xR), and the viewpoints (vL, vR). (b) A 3D view for the circular projection. It illustrates the y-scaling operation
according to the ratio of distances on the viewing plane. (c) The process of rasterization-based backward ray tracing.

the image cylinder and the 3D lines (lL, lR) which originate
from their viewpoints (vL, vR) on the viewing circle and pass
through X . The viewpoints can be found by taking the tangent
lines of the viewing circle passing through X ′, the projected
point of X on the viewing plane. We denote the circular
projections for the left and right images as xL = πL(X) and
xR=πR(X) respectively.

B. Forward and Inverse Mapping

Although it is possible to obtain the projections of a 3D
point X by following the above procedure, it is expensive to
compute the viewpoints (vL, vR) and the 3D lines (lL, lR).
This section presents formulations for forward and inverse
mappings for more efficient computation.
Forward mapping. Given a 3D point X , by inspecting the
circularly symmetric projections from the image cylinder to
the viewing circle, it is possible to obtain its projections
(xL, xR) without computing (vL, vR) and (lL, lR). First, a
3D point is represented using a cylindrical coordinate system,
(r, φ, y) where (r, φ) is the polar coordinate of its projection
on the viewing plane and y is its height above the viewing
plane. Let X = (rX , φX , yX) where rX = |X ′| and φX is
its longitude (i.e., the angle between X ′ and the z-axis). Its
projections xL = (rc, φxL

, yxL
) and xR = (rc, φxR

, yxR
) can

be obtained directly by the following steps:
1) Longitude shifting. φxL

=(φX−γ) and φxR
=(φX+γ),

where γ = π/2−α−β is the longitude shift on the image
cylinder, α = sin−1(rv/rX) and β = cos−1(rv/rc).
Fig. 9(a) illustrates the longitude shifting.

2) Y-scaling. yxL
= yxR

= syX , where s= r0/
√
r2X − rv2,

is the scaling factor and r0 =
√
rc2 − rv2 is the

fixed distance between all points on the image cylinder
and their viewpoints on the viewing circle. Fig. 9(b)
illustrates the y-scaling step.

In the above steps, only α and s depend on X and need to
be re-computed for each 3D point in forward mapping. Thus,
the procedure can be very efficient.
Inverse mapping. Like most image processing tasks, inverse
mapping is used more frequently in practice. For our case,
given a point xL on the left panorama (or xR on the right

one), the inverse mapping attempts to find the 3D point X .
However, different from the forward mapping, determining X
requires knowing the distance dL (dR) from the viewpoint vL
(vR) to X . If the distance is unknown, the inverse mapping
can only determine the viewpoint vL and the viewing direction
lL for the given xL (or vR and lR for xR). We first determine
vL and lL:

1) Viewpoint computation. From Fig. 9(a), the longitude
deviation from the projected point to the view point is
β which was introduced in the first step of the forward
mapping. Thus, we have

vL = (rvsin(φxL
− β), 0, rvcos(φxL

− β)) (8)
vR = (rvsin(φxR

+ β), 0, rvcos(φxR
+ β)). (9)

2) Viewing direction computation. Let (lx, 0, lz) represent
the unit vector of the projected viewing line on the
viewing plane. This vector is orthogonal to the viewpoint
vector. Thus, for vL, it can be expressed as follows:

(lx, lz) = (sin(φvL + π/2), cos(φvL + π/2)) (10)
= (cos(φxL

− β),−sin(φxL
− β)). (11)

Similarly, (lx, lz) = (−cos(φxR
+β), sin(φvR +β)) for

vR.
3) Determining X ′. If the distance dL to X is known, the

projection X ′ on the viewing plane can be determined as
X ′ = (vx + dLlx, 0, vz + dLlz), where (vx, vz) denotes
the viewpoint vL. X ′ can be determined similarly for
xR.

4) Y-scaling. For vL, the height yX of X can be determined
by yX = s′yxL

where s′ = dL/r0. For vR, yX can be
determined similarly. Together, X ′ and yX give us the
3D point X .

C. Rasterization-based Ray Tracing

Given a 3D scene point cloud X, with the circular projec-
tions πL and πR, a naive solution for stereoscopic panorama
synthesis would be the forward mapping. The approach would
however suffer from the problems that forward mapping often
encounters, such as holes. Although the problem can be

9

alleviated by splatting, it is usually difficult to set a proper
kernel. Either holes or blur artifacts will appear in the result.
A common remedy is to use the inverse mapping. We propose
a rasterization-based backward ray tracing method to compute
the inverse mapping. In the following text we describe how
to synthesize the left panorama and the right one is obtained
similarly.

