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ABSTRACT

Spectral clustering (SC) has become one of the most popular
clustering methods. Given an affinity matrix, SC explores its
spectral-graph structure to partition data into disjoint mean-
ingful groups. However, in many applications, there are mul-
tiple potentially useful features and thereby multiple affin-
ity matrices. For applying spectral clustering to such cases,
these affinity matrices must be aggregated into a single one.
Unfortunately, affinity measures based on different features
could have different characteristics. Some are more effec-
tive than others. We propose a multi-affinity spectral cluster-
ing (MASC) algorithm which extends the SC algorithm with
multiple affinities available. By automatically adjusting the
weights of affinity matrices, MASC is more immune to in-
effective affinities and irrelevant features. This makes the
choice of similarity or distance-metric measures for cluster-
ing less crucial. Experiments show that MASC is effective in
simultaneous clustering and feature fusion, thus maintaining
robustness of SC for multi-affinity clustering problems.

Index Terms— spectral clustering, affinity matrix, multi-
ple kernel learning.

1. INTRODUCTION

Clustering is an unsupervised learning method for dividing
data into a set of disjoint subsets with high intra-cluster simi-
larity and low inter-cluster similarity. It has been widely used
for exploratory data analysis in many fields of science. Over
the past decades, many clustering algorithms have been pro-
posed. Among them, spectral clustering (SC) is one of the
best algorithms [1]. It often outperforms other methods by
transforming the representations of the data points into an-
other space in which cluster properties of the data are en-
hanced. In addition, spectral clustering is elegant in theory,
simple to implement and can be solved efficiently using stan-
dard linear algebra packages.

Most SC methods explicitly or implicitly assume a metric
or a similarity structure. The success of such algorithms de-
pends heavily on the choice of the metric [2]. Unfortunately,
SC does not have any built-in mechanism to discover a good
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metric for better clustering results. Therefore, it is often nec-
essary to use additional feature selection or feature weighting
methods as a precursor before invoking SC. The problem is
aggravated for many real-world clustering problems in which
there are multiple potentially useful cues. Without proper fea-
ture selection, performance of SC can degrade dramatically in
the presence of irrelevant, ineffective or unreliable features.

Similar to the recent advances in supervised learning with
multiple kernels [2], the motivation of this paper is to develop
SC methods that are robust to irrelevant and unreliable fea-
tures. The main difference from their work is that our method
is unsupervised while those methods learn affinity from train-
ing examples. The proposed method is called milti-affinity
spectral clustering (MASC) which deals with the clustering
problem when multiple affinity measures are given. By as-
suming that the aggregated affinity is a weighted combina-
tion of the given affinity measures, the problem is reduced
to simultaneously finding the optimal weight assignment for
affinities and cluster assignment for data points under that
weight assignment. We show that appropriate weight assign-
ment and clustering can be found by extending the multiple
kernel learning paradigm to SC.

2. METHOD

2.1. Spectral clustering

SC is originated from spectral graph theory. Given n data
points x1,x2, . . . ,xn and some pairwise affinity wij that is
symmetric and non-negative, measuring the similarity be-
tween xi and xj . SC aims to divide these data into c clusters
by finding n indicators f1, f2, . . . , fn (fi ∈ Rc) which satisfies

min
f1,f2,...,fn

∑
i,j

wij ||fi − fj ||2. (1)

Let W be the n×nmatrix constituted of the affinitieswij , and
D be the diagonal matrix with its i-th diagonal element being
the sum of i-th row of W, i.e., Dii = wi1 +wi2 + . . .+win.
SC solves Equation 1 by finding the smallest eigenvalues and
their corresponding eigenvectors of the Laplacian matrix L =
D −W. Since the smallest eigenvalue λ1 of L is always
0 which corresponds to the trivial solution of the constant-
one eigenvector 1, the solution of SC is constructed by the
eigenvectors corresponding to the next c smallest eigenvalues,



λ2, λ3, . . . , λc+1. After stacking these c eigenvectors into a
n × c matrix, the i-th row of the stacked matrix corresponds
to the indicator fi for xi.

