	Announcements
	 Final project presentation on 6/28 1:30pm in Room 101 What to hand in?
Textures & Image-Based Lighting	
Digital Visual Effects, Spring 2005	
Yung-Yu Chuang	
2005/6/15	
with slides by Alex Efros, Li-Yi Wei and Paul Debevec	
Outline DigiVEX	
Texture synthesis	
 Acceleration by multi-resolution and TSVQ 	
 Patch-based texture synthesis 	
Image analogies	
Image-based lighting	Texture synthesis

- Given a finite sample of some texture, the goa is to synthesize other samples from that same texture.
 - The sample needs to be "large enough"

The challenge

- How to capture the essence of texture?
- Need to model the whole spectrum: from repeated to stochastic texture

Motivation from language

- [Shannon'48] proposed a way to generate English-looking text using N-grams:
 - Assume a generalized Markov model
 - Use a large text to compute probability distributions of each letter given N-1 previous letters
 - precompute or sample randomly
 - Starting from a seed repeatedly sample this Markov chain to generate new letters
 - One can use whole words instead of letters too.

Mark V. Shaney (Bell Labs)

- Results (using <u>alt.singles</u> corpus):
 - "One morning I shot an elephant in my arms and kissed him."
 - "I spent an interesting evening recently with a grain of salt"
- Notice how well local structure is preserved!
 - Now let's try this in 2D...

Ideally

- Assuming Markov property, what is conditional probability distribution of p, given the neighbourhood window?
- Instead of constructing a model, let's directly search the input image for all such neighbourhoods to produce a histogram for p
- To synthesize p, just pick one match at random

- However, since our sample image is finite, an exact neighbourhood match might not be present
- So we find the best match using SSD error (weighted by a Gaussian to emphasize local structure), and take all samples within some distance from that match
- Using Gaussian-weighted SSD is very important

Neighborhood size matters

Inpainting

DigiVFX

- Growing is in "onion peeling" order
 - within each "layer", pixels with most neighbors are synthesized first

Inpainting

Inpainting

Digi<mark>VFX</mark>

Results

Recent inpaiting algorithms

Digi<mark>VFX</mark>

Obtain structure first, add details by texture synthesis

Summary of the basic algorithm

DigiVFX

• Exhaustively search neighborhoods

Neighborhood

DigiVFX

Neighborhood size determines the quality & cost

Summary

- Advantages:
 - conceptually simple
 - models a wide range of real-world textures
 - naturally does hole-filling
- Disadvantages:
 - it's slow
 - it's a heuristic

Acceleration by Wei & Levoy

DigiVFX

- Multi-resolution
- Tree-structure

Multi-resolution pyramid

5 levels 5×5

Results

Failures

Non-planar structures

Global information

Acceleration

DigiVFX

DigiVFX

Computation bottleneck: neighborhood search

Nearest point search

Digi<mark>VFX</mark>

• Treat neighborhoods as high dimensional points

Neighborhood

High dimensional point/vector

Philosophy

- DigiVFX
- The "Corrupt Professor's Algorithm":
 - Plagiarize as much of the source image as you can
 - Then try to cover up the evidence
- Rationale:
 - Texture blocks are by definition correct samples of texture so problem only connecting them together

Algorithm

- Pick size of block and size of overlap
- Synthesize blocks in raster order

- Search input texture for block that satisfies overlap constraints (above and left)
- Paste new block into resulting texture
 - blending
 - use dynamic programming to compute minimal error boundary cut

GraphCut textures

DigiVFX

Photomontage

Photomontage

Photomontage

Image Analogies Implementation

Image Analogies Implementation

Image Analogies Implementation

Balance between approximate and coherence searches

```
 \begin{array}{l} \textbf{function } \text{BestMatch}(A,\,A',\,B,\,B',\,s,\,\ell,\,q) \text{:} \\ p_{\text{app}} \leftarrow \text{BestApproximateMatch}(A,\,A',\,B,\,B',\,\ell,\,q) \\ p_{\text{coh}} \leftarrow \text{BestCoherenceMatch}(A,\,A',\,B,\,B',\,s,\,\ell,\,q) \\ d_{\text{app}} \leftarrow \|F_{\ell}(p_{\text{app}}) - F_{\ell}(q)\|^{2} \\ d_{\text{coh}} \leftarrow \|F_{\ell}(p_{\text{coh}}) - F_{\ell}(q)\|^{2} \\ \textbf{if } d_{\text{coh}} \leq d_{\text{app}}(1 + 2^{\ell - L}\kappa) \textbf{ then} \\ \textbf{return } p_{\text{coh}} \\ \textbf{else} \\ \textbf{return } p_{\text{app}} \end{array}
```

Learn to blur

Unfiltered source (A)

Filtered source (A')

Unfiltered target (B)

DigiVFX

Filtered target (B')

Super-resolution

Colorization

DigiVFX

Artistic filters

DigiVFX

••

..