First, we convert the 3D point cloud X into 3D meshes
M by triangulation along with the image grid of the rectified
images. For each triangle T in M, we project its three vertices
onto the image cylinder using the forward mapping of πL, and
then obtain T ’s projection T ′ on the image cylinder. We then
rasterized the triangle T ′ on the image space of the image
cylinder. For each rasterized pixel xL we compute its ray
intersection of its projection line lL to the 3D triangle T .
Finally, the color of xL is assigned with the corresponding
source pixels which are found by projecting the intersected 3D
point back to the source rectified images. Fig. 9(c) illustrates
the process. Since the rasterization process is time consuming,
we combine the inverse mapping method for more effective
ray intersection computation for each rasterized pixel to reduce
the overall computing cost.

Assume that the plane equation of the triangle T is nxx+
nyy + nzz = d0. Given a rasterized pixel xL on the left
panorama, we first apply the initial two steps of the inverse
mapping described in Section V-B to obtain its viewpoint
(vx, 0, vz) and viewing direction (lx, 0, lz). By combining
them with the plane equation, we have nx(vx + lxdL) +
ny(s′yxL

) + nz(vz + lzdL) = d0. Thereafter, the distance dL
can be determined as

dL =
d0 − (nxvx + nzvz)

(ny/r0)yxL
+ (nxlx + nzlz)

. (12)

Once dL is determined, we can apply the last two steps of the
inverse mapping to find the corresponding 3D point X . The
procedure is similar for xR.
Collision handling. It is possible that a pixel on the im-
age cylinder is covered by more than one candidate if its
corresponding point is visible in multiple cameras. One way
to resolve it is to compare the candidates’ depth values and
consider the color of the closest depth. However, we found that
the depth value could be unreliable if the candidate is on the
silhouette of some object. Because of the depth discrepancy
between the object and its background, the corresponding
triangle could be slanted and consequently, the depth value
varies quickly within the triangle. We check the reliability by
depth consistency. If the candidate’s depth (obtained by ray
tracing described above) is a lot different from the depth value
calculated by bilinear interpolation on the source pixels of the
depth map corresponding to the three vertices of the triangle
T , the candidate does not possess without depth consistency
and is discarded.
Color blending. Even after removing candidates without
depth consistency, it is possible that a pixel on the image
cylinder is still covered by more than one plausible candidate.
All these plausible candidates are blended by weights. The
weight of the candidate is defined in a way similar to the
pixel confidence defined in Section IV-A as e−αp , where αp

is the incident angle between the candidate and the optical
axis. In this way, the candidates located closer to the image
center have higher weights than the ones closer to the image
boundary.

VI. EXPERIMENTAL RESULTS

This section evaluates the proposed method, compares it
with alternative methods and presents several stereoscopic
360◦ images captured with the proposed polycamera and
synthesized with the proposed method. Using the prototype
polycamera described in Section I, each captured ployview
image contains four fisheye images of resolution 4000× 3000
(pixels). In the following text, we provide evaluation of the
three main components of the proposed system on the basis
of calibration, depth estimation and view synthesis.
Calibration and rectification. We report the reprojection
error of the chessboard corners to evaluate the proposed
calibration method. The root mean square and the maximum
of the corner reprojection errors are 1.028 and 4.82 (pixels),
respectively. For quantitative evaluation of rectification, we
use horizontal alignment error of the chessboard corners to
measure the performance of the rectification. The root mean
square and the maximum of the alignment errors are 0.47
and 2.68 (pixels), respectively. We also present the average
FOV of fisheye lenses and the extrinsic manufacture error as
the parameters influence the overall stereo viewing coverage
of the proposed camera, as discussed in Section III-B. The
average FOV of the fisheye lenses is up to 200◦ × 200◦,
larger than that of the lens specification (190◦ × 190◦). Let
R′i,i+1 and T′i,i+1 represent the ideal value of Ri,i+1 and
Ti,i+1, respectively. The translation error is computed by
|Ti,i+1 − T′i,i+1|/|T′i,i+1|. The rotation error is computed
by |Rod(RT