In practice, SC often serves as a preprocessing step of other
clustering algorithms such as k-means. The main trick of SC
is to transform the representation of the data points xi into
the indicator space fi ∈ Rc in which the cluster characteris-
tics become more prominent. Because cluster properties are
enhanced in this new representation space, even simple clus-
tering algorithms such as k-means has no difficulty to detect
the clusters. Main reasons for SC’s success include that it
does not make any assumptions on the form of the clusters
(as opposed to k-means, where the clusters are always convex
sets), and can be implemented efficiently even for large data
sets as long as the similarity graph is sparse. However, one
of its limitations is that choosing a good similarity graph is
not trivial. For real-world clustering problems, the affinities
wij could be obtained in multiple ways. They could be de-
termined with different types of features extracted, and could
also be constructed by reproducible kernels when xi are vec-
tors in some Euclidean space. This paper shows how to find a
weighted combination of the affinities so that a better similar-
ity measure can be learned for SC in an unsupervised fashion.

2.2. Multi-affinity spectral clustering

Assume that there are m affinity matrices Wk(k = 1 . . .m)
available. The k-th matrix’s ij-th element wij;k represents
the similarity between xi and xj when measuring with the k-
th type of affinity. Since the affinities wij;k are non-negative,
we can denote wij;k = s2ij;k to reflect this assumption. As
mentioned, the goal of MASC is to find a proper weight as-
signment to these affinities. Let v = [v1, v2, . . . , vm] be a
weight vector acting as selectors to these affinities. The k-th
weighted affinity can be denoted as sij;k = vksij;k. We can
then formulate the MASC problem as

min
f1,...,fn
v1,...,vm

∑
k

∑
i,j

s2ij;k||fi − fj ||2

= min
f1,...,fn
v1,...,vm

∑
k

∑
i,j

v2kwij;k||fi − fj ||2 (2)

under the constraints that the sum of vk’s p-norm is normal-
ized; that is, vp1 + vp2 + ... + vpM = 1, 1 ≤ p ≤ 2; and the
weights are non-negative, vk ≥ 0. It leads to a constrained
optimization problem. By applying a Lagrange multiplier λ
to the equality constraint, we have

Jλ =
∑
k

∑
i,j

v2kwij;k||fi − fj ||2 − 2λ

(∑
k

vpk − 1

)
(3)

Equation 3 is complicated to optimize since we have two sets
of variables, indicators fi and weights vk. However, it be-
comes much easier to solve if we solve one set of variables at
a time while fixing the other set of variables.

Algorithm 1 Multi-Affinity Spectral Clustering (MASC).
Given a set of n data points xi, a set of m affinities Wk and the
desired number of clusters c, find a proper weight assignment vk to
affinities and cluster the data into c clusters.

1: procedure MASC(Data xi, Affinities Wk, Number c)
2: Initialize the weights as vk = 1/m
3: repeat
4: . fix weights vk and find indicators fi
5: form the aggregated affinity matrix W with

wij =
∑

k v
2
kwij;k and the diagonal matrix D

6: find generalized eigenvectors v2, . . . ,vc+1 for the
pair of matrices (D −W,D) corresponding to
generalized eigenvalues λ2, . . . , λc+1

7: indicator fi = the i-th row of [v2 · · ·vc+1]
8: . fix indicators fi and find weights vk
9: βk =

∑
i,j wij;k||fi − fj ||2

10: weight vk = 1[
(
βk
β1

)
p

2−p +(
βk
β2

)
p

2−p +···+(
βk
βm

)
p

2−p
] 1
p

11: until convergence
12: run k-means on f1, . . . , fn to cluster data into c groups
13: end procedure

Let’s first assume that the indicators fi are given and fixed.
By taking its partial derivatives with respect to vpk and setting
them to zero, we have

∂Jλ
∂vpk

= 2p−1v2−pk

∑
i,j

wij;k||fi − fj ||2
− 2λ = 0.

