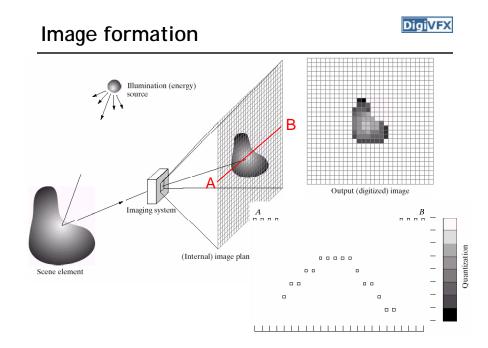
Image warping/morphing

Digital Visual Effects

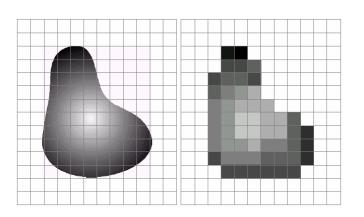
Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros

Image warping

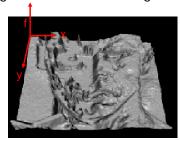


Sampling and quantization



What is an image

- Digi<mark>VFX</mark>
- We can think of an image as a function, $f: \mathbb{R}^2 \rightarrow \mathbb{R}$:
 - f(x, y) gives the intensity at position (x, y)
 - defined over a rectangle, with a finite range:
 - $f: [a,b]x[c,d] \rightarrow [0,1]$



$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Image warping

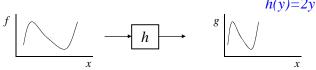
image filtering: change range of image

$$g(x) = h(f(x))$$

$$h(y) = 0.5y + 0.5$$

image warping: change *domain* of image

$$g(x) = f(h(x))$$



A digital image

- We usually operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are D apart, we can write this as:

$$f[i,j] = Quantize\{ f(i D, j D) \}$$

 The image can now be represented as a matrix of integer values

•	•							
	<i>j</i> —	→						
٦١	62	79	23	119	120	105	4	0
i	10	10	9	62	12	78	34	0
•	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

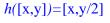
Image warping

image filtering: change range of image

$$g(x) = h(f(x))$$

image warping: change domain of image

$$g(x) = f(h(x))$$



Parametric (global) warping

Parametric (global) warping

Examples of parametric warps:

affine

perspective

cylindrical

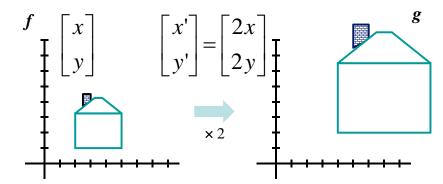
$$\mathbf{p} = (\mathbf{x}, \mathbf{y})$$

p' = (x',y')

- Transformation T is a coordinate-changing machine: p' = T(p)
- What does it mean that T is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Represent T as a matrix: $p' = M^*p \begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x' \\ y' \end{bmatrix}$

Scaling

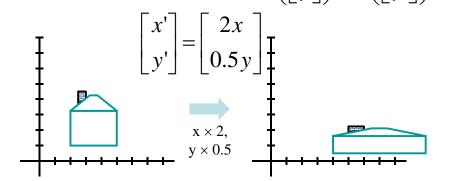
- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



Scaling

DigiVFX

• Non-uniform scaling: different scalars per component:



Scaling

DigiVFX

• Scaling operation:

$$x' = ax$$

$$y' = by$$

• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

What's inverse of S?

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x'=s_x*x$$

$$\begin{vmatrix}
\mathbf{x}' = \mathbf{s}_x * \mathbf{x} \\
\mathbf{y}' = \mathbf{s}_y * \mathbf{y}
\end{vmatrix} = \begin{bmatrix}
\mathbf{s}_x & 0 \\
0 & \mathbf{s}_y
\end{bmatrix} \begin{bmatrix}
\mathbf{x} \\
\mathbf{y}
\end{bmatrix}$$

2-D Rotation

• This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear to θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y
- What is the inverse transformation?
 - Rotation by $-\theta$
 - For rotation matrices, det(R) = 1 so $\mathbf{R}^{-1} = \mathbf{R}^{T}$

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \theta * x - \sin \theta * y$$
$$y' = \sin \theta * x + \cos \theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2x2 Matrices

DigiVFX

 What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' = -x \\ y' = -y \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved

- Ratios are preserved
- Closed under composition
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 Matrices

• What types of transformations can not be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$

 $y' = y + t_y$
NO!

