Cameras

Digital Visual Effects Yung-Yu Chuang

with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Put a piece of film in front of an object.

Add a barrier to block off most of the rays.

- It reduces blurring
- The pinhole is known as the aperture
- The image is inverted

Shrinking the aperture

Why not making the aperture as small as possible?

- Less light gets through
- Diffraction effect

Shrinking the aperture

High-end commercial pinhole cameras

\$200~\$700

Adding a lens

Lenses

Thin lens formula

Similar triangles everywhere! y'/y = D'/D

Thin lens formula

Thin lens formula

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Thin lens applet: <u>http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html</u>

Zoom lens

Nikon 28-200mm zoom lens.

simplified zoom lens in operation_{From wikipedia}

Field of view vs focal length

Example: w = 30mm, f = 50mm => $\alpha \approx 33.4^{\circ}$

DigiVFX

24mm

50mm

135mm

Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Vignetting

Vignetting

original

corrected

Goldman & Chen ICCV 2005

Chromatic Aberration

Lens has different refractive indices for different wavelengths.

http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration_0 1.htm

Special lens systems using two or more pieces of glass with different refractive indexes can reduce or eliminate this problem.

Exposure = aperture + shutter speed

- Aperture of diameter D restricts the range of rays (aperture may be on either side of the lens)
- Shutter speed is the amount of time that light is allowed to pass through the aperture

Exposure

- Two main parameters:
 - Aperture (in f stop)

- Shutter speed (in fraction of a second)

Blade (closing) Blade (open) Focal plane (closed)

Focal plane (open)

Effects of shutter speeds

• Slower shutter speed => more light, but more motion blur

Slow shutter speed

Fast shutter speed

Faster shutter speed freezes motion

From Photography, London et al.

Walking people

Running people

1/125

1/500

Aperture

- Aperture is the diameter of the lens opening, usually specified by f-stop, f/D, a fraction of the focal length.
 - f/2.0 on a 50mm means that the aperture is 25mm
 - f/2.0 on a 100mm means that the aperture is 50mm
- When a change in f-stop occurs, the light is either doubled or cut in half.
- Lower f-stop, more light (larger lens opening)
- Higher f-stop, less light (smaller lens opening)

Changing the aperture size affects depth of field. A smaller aperture increases the range in which the object is approximately in focus

Changing the aperture size affects depth of field. A smaller aperture increases the range in which the object is approximately in focus

Depth of field

MORE DEPTH OF FIELD LESS DEPTH OF FIELD f/16 **Smaller aperture** f/2 Wider aperture

From Photography, London et al.

Exposure

- Two main parameters:
 - Aperture (in f stop)
 - Shutter speed (in fraction of a second)
- Reciprocity

The same exposure is obtained with an exposure twice as long and an aperture *area* half as big

- Hence square root of two progression of f stops vs. power of two progression of shutter speed
- Reciprocity can fail for very long exposures

From Photography, London et al.

f/2

/500

Reciprocity

- Assume we know how much light we need
- We have the choice of an infinity of shutter speed/aperture pairs

f/16

1/30 sec. 1/60

- What will guide our choice of a shutter speed?
 - Freeze motion vs. motion blur, camera shake
- What will guide our choice of an aperture?
 - Depth of field, diffraction limit
- Often we must compromise
 - Open more to enable faster speed (but shallow DoF)

- The camera metering system measures how bright the scene is
- In Aperture priority mode, the photographer sets the aperture, the camera sets the shutter speed
- In Shutter-speed priority mode, photographers sets the shutter speed and the camera deduces the aperture
- In Program mode, the camera decides both exposure and shutter speed (middle value more or less)
- In Manual mode, the user decides everything (but can get feedback)

- Aperture priority
 - Direct depth of field control
 - Cons: can require impossible shutter speed (e.g. with f/1.4 for a bright scene)
- Shutter speed priority
 - Direct motion blur control
 - Cons: can require impossible aperture (e.g. when requesting a 1/1000 speed for a dark scene)
 - Note that aperture is somewhat more restricted
- Program
 - Almost no control, but no need for neurons
- Manual
 - Full control, but takes more time and thinking

Sensitivity (ISO)

- Third variable for exposure
- Linear effect (200 ISO needs half the light as 100 ISO)
- Film photography: trade sensitivity for grain

Ektachrome 64 ASA

Fujichrome 100 ASA

Ektachrome 200 ASA

Digital photography: trade sensitivity for noise

From dpreview.com

Demo

See http://www.photonhead.com/simcam/

Film camera

Digital camera

- A digital camera replaces film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons

- CCD is less susceptible to noise (special process, higher fill factor)
- CMOS is more flexible, less expensive (standard process), less power consumption

Digi<mark>VFX</mark>

Sensor noise

- Blooming
- Diffusion
- Dark current
- Photon shot noise
- Amplifier readout noise

Blooming

SLR (Single-Lens Reflex)

- Reflex (R in SLR) means that we see through the same lens used to take the image.
- Not the case for compact cameras

SLR view finder

Color

So far, we've only talked about monochrome sensors. Color imaging has been implemented in a number of ways:

- Field sequential
- Multi-chip
- Color filter array
- X3 sensor

Field sequential

Field sequential

Field sequential

Prokudin-Gorskii (early 1900's)

http://www.loc.gov/exhibits/empire/

Prokudin-Gorskii (early 1990's)

Multi-chip

Color filters can be manufactured directly onto the photodetectors.