To simplify notations, we denote the sum as βk =∑
i,j

wij;k||fi − fj ||2. The solution becomes

vk = (pλ)
1

2−p β
−1
2−p
k .

As λ is a dummy variable, it can be solved by considering the
constraint 1 =

∑
k

vpk, which gives that

(pλ)
1

2−p =

(∑
k

β
−p
2−p
k

)− 1
p

.

Hence, vk =

(∑
k

β
−p
2−p
k

)− 1
p

β
−1
2−p
k . Note that βk is non-

negative, making the constraint vk ≥ 0 automatically satis-
fied. Therefore, if the indicators fi are known, the optimal
solution of the weights vk becomes

vk =
1[

(βkβ1
)

p
2−p + (βkβ2

)
p

2−p + · · ·+ ( βkβm )
p

2−p

] 1
p

(4)

On the other hand, if the weights vk are given, the problem be-
comes a standard SC problem (Equation 1) and the affinities



are set as wij =
∑
k v

2
kwij;k. Thus, we can solve the MASC

problem (Equation 2) using a two-step iterative algorithm
which alternatively finds the optimal weights vk and the opti-
mal indicators fi. Given the initial weights vk, in the first step,
we set the affinity as wij =

∑
k v

2
kwij;k and use standard SC

to find the optimal indicator fi. Shi and Malik [3] showed that
normalized SC has better performance than unnormalized SC.
Thus, we adopt normalized SC to find the fi by solving the
generalized eigen-vector problem (D −W )f = λDf . Next,
in the second step, the indicators fi are fixed and we refine the
weights vk by using the closed-form solution in Equation 4.
This alternating process is repeated as long as the objective
function is decreased. Algorithm 1 summarizes the MASC
algorithm.

3. EXPERIMENTS

We have tested the proposed method on a number of real
data sets from the UCI machine learning repository [4] (Sec-
tion 3.1) and two well-known face databases from ORL [5],
and CMU-PIE [6]. We set p = 1 in the current implementa-
tion. In this setting, Equation 4 becomes

vk =
1

(βkβ1
) + (βkβ2

) + · · ·+ ( βkβm )
.

These data sets are summarized in Table 1. For each set of
experiments, we describe the data sets, the experimental set-
tings, the choice of pairwise affinities, the experimental re-
sults and comparisons to other methods. We used NMI for
evaluating clustering results as Wu et al. [7] reported that it
generally works the best.

3.1. UCI repository

Fourteen data sets were selected from the UCI repository. For
each set, only the extracted feature vectors are available – not
the raw data. These vectors were normalized to have zero
mean and unit standard deviation. They are then substituted
into different types of kernel functions to obtain several sets
of pairwise distances. Here, following the strategy of other
multiple kernel learning approaches, we select a set of rea-
sonable kernels that are frequently used. In our experiments,
we used one polynomial kernel

κk(xi,xj) = (θ + xTi xj)
q,

with θ = 1 and q = 2, and several Gaussian kernels

κk(xi,xj) = exp(−(xi − xj)
T (xi − xj)/σ),

with various σ. Assume that the minimal value of the Gaus-
sian kernel over the data set is γ. We then obtain the corre-
sponding σ as

σ = min
i,j

(−(xi − xj)
T (xi − xj)/log(γ)).

Table 1. Summary of the data sets used in the experiments.
The first 14 data sets are adopted from the UCI machine learn-
ing repository and the last two face databases are from ORL
and CMU-PIE. For CMU-PIE, we used the frontal images
(Pose 27) with 21 different illuminations.