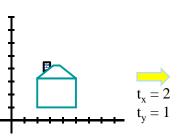
Only linear 2D transformations can be represented with a 2x2 matrix

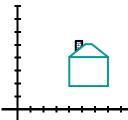
Translation

· Example of translation

Homogeneous Coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$





Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved

Image warping

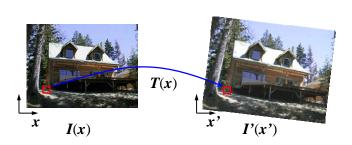
- Closed under composition - Models change of basis
$$\begin{vmatrix} x' \\ y' \\ w \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{vmatrix} \frac{x}{w}$$

Projective Transformations

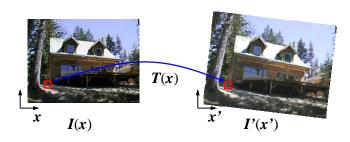
- Projective transformations ...
 - Affine transformations, and
 - Projective warps
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition $\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

Forward warping

• Given a coordinate transform x' = T(x) and a source image I(x), how do we compute a transformed image I'(x') = I(T(x))?

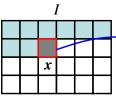


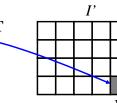
• Send each pixel I(x) to its corresponding location x' = T(x) in I'(x')



Forward warping

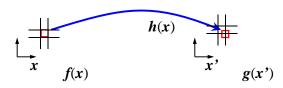

```
fwarp(I, I', T)
{
  for (y=0; y<I.height; y++)
   for (x=0; x<I.width; x++) {
      (x',y')=T(x,y);
      I'(x',y')=I(x,y);
   }
}</pre>
```





Forward warping

- Send each pixel I(x) to its corresponding location x' = T(x) in I'(x')
- What if pixel lands "between" two pixels?
- Will be there holes?
- Answer: add "contribution" to several pixels, normalize later (splatting)

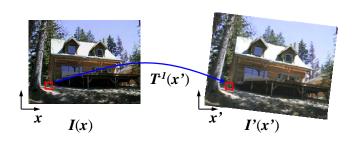


Forward warping


```
fwarp(I, I', T)
{
    for (y=0; y<I.height; y++)
        for (x=0; x<I.width; x++) {
            (x',y')=T(x,y);
            Splatting(I',x',y',I(x,y),kernel);
        }
}</pre>
```

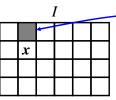
Inverse warping

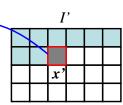
• Get each pixel I'(x') from its corresponding location $x = T^{-1}(x')$ in I(x)



Inverse warping


```
iwarp(I, I', T)
{
  for (y=0; y<I'.height; y++)
    for (x=0; x<I'.width; x++) {
      (x,y)=T<sup>-1</sup>(x',y');
      I'(x',y')=I(x,y);
    }
}
```





Inverse warping

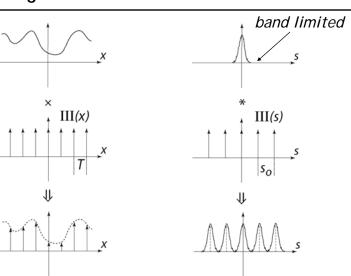
DigiVFX

- Get each pixel I'(x') from its corresponding location $x = T^{-1}(x')$ in I(x)
- What if pixel comes from "between" two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

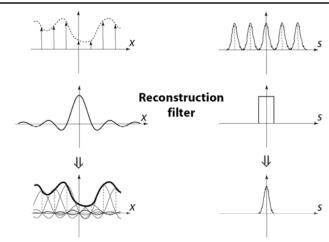
Inverse warping


```
iwarp(I, I', T)
{
    for (y=0; y<I'.height; y++)
        for (x=0; x<I'.width; x++) {
            (x,y)=T<sup>-1</sup>(x',y');
            I'(x',y')=Reconstruct(I,x,y,kernel);
        }
}
```