i,i+1R
′
i,i+1)|/|Rod(R′i,i+1)|, where Rod(.) is a

Rodrigues vector representation3. The average rotation error
and translation error are 1.74% and 5.43%, respectively.
Panoramic depth estimation. We compare different methods
for matching cost computation, including binocular matching
cost (BM), trinocular matching cost (TM), and trinocular
matching cost with adaptive weights (TMAW). The BM cost
only uses two views and includes the term ρi,j(p, d), defined
in Equation 4. The TM cost sets both w(p, d) = 1 and
w(pc, dc) = 1 in Equation 4. The TMAW cost is defined as
in Equation 4. For quantitative analysis, 15 polyview images
were processed and their average consistent matching rates
reported. The consistent matching rates for BM, TM, and
TMAW are 58%, 67%, and 70%, respectively. TM increases
increases the consistent matching rate by nearly 10%, and
TMAW provides even greater improvement. Fig. 10 compares
the estimated disparity maps using two examples. Qualita-
tively, the methods with higher consistent matching rates tend
to achieve better depth smoothness and more reliable depth
estimation for areas close to the borders and the corners of
the image. Fig. 11 shows the impact of cross-view depth
consistency on the quality of view synthesis. The panoramic

3A vector representation for the rotation matrix, where the normalized
vector represents the rotation axis, and the magnitude represents the rotation
angle.

10

Input

BM

TM

TMAW

Consistent Filtered Inset Consistent Filtered Inset

Fig. 10. Comparisons of different matching costs, BM (binocular matching
cost), TM (trinocular matching cost), and TMAW (trinocular matching cost
with adaptive weights). Two examples are shown here. The left example is
an indoor scene at an office and the right one is an outdoor scene. For each
example, we show the input and the results of BM, TM and TMAW. For
each result, we show the disparity map after consistent matching, the filtered
disparity map and an inset to highlight the problematic area in that order. For
the indoor example, the consistent matching rates are BM (54%), TM (57%)
and TMAW (62%). For the outdoor example, they are BM (39%), TM (49%)
and TMAW (53%). This example is particularly challenging for BM because
the pixels close to the image boundary are very dark due to vignetting.

depth maps were synthesized in the same way as that of
panorama synthesis. It is clear that TMAW better preserves
structures and details.

We experimented with different fisheye FOV specifications
and observed their impact on depth estimation. We generated
three sets of rectified images with 180◦, 190◦, and 200◦ fisheye
FOVs. The average consistent matching rates for trinocularly
visible regions are 60.7%, 63.86%, and 64.19%, respectively.
A larger fisheye FOV improves the consistent matching rate,
but the gain from 190◦ to 200◦ is not significant. Because
larger FOVs incur more computation, we settled for 190◦ as
a good compromise.
Stereoscopic panorama synthesis. We compare the pro-
posed panorama synthesis method with a few alternatives.
We implemented the flow-based interpolation method [11]
in the forward setting. The rectified images are dewarped
to form cylinder images and flows between cylinder images
are computed from the estimated disparity maps. A small
radius (1.4mm) is set for the viewing circle to reduce holes
and widths of the holes are kept at most 15 pixels for this
setting. The Navier—Stokes-based inpainting method [38] is
used in filling holes for both, the flow-based method and
our 3D forward warping. Fig. 12 compares the flow-based
interpolation method and the proposed 3D forward warping
method. From the inset (Fig. 12(c)), it is clear that the flow-
based method exposes obvious ghosting on close-by objects
with large flows because the interpolation does not account
for depth variations. Here, our 3D forward warping does not
suffer from ghosting.

Fig. 13 compares the proposed 3D forward warping ap-

(a)

(b)

(c)

(d)

Panoramas and depth maps Inset #1 Inset #2 Inset #3

Fig. 11. Comparisons of BM and TMAW on synthesized stereoscopic panora-
mas and depth maps. (a)(c) The stereoscopic panorama and the panoramic
depth map synthesized with binocular matching. (b)(d) The stereoscopic
panorama and the panoramic depth map synthesized with the proposed
trinocular matching with adaptive weighting. The depth map of TMAW
shows much better depth consistency in cross input views. The stereoscopic
panorama with TMAW also preserves structures and textures better as outlined
with red boxes in the insets. Results of BM exhibit shape distortion and
blurriness.