ID Name #instances #features #classes
R1 Iris 150 4 3
R2 Wine 178 13 3
R3 Glass Identification 214 9 6
R4 Solar Flare 323 12 6
R5 Protein Localization Sites 336 7 8
R6 Libras Movement 360 90 15
R7 WDBC 569 30 2
R8 Balance Scale Weight and Distance Database 625 4 3
R9 Connectionist Bench(Vowel Recognition-Deterding Data) 990 10 11
R10 Yeast 1,484 8 10
R11 Letter Recognition(A,B) 1,555 16 2
R12 Letter Recognition(A,B,C,D) 3,096 16 4
R13 Abalone 4,177 8 28
R14 Waveform Database Generator 5,000 21 3
F1 ORL 360 7,744 40
F2 CMU-PIE-illum 1,496 7,744 68

We vary γ over {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
to obtain 7 Gaussian kernels. Finally, we normalize the values
of each kernel function to the range of [0.0001..1] to obtain a
total of 8 affinity matrices.

We use SC1, · · · , SC8 to denote single-affinity spectral
clustering methods with the above 8 kernels (1 polynomial
and 7 Gaussians) respectively. In addition, we also combined
above 8 kernels by equal and random weights, denoted as
EASC and RASC respectively. Since each method serves as
a preprocessing step of k-means whose performance depends
on the initialization, we performed 50 runs and reported the
average for each method. Table 2 presents the average NMI
values and the corresponding ranks for different algorithms
on the 14 UCI data sets. The numbers in parentheses are the
ranks of different methods for each data set. For example,
MASC ranks the first with an NMI of 0.360 for the data set
R3 while SC5 ranks the eighth with an NMI of 0.316. The
last two rows (mNMI, mRank) of Table 2 display the aver-
age NMI value and the average rank for each method over the
14 data sets, respectively. MASC has an average NMI 0.455
and ranks the best of all the methods in terms of average NMI
(mNMI). In terms of average rank (mRank), MASC’s average
rank is 2.438, again the best of all the methods. Note that
mNMI and mRank both yield similar rankings.

3.2. Face clustering

We also evaluated MASC with face clustering. The exper-
imented face databases are ORL and CMU-PIE. In contrast
to the UCI datasets, for this application, we have access to
the raw data. Thus, the first step is to extract features from
the images. All images were first normalized and cropped to
88×88 pixels. To utilize cues from different perspectives, we
extracted three types of features.

1. Eigenface [8]. After performing principal compo-
nent analysis, each face image was projected into the
eigenspace which preserves 90% of the energy.



Table 2. Comparisons of different algorithms on UCI data sets in terms of NMI.
ID SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 EASC RASC MASC
R1 0.582(11) 0.885(10) 0.914( 1) 0.900( 3) 0.900( 3) 0.900( 3) 0.900( 3) 0.900( 3) 0.900( 3) 0.900( 2) 0.900( 3)
R2 0.848(11) 0.862(10) 0.878( 7) 0.878( 7) 0.893( 3) 0.893( 2) 0.893( 3) 0.893( 3) 0.878( 7) 0.882( 6) 0.905( 1)
R3 0.342( 5) 0.342( 6) 0.347( 2) 0.316( 9) 0.316( 8) 0.308(10) 0.308(10) 0.327( 7) 0.346( 3) 0.344( 4) 0.360( 1)
R4 0.229( 8) 0.227( 9) 0.225(10) 0.223(11) 0.238( 4) 0.248( 1) 0.236( 6) 0.238( 5) 0.243( 2) 0.233( 7) 0.243( 2)
R5 0.509(11) 0.532(10) 0.544( 9) 0.570( 1) 0.567( 2) 0.565( 6) 0.565( 7) 0.545( 8) 0.566( 3) 0.565( 5) 0.566( 3)
R6 0.612( 9) 0.611(10) 0.599(11) 0.617( 6) 0.617( 5) 0.623( 4) 0.612( 8) 0.615( 7) 0.630( 2) 0.629( 3) 0.645( 1)
R7 0.578(10) 0.578(10) 0.584( 1) 0.584( 1) 0.584( 1) 0.584( 1) 0.584( 1) 0.584( 1) 0.584( 1) 0.584( 1) 0.584( 1)
R8 0.093( 8) 0.261( 1) 0.193( 6) 0.195( 5) 0.253( 2) 0.006(11) 0.014(10) 0.025( 9) 0.225( 4) 0.146( 7) 0.253( 3)
R9 0.292(11) 0.296(10) 0.322( 8) 0.338( 5) 0.339( 3) 0.301( 9) 0.330( 7) 0.339( 4) 0.344( 2) 0.335( 6) 0.358( 1)
R10 0.238(10) 0.246( 5) 0.262( 1) 0.259( 2) 0.252( 3) 0.244( 7) 0.238(11) 0.246( 6) 0.238( 9) 0.243( 8) 0.252( 4)
R11 0.665(10) 0.665(11) 0.677( 9) 0.705( 4) 0.705( 4) 0.718( 1) 0.718( 1) 0.718( 1) 0.695( 7) 0.694( 8) 0.705( 4)
R12 0.493(11) 0.502(10) 0.504( 9) 0.519( 6) 0.519( 5) 0.522( 4) 0.523( 3) 0.528( 1) 0.515( 7) 0.514( 8) 0.527( 2)
R13 0.171( 7) 0.168(11) 0.169(10) 0.172( 6) 0.170( 9) 0.171( 8) 0.180( 1) 0.178( 2) 0.176( 3) 0.174( 5) 0.176( 4)
R14 0.369( 2) 0.369( 1) 0.367( 8) 0.367( 4) 0.367( 4) 0.366( 9) 0.365(10) 0.363(11) 0.367( 4) 0.367( 7) 0.367( 3)