Sampling



Reconstruction

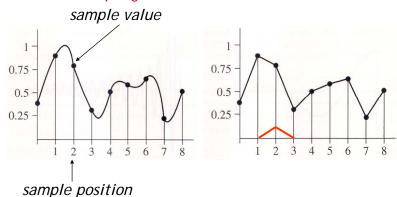


The reconstructed function is obtained by interpolating among the samples in some manner

Reconstruction

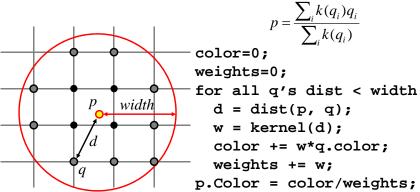
 Reconstruction generates an approximation to the original function. Error is called aliasing.

sampling



Reconstruction

 Computed weighted sum of pixel neighborhood; output is weighted average of input, where weights are normalized values of filter kernel k



Reconstruction (interpolation)

- Possible reconstruction filters (kernels):
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc (optimal reconstruction)

Bilinear interpolation (triangle filter) DigiVFX

• A simple method for resampling images



$$f(x,y) = (1-a)(1-b) \quad f[i,j]$$

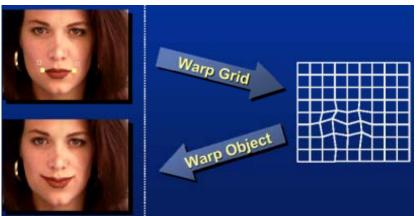
$$+a(1-b) \quad f[i+1,j]$$

$$+ab \quad f[i+1,j+1]$$

$$+(1-a)b \quad f[i,j+1]$$

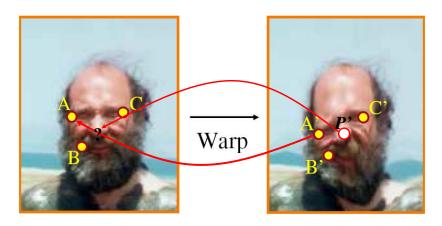
Non-parametric image warping

- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)



Non-parametric image warping

- Mappings implied by correspondences
- Inverse warping

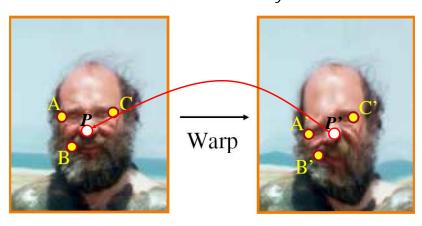


Non-parametric image warping

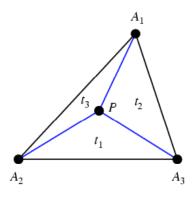
$$P = w_A A + w_B B + w_C C$$

$$P' = w_A A' + w_B B' + w_C C'$$

Barycentric coordinate



Barycentric coordinates



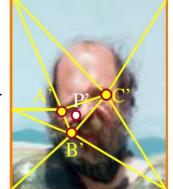
$$P = t_1 A_1 + t_2 A_2 + t_3 A_3$$
$$t_1 + t_2 + t_3 = 1$$

Non-parametric image warping

$$P = w_A A + w_B B + w_C C$$

$$P' = w_A A' + w_B B' + w_C C'$$

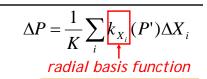
Barycentric coordinate

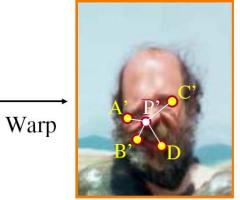


Non-parametric image warping

Gaussian
$$\rho(r) = e^{-\beta r^2}$$

thin plate spline $\rho(r) = r^2 \log(r)$



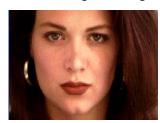


Demo

- http://www.colonize.com/warp/warp04-2.php
- Warping is a useful operation for mosaics, video matching, view interpolation and so on.