(a) (b) (c) (d)

Fig. 12. Comparisons of flow-based interpolation and 3D forward warping on
the example Office. (a)(c) The result of flow-based interpolation and an inset.
(b) The result of 3D forward warping and an inset. The result of flow-based
stitching exposes ghosting on close-by objects with large flows, as shown in
the inset.

proach with the proposed 3D backward warping method. As
discussed in Section V-B, the forward warping method suffers
from the problem with holes. Although the problem can be
alleviated by inpainting, it is clear from Fig. 13 that the results
of forward warping still exhibit artifacts of irregular noises and
distorted structures even with inpainting.

Next, we compare the strategy of taking the candidate
closest to the camera with the proposed strategy by checking
the depth consistency as discussed in Section V-C. Fig. 14
shows an example of the comparison. By considering depth
consistency, unreliable candidates are removed. This is espe-
cially effective in the cross-view regions, where source pixels
are present around boundaries of the rectified images.

Finally, we compare the color blending with equal weights
with weighting by the incident angles. From Fig. 15, it is
clear that the color transition is much smoother by using the
proposed weighting scheme.

We have used the prototype polycamera to capture several
scenes. To test the versatility of the proposed camera and

11

(a)

(b)

Panorama Inset #1 Inset #2

Fig. 13. Comparisons of forward warping and backward warping on the
example Office. (a) The result of forward warping. (b) The result of backward
warping. The results of forward warping usually have holes, present aliasing
artifacts, produce irregular lines and contain noise particularly around object
boundary as shown in inset #1 and outlined with red boxes in inset #2.

(a) (b) (c) (d)

Fig. 14. Comparisons of resolving colliding candidates with the closest
depth and with depth consistency in the example Software Park. (a)(c) The
panorama of resolving with the closest depth and its inset. (b)(d) The result
of resolving with depth consistency and its inset. The result with depth
consistency maintains the structure better and has less artifacts as outlined
with red boxes in the insets.

methods, we explored scenes with different characteristics
including outdoor scenes with large depth ranges, and indoor
scenes with significant depth discontinuities. Fig. 16 shows
three examples of the captured fisheye images, the synthesized
views, and the stereoscopic 360◦ panoramas in the form
of anaglyph 3D images. More examples can be found in
the supplementary material which also includes images that
are ready to view using VR displays. Fig. 16(a) shows an
outdoor example with complicated depth structures. There
is a big tree with complicated silhouettes and depth vari-
ations. The complicated shapes of the branches and leaves
often present great challenges to depth estimation methods.
Fig. 16(b) demonstrates another outdoor example where there
is significant depth variation. There is a building far from and
several bushes closer to the camera. Our method handles both
outdoor scenes quite effectively. Fig. 16(c) shows a scene
inside the hall of the Grand Hotel. There are occasionally
visual artifacts due to inaccurate depth estimates, but in general
when viewing with head-mounted displays, viewers can enjoy
exploring the captured scenes freely without noticing them
and the stereoscopy offers more vivid viewing experiences by
enhancing the depth perception.
User study. We conducted a user study for evaluating the
flow-based interpolation method, our forward warping method,
and our backward warping method to determine the method
which delivers the best user experience when viewed with
VR displays. Eighteen adults participated in the user study,
aged 25 to 55 years old. Six scenes were used in the study,
including the Office (Fig. 12), the Flower Museum (Fig. 16(a)),
the Grand Hotel Outside (Fig. 16(b)), the Grand Hotel Inside
(Fig. 16(c)), the Software Park (Fig. 14), and the Library

(a) (b)

Fig. 15. Comparisons of color blending with equal weights and adaptive
weights by the incident angles for view synthesis. This figure shows two
examples. (a) The panorama of blending with equal weights and its inset. (b)
The panorama with adaptive weights and its inset. It is clear that the color
transition is much smoother when using adaptive weights.

(Fig. 1). The participants viewed the results of the three
methods using VR displays in a random order. For each result,
a participant had three minutes to explore the scene. After
seeing all three results for a particular scene, two questions
were asked:

1) Which one delivers the best image quality?
2) Which one delivers the best stereoscopic perception?

They could also add comments on the results at will.
Fig. 18(a) shows the results. In terms of image quality, 20%,

11%, and 69% of the participants favored the results of flow-
based interpolation, 3D forward warping, and 3D backward
warping, respectively. The 3D backward warping method was
the favorite among each of the six scenes. It is worth noting
that flow-based interpolation is more favorable than 3D for-
ward warping. From the participants’ comments, we observe
that the irregular noise of the 3D forward warping method at
high-latitude regions is very disturbing. In addition, the flow-
based interpolation method performs poorly for scenes with
many close-by objects and occlusions such as the Office.