mNMI 0.430(11) 0.467( 7) 0.470( 6) 0.474( 4) 0.480( 2) 0.461(10) 0.462( 9) 0.464( 8) 0.479( 3) 0.472( 5) 0.488( 1)
mRank 8.857(11) 8.143(10) 6.571( 9) 5.000( 5) 4.000( 2) 5.429( 6) 5.786( 8) 4.857( 4) 4.071( 3) 5.500( 7) 2.357( 1)

Table 3. Comparison of different methods on face database
ORL and CMU-PIE in terms of NMI.

SCe SCg SCl EASC RASC MASC
F1 0.782 0.791 0.749 0.867 0.846 0.880
F2 0.919 0.914 0.816 0.920 0.918 0.928

2. Gabor texture [9]. Each face image was filtered with
40 Gabor filters generated with five different scales and
eight orientations.

3. Local binary pattern (LBP) [10]. We used a uniform
LBP with 8 neighbors and radius 1. Thus, each face im-
age was represented as a 256-bin histogram.

These three features are frequently used for face recognition
and represent face images from different perspectives. After
extracting these three features, each feature was treated as a
vector; these vectors were substituted into the Gaussian kernel
(γ = 0.005) to calculate pairwise distances. We denote SCe,
SCg , and SCl as the spectral clustering methods with three
different affinity matrices derived from these three features
(Eigenface, Gabor texture, and LBP), respectively. Tables 3
shows NMI values for different algorithms on the two face
data sets. Note that faces in ORL exhibit facial expressions
while CMU-PIE has more variations in illumination. Thus,
Gabor is more effective in ORL and eigenface performs better
for CMU-PIE. This is evident from Table 3 in which SCg is
the best among three single-affinity SCs for ORL while SCe
is the best for CMU-PIE. Without knowing the characteristics
of the databases, MASC successfully combined the strengths
of different features and outperformed all other methods for
both data sets.

4. CONCLUSIONS

We extended the spectral clustering algorithm to multi-
affinity setting to explore strengths of different features au-
tomatically. Experiments show that it effectively incorporates
multiple affinities and yields better overall performance com-
pared to spectral clustering with only a single affinity or naive
feature fusion strategies. In addition, it is easy to implement.
These characteristics make it useful for real-world applica-
tions. In the future, we will work on the application of this
algorithm for bag-of-words learning.
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