Β'

В

Β'

Unfiltered source (A)

There's source (A)

Texture by numbers

Texture by numbers

DigiVFX

Image Analogies

Aaron Hertzmann Charles Jacobs Nuria Oliver Brian Curless David Salesin Image-based lighting

Rendering

- DigiVFX
- Rendering is a function of geometry, reflectance, lighting and viewing.
- To synthesize CGI into real scene, we have to match the above four factors.
- Viewing can be obtained from *calibration* or *structure from motion*.
- Geometry can be captured using *3D photography* or made by hands.
- How to capture lighting and reflectance?

HDRI Sky Probe

Clipped Sky + Sun Source

Real Scene Example

• Goal: place synthetic objects on table

Light Probe / Calibration Grid

Modeling the Scene

Digi<mark>VFX</mark>

The *Light-Based* Room Model

Rendering into the Scene

• Background Plate

Rendering into the scene

Objects and Local Scene matched to Scene

Differential rendering

• Local scene w/o objects, illuminated by model

Differential rendering

DigiVFX

Environment map from single image? Digivex

Eye as light probe! (Nayar et al)

Cornea is an ellipsoid

DigiVFX

Figure 2: (a) An external view of the human eye. (b) A normal adult cornea can be modeled as an ellipsoid whose outer limit corresponds to the limbus. The eccentricity and radius of curvature at the apex can be assumed to be known.

Ellipsoid fitting

Results

(a1) original image

DigiVFX

Reflectance

The Bidirectional Reflection Distribution Function

– Given an incoming ray (θ_i, ϕ_i) and outgoing ray (θ_e, ϕ_e) what proportion of the incoming light is reflected along out

Answer given by the BRDF: $ho(heta_i,\phi_i, heta_e,\phi_e)$

DigiVFX

DigiVFX

Capturing reflectance

Application in "The Matrix Reloaded"

Reference

DigiVFX

- Alexei A. Efros, Thomas K. Leung, <u>Texture Synthesis by Non-parametric Sampling</u>, ICCV 1999.
- Li-Yi Wei, Marc Levoy, <u>Fast Texture Synthesis Using Tree-</u> <u>Structured Vector Quantization</u>, SIGGRAPH 2000.
- Michael Ashikhmin, Synthesizing Natural Textures, I3D 2001.
- Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, David H. Salesin, <u>Image Analogies</u>, SIGGRAPH 2001.
- Alexei A. Efros, William T. Freeman, <u>Image Quilting for Texture</u> Synthesis and <u>Transfer</u>, SIGGRAPH 2001.
- Vivek Kwatra, Arno Schodl, Irfan Essa, Greg Turk, Aaron Bobick, Graphcut Textures: Image and Video Texture Synthesis Using Graph Cuts, SIGGRAPH 2003.
- Michael F. Cohen, Jonathan Shade, Stefan Hiller, Oliver Deussen, Wang Tiles for Image and Texture Generation, SIGGRAPH 2003.
- A. Criminisi, P. Perez, K. Toyama, <u>Object Removal by Examplar-Based Inpainting</u>, CVPR 2003.
- Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless, David H. Salesin, Michael F. Cohen, <u>Interactive Digital Photomontage</u>, SIGGRAPH 2004.

Reference

 Paul Debevec, <u>Rendering Synthetic Objects into Real Scenes:</u> Bridging Traditional and Image-based Graphics with Global Illumination and High Dynamic Range Photography, SIGGRAPH 1998.

DigiVFX

- Haarm-Pieter Duiker, <u>Lighting Reconstruction for "The Matrix</u> <u>Reloaded"</u>, SIGGRAPH 2003 Sketch and Applications.
- George Borshukov, <u>Measured BRDF in Film Production Realistic</u> <u>Cloth Appearance for "The Matrix Reloaded"</u>, SIGGRAPH 2003 Sketch and Applications.
- Ko Nishino, Shree K. Nayar, Eyes for Relighting, SIGGRAPH 2004.