As for stereoscopic perception, 22%, 36%, and 42% of the
participants favored the results of flow-based interpolation,
3D forward warping, and 3D backward warping, respectively.
Although 3D backward warping is the favorite, participants
reflected that the stereoscopic perception of the results of
forward warping is very close to that of the results of backward
warping. We note that the flow-based interpolation obtained
some votes (22%) despite small disparity values. We suspect
that it is because of vertical scaling [11] on the scene. Thus,
the size of the main region in its result is larger than those in
3D warping methods.

To verify this assumption, we generate another set of results
by decreasing the vertical FOVs of omnistereo panoramas of
3D warping methods while maintaining the same image size.
The vertical scale of the main region becomes roughly the
same as that in flow-based interpolation, as shown in Fig. 17.
Another user study was conducted with vertical scaling and
the results are shown in Fig. 18(b). This time, the flow-based
interpolation cannot take advantage of the scaling of the main
region and had much lower votes. The votes divide as follows:
flow-based interpolation (13%), 3D forward warping (30%),
and 3D backward warping (57%). At the same time, the votes
of image quality also change: flow-based interpolation (14%),
3D forward warping (8%) and 3D backward warping (78%).
The user study shows that users pay more attention to the main
region.

12

(a) (b) (c)

Fig. 16. Other examples. (a) The example Flower Museum. An outdoor scene with a big tree at the center. The branches and leaves present challenges for
depth estimation. (b) The example Grand Hotel Outside. An outdoor scene with a building at a distance and several bushes near the camera. (c) The example
Grand Hotel Inside. The hall of Grand Hotel. From the top to the bottom, they are the input fisheye images, the synthesized panoramas for the left and right
eyes, and the stereoscopic 360◦ panorama in the anaglyph form.

(a) (b) (c)

Fig. 17. Vertical scaling. (a) The result of flow-based interpolation with
vertical FOV 120◦. (b) The result of 3D backward warping with vertical FOV
120◦. (c) The vertically scaled result of (b). The vertical FOV is reduced to
105◦. The vertical size of the main region (i.e., the region between the yellow
lines) is now roughly the same as (a).

From the user study, we conclude that 3D backward warping
generates the best results. In addition, most participants were
not aware of boundaries between input views in the results of
3D warping. Only one noticed a little depth discontinuity. Ad-
ditionally, none reported perceiving depth differences within
texture less regions. It shows that the proposed trinocular
matching method achieves a good cross-view depth consis-
tency and sufficient depth smoothness.
Runtime performance. The current system was implemented
using C++. The proposed backward warping method for
panorama synthesis was implemented with OpenGL shading
language (GLSL) to take advantage of GPUs. All experiments
were performed on a laptop with an Intel core i7 2.40Hz
processor and an Intel HD Graphics 5500 GPU. Table II
shows the runtime of camera calibration, image rectification,

(a)
0

10
20
30
40
50
60
70
80
90

Flower	
Museum

Grand	Hotel	
Inside

Grand	Hotel	
Outside

Software	
Park

Library Office Total

Image	Quality	

flow-based	interpolation 3D	forward	 warping 3D	backward	warping

0
5

10
15
20
25
30
35
40
45
50

Flower	
Museum

Grand	Hotel	
Inside

Grand	Hotel	
Outside

Software	
Park

Library Office Total

Stereoscopic	Perception

flow-based	interpolation 3D	forward	 warping 3D	backward	warping

(b)
0

10
20
30
40
50
60
70
80
90
100

Flower	
Museum

Grand	Hotel	
Inside

Grand	Hotel	
Outside

Software	
Park

Library Office Total

Image	Quality

flow-based	interpolation 3D	forward	 warping 3D	backward	warping

0
10
20
30
40
50
60
70
80

Flower	
Museum

Grand	Hotel	
Inside

Grand	Hotel	
Outside

Software	
Park

Library Office Total

Stereoscopic	Perception

flow-based	interpolation 3D	forward	 warping 3D	backward	warping

Fig. 18. The results of the user study on image quality (the left column) and
stereoscopic perception (the right column) (a) without vertical scaling and (b)
with vertical scaling.