Color filter arrays (CFAs)/color filter mosaics

Color filter array

Color filter arrays (CFAs)/color filter mosaics

Bayer's pattern

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	в	G	в	G	в	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	В	G	В	G	В	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	В	G	В	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Constant hue-based interpolation (Cok) Hue: (R/G, B/G)Interpolate G first $R_{44} = \mathbf{G}_{44} \frac{\frac{R_{33}}{\mathbf{G}_{33}} + \frac{R_{35}}{\mathbf{G}_{35}} + \frac{R_{53}}{\mathbf{G}_{53}} + \frac{R_{55}}{\mathbf{G}_{55}}}{4}$ $B_{33} = \mathbf{G}_{33} \frac{\overline{B}_{22}}{\mathbf{G}_{22}} + \frac{\overline{B}_{24}}{\mathbf{G}_{24}} + \frac{\overline{B}_{42}}{\mathbf{G}_{42}} + \frac{\overline{B}_{44}}{\mathbf{G}_{44}}$

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	в	G	В	G	в	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	В	G	В	G	В	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	В	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Median-based interpolation (Freeman)

- 1. Linear interpolation
- 2. Median filter on color differences

Median-based interpolation (Freeman)

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	в	G	в	G	в	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	В	G	В	G	В	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	В	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Gradient-based interpolation (LaRoche-Prescott) 1. Interpolation on G $\alpha = abs[(B_{42} + B_{46})/2 - B_{44}]$ $\beta = abs[(B_{24} + B_{64})/2 - B_{44}]$ $\mathbf{G}_{44} = \begin{cases} \frac{G_{43} + G_{45}}{2} & \text{if } \alpha < \beta \\\\ \frac{G_{34} + G_{54}}{2} & \text{if } \alpha > \beta \\\\ \frac{G_{43} + G_{45} + G_{34} + G_{54}}{4} & \text{if } \alpha = \beta \end{cases}$

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	в	G	в	G	в	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	В	G	В	G	В	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	В	G	В	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Gradient-based interpolation (LaRoche-Prescott)

2. Interpolation of color differences

$$R_{34} = \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35})}{2} + G_{34},$$

$$R_{43} = \frac{(R_{33} - \mathbf{G}_{33}) + (R_{53} - \mathbf{G}_{53})}{2} + G_{43},$$

$$R_{44} = \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35}) + (R_{53} - \mathbf{G}_{53}) + (R_{55} - \mathbf{G}_{55})}{4}$$

 $+G_{44}.$

Demosaicking CFA's

Demosaicking CFA's

Generally, Freeman's is the best, especially for natural images.

- light penetrates to different depths for different wavelengths
- multilayer CMOS sensor gets 3 different spectral sensitivities

Color filter array

X3 technology

red green blue

Foveon X3 sensor

Bayer CFA

X3 sensor

Cameras with X3

Polaroid X530

Sigma SD10, SD9

Sigma SD9 vs Canon D30

- After color values are recorded, more color processing usually happens:
 - White balance
 - Non-linearity to approximate film response or match TV monitor gamma

White Balance

automatic white balance

warmer +3

Manual white balance

white balance with the white book

white balance with the red book

Autofocus

- Active
 - Sonar
 - Infrared
- Passive

Digital camera review website

- A cool video of digital camera illustration
- http://www.dpreview.com/

Camcorder

Interlacing

without interlacing

with interlacing

Deinterlacing

blend

weave

Deinterlacing

Discard (even field only or odd filed only)

Progressive scan

Hard cases

- http://www.howstuffworks.com/digital-camera.htm
- http://electronics.howstuffworks.com/autofocus.htm
- Ramanath, Snyder, Bilbro, and Sander. <u>Demosaicking</u> <u>Methods for Bayer Color Arrays</u>, Journal of Electronic Imaging, 11(3), pp306-315.
- Rajeev Ramanath, Wesley E. Snyder, Youngjun Yoo, Mark S. Drew, <u>Color Image Processing Pipeline in Digital</u> <u>Still Cameras</u>, IEEE Signal Processing Magazine Special Issue on Color Image Processing, vol. 22, no. 1, pp. 34-43, 2005.
- <u>http://www.worldatwar.org/photos/whitebalance/ind</u> <u>ex.mhtml</u>
- http://www.100fps.com/