Image morphing

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.



DigiVFX

image #1

dissolving

image #2

Artifacts of cross-dissolving

DigiVFX

Image morphing

http://www.salavon.com/

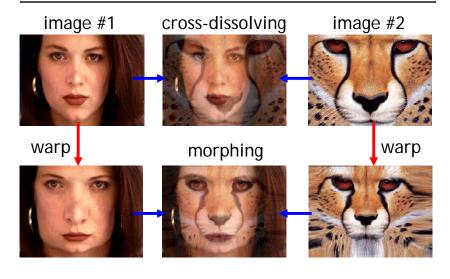
Image morphing

- Why ghosting?
- Morphing = warping + cross-dissolving

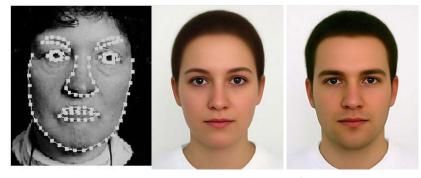
shape color (geometric)

Image morphing

Morphing sequence



Face averaging by morphing



average faces

Image morphing

create a morphing sequence: for each time t

- 1. Create an intermediate warping field (by interpolation)
- 2. Warp both images towards it
- 3. Cross-dissolve the colors in the newly warped images

t=

An ideal example (in 2004)

An ideal example

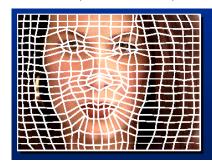
t=0

middle face (t=0.5)

t₌1

Warp specification (mesh warping)

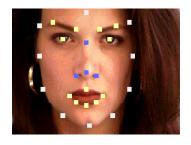
- How can we specify the warp?
 - 1. Specify corresponding *spline control points interpolate* to a complete warping function

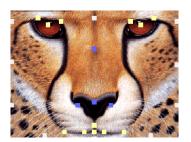


easy to implement, but less expressive

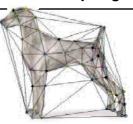
Warp specification

- How can we specify the warp
 - 2. Specify corresponding *points*
 - *interpolate* to a complete warping function





Solution: convert to mesh warping



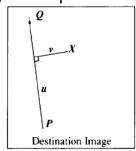
- 1. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
- 2. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping

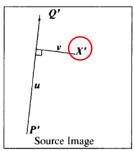
Warp specification (field warping)

- How can we specify the warp?
 - 3. Specify corresponding *vectors*
 - interpolate to a complete warping function
 - The Beier & Neely Algorithm

Beier&Neely (SIGGRAPH 1992)

• Single line-pair PQ to P'Q':





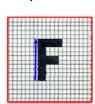
 $u = \frac{(X-P) \cdot (Q-P)}{\|Q-P\|^2} \tag{1}$

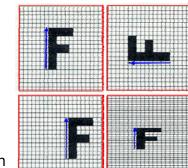
$$v = \frac{(X - P) \cdot Perpendicular(Q - P)}{\|Q - P\|}$$
 (2)

$$X' = P' + u \cdot (Q' - P') + \frac{v \cdot Perpendicular(Q' - P')}{\|Q' - P'\|}$$
(3)

Algorithm (single line-pair)

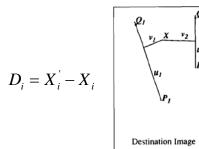
- For each X in the destination image:
 - 1. Find the corresponding u,v
 - 2. Find X' in the source image for that u,v
 - 3. destinationImage(X) = sourceImage(X')
- Examples:

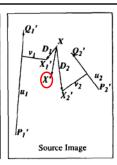




Affine transformation

Multiple Lines

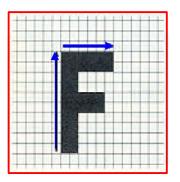


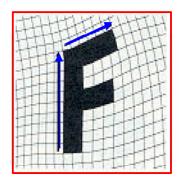


$$weight[i] = \left(\frac{length[i]^p}{a + dist[i]}\right)^l$$

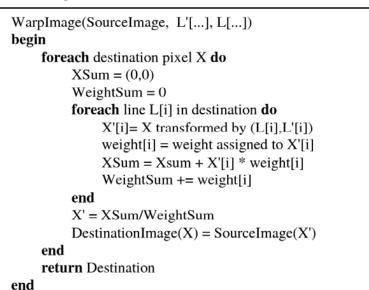
length = length of the line segment, dist = distance to line segment The influence of a, p, b. The same as the average of X_i '