depth reconstruction, and panorama synthesis. The nonlinear
optimization for camera calibration converged within few iter-
ations and took only 16 seconds. Image rectification includes
view overlap computation, spherical rectification, and image
remapping. It spent 431 seconds in total. Note that the image
rectification is scene independent and therefore can be pre-
computed. The depth reconstruction took about 320 seconds
for eight rectified images. Finally, stereoscopic panorama
synthesis took 64 seconds for generating two panoramas of
resolution 5440× 2720 (pixels). As a reference, the CPU ver-

13

Preprocessing
Operation Runtime (seconds)

Camera Calibration 16
Image Rectification 431

Processing per VR scene
Operation Runtime (seconds)

Depth Reconstruction 320
Panorama Synthesis (with GPU) 65

TABLE II
PROCESSING TIME OF THE PROPOSED METHODS.

(a) (b)

(c) (d)

Fig. 19. Limitations. (a) Aliasing around object boundaries. (b) The protrud-
ing background. (c) The line distortions. (d) The ghosting artifacts around the
corners.

sion would have taken 1,578 seconds for the same resolution.
Limitations. The user study reveals a few limitations of the
proposed method. Some participants noticed aliasing around
the boundaries of close-by objects. Although the depth estima-
tion uses edge-aware guided filters, some occlusion boundaries
still cannot be accurately extracted. Also, if the background is
texture less and surrounded by the foreground, participants
could feel that the background region is merged into the
foreground and becomes protruding. Although not reported
by participants, there are some other limitations. For thin lines
close to the camera, the depth estimation error could result in
visible line distortion. In addition, for objects very close to the
camera, the proposed method could fail to recover the large
occluded region and there could be ghosting around the object
boundary, particularly when the objects are close to the top or
the bottom of the viewing sphere. Fig. 19 shows examples of
these limitations.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a polyview camera system and a set of
methods for synthesizing stereoscopic 360◦ panoramas. The
camera consists of only four cameras with fisheye lenses,
making the camera portable and inexpensive. Reduction in
the number of views brings up challenges for panorama
synthesis. The paper addressed these challenges with methods
for polyview rectification, panoramic depth estimation and
view synthesis. The synthesized stereoscopic 360◦ panoramas
allow viewers to explore the captured scenes freely using VR
displays.

In future, we would like to explore more design options. For
example, it would be interesting to know whether it is possible
to further reduce the number of cameras by using the ones with
even wider FOVs. Another interesting question would be how
to increase the number of cameras to have more view overlaps

but still maintain good portability. On the algorithm side, the
depth estimation could benefit from trilateral filtering [39]
for better preserving depth discontinuities while maintaining
computational efficiency. Deformable spheres guided by spare
3D points could be an effective alternative to dense depth
reconstruction for omnistereo panorama synthesis in which we
have obtained preliminary but promising results [40].

ACKNOWLEDGMENT

This project was partially supported by Ministry of Science
and Technology, Taiwan under Grant No. MOST106-3114-E-
002 -012.

REFERENCES

[1] “Google Cardboard,” https://vr.google.com/cardboard/.
[2] “Oculus,” https://www.oculus.com/.
[3] S. B. Kang, M. Wu, Y. Li, and H. Shum, “Large environment rendering

using plenoptic primitives,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 11, pp. 1064–1073, 2003.

[4] “Ptgui,” https://www.ptgui.com/.
[5] Y. Xu, Q. Zhou, L. Gong, M. Zhu, X. Ding, and R. K. F. Teng, “High-

speed simultaneous image distortion correction transformations for a
multicamera cylindrical panorama real-time video system using FPGA,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 24, no. 6, pp. 1061–1069, 2014.

[6] “360 camera online,” http://360cameraonline.com/known-360-cameras/.
[7] H.-C. Huang and Y.-P. Hung, “Panoramic stereo imaging system with

automatic disparity warping and seaming,” Graphical Models and Image
Processing, vol. 60, no. 3, pp. 196–208, 1998.

[8] S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: Panoramic stereo
imaging,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 3, pp. 279–290, 2001.

[9] Y. Pritch, M. Ben-Ezra, and S. Roy, “Optics for omnistereo imaging,”
in In Foundations of Image Understanding (IFIU 2001), 2001, pp. 447–
467.

[10] K. Tanaka and S. Tachi, “TORNADO: Omnistereo video imaging with
rotating optics,” IEEE Transactions on Visualization and Computer
Graphics, vol. 11, no. 6, pp. 614–625, 2005.

[11] R. Anderson, D. Gallup, J. T. Barron, J. Kontkanen, N. Snavely,
C. Hernández, S. Agarwal, and S. M. Seitz, “Jump: Virtual reality
video,” in Proceedings of ACM SIGGRAPH Asia 2016, 2016, pp. 198:1
– 198:13.

[12] “Google Jump,” https://vr.google.com/jump/.
[13] “Facebook Surround 360,” https://facebook360.fb.com/facebook-

surround-360/.
[14] R. Swaminathan and S. Nayar, “Non-Metric Calibration of Wide-Angle

Lenses and Polycameras,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 10, pp. 1172 – 1178, 2000.

[15] S. Tzavidas and A. K. Katsaggelos, “A multicamera setup for generating
stereo panoramic video,” IEEE Transaction on Multimedia, vol. 7, no. 5,
pp. 880 – 890, 2005.

[16] “Nokia ozo,” https://ozo.nokia.com.
[17] “Fraunhofer hhi omnicam 360,” https://www.hhi.fraunhofer.de/en/depart

ments/vit/technologies-and-solutions/capture/panoramic-uhd-
video/omnicam-360.html.

[18] “Samsung gear 360,” http://www.samsung.com/global/galaxy/gear-360/.
[19] K. Matzen, M. F. Cohen, B. Evans, J. Kopf, and R. Szeliski, “Low-

cost 360 stereo photography and video capture,” ACM transactions on
Graphics, vol. 36, no. 4, pp. 148:1–148:12, 2017.

[20] C. Richardt, Y. Pritch, H. Zimmer, and A. Sorkine-Hornung,
“Megastereo: Constructing high-resolution stereo panoramas,” in Pro-
ceedings of the International Conference on Computer Vision and
Pattern Recognition (CVPR 2013), 2013, pp. 1256–1263.

[21] R. Aggarwal, A. Vohra, and A. M. Namboodiri, “Panoramic stereo video
with a single camera,” in Proceedings of the International Conference
on Computer Vision and Pattern Recognition (CVPR 2016), 2016.

[22] V. C. Couture and S. Roy, “The omnipolar camera: A new approach
to stereo immersive capture,” in Proceedings of IEEE International
Conference on Computational Photography (ICCP 2013), 2013, pp. 1–9.

[23] R. Konrad, D. G. Dansereau, A. Masood, and G. Wetzstein, “Spinvr:
Towards live-streaming 3d virtual reality video,” ACM transactions on
Graphics, vol. 36, no. 6, pp. 209:1–209:12, 2017.

14

[24] D. Schneider and H.-G. Maas, “Geometric modelling and calibration
of a high resolution panoramic camera,” Optical 3D Measurement
Techniques, vol. II, pp. 122–129, 2003.

[25] J. A. Parian and A. Gruen, “Panoramic camera calibration using 3D
straight lines,” Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. XXXVI, 2005.

[26] X. Y. Guan, L.-K. Shark, G. Hall, and W. Deng, “Calibration of rotating
line spherical camera based on checkerboard pattern on multiple planes
and its accuracy assessment,” in Proceedings of the UK postgraduate
workshop of British Machine Vision Conference (BMVC 2010/), 2010,
pp. 8.1–8.10, 8.

[27] S. K. Nayar, “Sphereo: Recovering depth using a single camera and
two specular spheres,” in Proceedings of SPIE Conference on Optics,
Illumination, and Image Sensing for Machine Vision (SPIE 1988), 1988,
pp. 245–254.

[28] D. Southwell, A. Basu, M. Fiala, and J. Reyda, “Panoramic stereo,”
in Proceedings of the International Conference on Pattern Recognition
(ICPR 1996), 1996.

[29] J. Gluckman, S. Nayar, and K. Thorek, “Real-time omnidirectional
and panoramic stereo,” in Proceedings of Defense Advanced Research
Projects Agency, Image Understanding Workshop (DARPA 1998), 1998,
pp. 299–303.

[30] Z. Arican and P. Frossard, “Dense disparity estimation from omnidirec-
tional images,” in Proceedings of the IEEE International Conference on
Advanced Video and Signal based Surveillance (ICAVS 2007), 2007.

[31] Z. Lee and T. Q. Nguyen, “Multi-resolution disparity processing and
fusion for large high-resolution stereo image,” IEEE Transactions on
Multimedia, vol. 17, no. 6, pp. 792–803, 2015.