Resulting warp





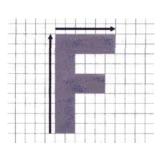
Full Algorithm

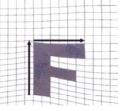


Comparison to mesh morphing

• Pros: more expressive

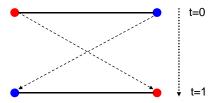
Cons: speed and control





Warp interpolation

- How do we create an intermediate warp at time t?
 - linear interpolation for line end-points
 - But, a line rotating 180 degrees will become 0 length in the middle
 - One solution is to interpolate line mid-point and orientation angle



<u>Digi</u>VFX

Animated sequences

- Specify keyframes and interpolate the lines for the inbetween frames
- Require a lot of tweaking

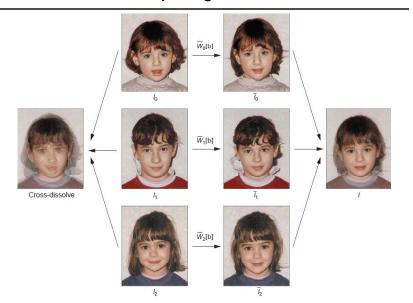
Animation


```
\begin{aligned} &\textbf{GenerateAnimation}(Image_{_{0}},L_{_{0}}[...],Image_{_{1}},L_{_{1}}[...]) \\ &\textbf{begin} \\ &\textbf{for each} \text{ intermediate frame time t } \textbf{do} \\ &\textbf{for i=1 to number of line-pairs } \textbf{do} \\ &L[i] = \text{line t-th of the way from } L_{_{0}}[i] \text{ to } L_{_{1}}[i]. \\ &\textbf{end} \\ &Warp_{_{0}} = WarpImage(\ Image_{_{0}},L_{_{0}}[...],L[...]) \\ &Warp_{_{1}} = WarpImage(\ Image_{_{1}},L_{_{1}}[...],L[...]) \\ &\textbf{foreach} \text{ pixel p in FinalImage } \textbf{do} \\ &FinalImage(p) = (1-t)\ Warp_{_{0}}(p) + t\ Warp_{_{1}}(p) \\ &\textbf{end} \\ &\textbf{end} \end{aligned}
```

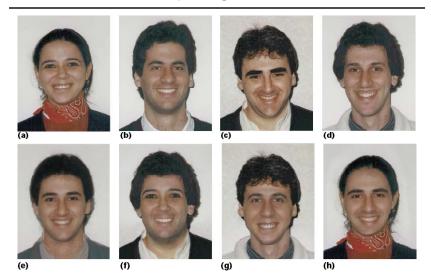
Results

Michael Jackson's MTV "Black or White"

Multi-source morphing



Multi-source morphing



References

- Thaddeus Beier, Shawn Neely, <u>Feature-Based Image Metamorphosis</u>, SIGGRAPH 1992, pp35-42.
- Detlef Ruprecht, Heinrich Muller, <u>Image Warping with Scattered Data Interpolation</u>, IEEE Computer Graphics and Applications, March 1995, pp37-43.
- Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, <u>Image Metamorphosis Using Snakes and Free-Form Deformations</u>, SIGGRAPH 1995.
- Seungyong Lee, Wolberg, G., Sung Yong Shin, Polymorph: morphing among multiple images, IEEE Computer Graphics and Applications, Vol. 18, No. 1, 1998, pp58-71.
- Peinsheng Gao, Thomas Sederberg, <u>A work minimization approach</u> to image morphing, The Visual Computer, 1998, pp390-400.
- George Wolberg, <u>Image morphing: a survey</u>, The Visual Computer, 1998, pp360-372.