[32] M. Schönbein and A. Geiger, “Omnidirectional 3d reconstruction in aug-
mented manhattan worlds,” in Proceedings of International Conference
on Intelligent Robots and Systems (IROS 2014), 2014.

[33] J. Kannala and S. S. Brandt, “A generic camera model and calibra-
tion method for conventional, wide-angle, and fish-eye lenses,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp.
1335–1340, 2006.

[34] J. Fujiki, A. Torii, and S. Akaho, “Epipolar geometry via rectification
of spherical images,” in Proceedings of International conference on
Computer vision/computer graphics collaboration techniques, 2007, pp.
461–471.

[35] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” in Proceedings of the Third European
Conference on Computer Vision (ECCV 1994), 1994, pp. 151 – 158.

[36] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, no. 1-3, pp. 7 – 42, 2002.

[37] K. He, J. Sun, and X. Tang, “Guided image filtering,” in Proceedings of
the European Conference on Computer Vision and Pattern Recognition
(ECCV 2010), 2010, pp. 1–14.

[38] M. Bertalmo, A. L. Bertozzi, and G. Sapiro, “Navier-stokes, fluid
dynamics, and image and video inpainting.” in Proceedings of the
International Conference on Computer Vision and Pattern Recognition
(CVPR 2001), 2001, pp. 355–362.

[39] D. Chen, M. Ardabilian, and L. Chen, “A Fast Trilateral Filter based
Adaptive Support Weight Method for Stereo Matching,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 25, no. 5, pp.
730–743, 2015.

[40] S.-K. Huang, H.-S. Lin, and M. Ouhyoung, “Effective omnistereo
panorama video generation by deformable spheres,” in ACM SIGGRAPH
2017 Posters, 2017, pp. 22:1–22:2.

Hong-Shiang Lin received his B.S. and M.S. from
National Taiwan University, Taipei, Taiwan, in 2009
and 2011 respectively, all in Electrical Engineering.
Currently, he is working toward the PhD degree
at the Department of Computer Science and In-
formation Engineering, National Taiwan University,
Taipei, Taiwan. His research interests include multi-
view stereo and digital visual effects.

Chao-Chin Chang received his B.S. from NCKU,
and M.S. from NSYSU, Taiwan, all in Electrical
Engineering. He has focused on Hardware and sys-
tem design over fifteen years. His research interests
include camera and graphic filed.

Hsu-Yu Chang received his B.S. from National
Chiao Tung University and M.S. from National
Taiwan University, Taiwan, in 2005 and 2007 re-
spectively, all in Mechanical Engineering. He was
researching automatic control systems in during the
academic year. His expertise is in designing motion
control and machine vision solution.

Yung-Yu Chuang (M’04) received the B.S. and
M.S. degrees from National Taiwan University in
1993 and 1995 respectively, and the Ph.D. degree
from the University of Washington at Seattle in
2004, all in Computer Science. He is a professor
with the Department of Computer Science and In-
formation Engineering, National Taiwan University.
His research interests include computational photog-
raphy, computer vision and deep learning.

Tzong-Li Lin received his B.S in power mechani-
cal engineering from National TsingHua University,
HsinChu, Taiwan, in 1994 . Tzong-Li Lin moves
his new role as an Entrepreneur in Virtual Reality
area and building up a strong team to work with
him to make platform on cloud for 3D reconstruc-
tion service. Developing the strangeness on lowered
business cost, increased efficiency for data setup and
enhanced the quality and people expected experience
on the spatial information.

Ming Ouhyoung Ming Ouhyoung received the BS
and MS degree in electrical engineering from the
National Taiwan University, Taipei, in 1981 and
1985, respectively. He received the Ph.D degree in
computer science from the University of North Car-
olina at Chapel Hill in Jan., 1990. He was a member
of the technical staff at AT&T Bell Laboratories,
Middle-town, during 1990 and 1991. Since August
1991, he has been an associate professor in the
department of Computer Science and Information
Engineering, National Taiwan University. Then since

August 1995, he became a professor. He was the Director of the Center of
Excellence for Research in Computer Systems, College of Engineering, from
August 1998 to July 2000, and was the Chairman of the Dept. of CSIE
from August 2000 to July 2002. He was the associate dean of College of
EECS (2012-2015). He has published over 100 technical papers on computer
graphics, virtual reality, and multimedia systems. He is a senior member of
ACM and member of IEEE.

