

Cyberware scanners

face & head scanner

whole body scanner

Making facial expressions from photos

- Similar to Façade, use a generic face model and view-dependent texture mapping
- Procedure
 - 1. Take multiple photographs of a person
 - 2. Establish corresponding feature points
 - 3. Recover 3D points and camera parameters
 - 4. Deform generic face model to fit points
 - 5. Extract textures from photos

Reconstruct a 3D model

DigiVFX

input photographs

Mesh deformation

- Involves two steps:
 - Compute displacement of feature points
 - Apply scattered data interpolation

Texture extraction

view-independent

view-dependent

Model reconstruction

Use images to adapt a generic face model.

Creating new expressions

- In addition to global blending we can use:
 - Regional blending
 - Painterly interface

Creating new expressions

DigiVFX

New expressions are created with 3D morphing:

Applying a global blend

Creating new expressions

DigiVFX

Creating new expressions

Using a painterly interface

Animating between expressions

DigiVFX

Morphing over time creates animation:

"neutral"

Applying a region-based blend

Drunken smile

Video

Spacetime faces

stereo

stereo

active stereo

DigiVFX

Video

Fitting

3D face applications: The one

3D face applications: Gladiator

extra 3M

3D face applications: Spiderman 2

Statistical methods

Generic priors

DigiVFX

DigiVFX

Example-based priors

Example-based priors

"Existing images are good images."

PCA on faces: "eigenfaces"

DigiVFX

DigiVFX

Face models from single images

Morphable model of 3D faces

	Digi	۷	FX
--	------	---	----

DigiVFX

 Start with a catalogue of 200 aligned 3D Cyberware scans

• Build a model of *average* shape and texture, and principal *variations* using PCA

 $\vec{\alpha}, \vec{\beta} \in \Re^{m-1}$. The probability for coefficients $\vec{\alpha}$ is given by

$$p(\vec{\alpha}) \sim exp[-\frac{1}{2}\sum_{i=1}^{m-1} (\alpha_i/\sigma_i)^2],$$
 (2)

Morphable model of 3D faces

Divide face into 4 regions (eyes, nose, mouth, head)

For each new *prototype*, find amount of deviation from the reference shape and texture.

Morphable model of 3D faces

DigiVFX

• Adding some variations

Reconstruction from single image

DigiVFX

Modifying a single image

Video

A Morphable Model for the Synthesis of 3D Faces

Volker Blanz & Thomas Vetter

MPI for Biological Cybernetics Tübingen, Germany

DigiVFX **Digi**VFX Exchanging faces Morphable model for human body -20 kg -20 cm -40 kg -20 kg original +20 kg +40 kg +20 kg +20 cm **Digi**VFX Video rewrite Background Video Video Model Analysis stage يد يتعريقا بتهيج بلاء Image-based faces

Select Lip Video

Synthesis stage

Stitch

Together

++ ++++#+++ #|4|·

(lip sync.)

Results

- Video database
 - 8 minutes of Ellen
 - 2 minutes of JFK
 - Only half usable
 - Head rotation

training video

Read my lips.

I never met Forest Gump.

DigiVFX

DigiVFX

Relighting faces

Light is additive

Light stage 1.0

DigiVFX

DigiVFX

Input images

Reflectance function

Relighting

DigiVFX

DigiVFX

lighting product

Results

Changing viewpoints

Results

DigiVFX

(f)

DigiVFX

Spiderman 2

real

synthetic

Application: The Matrix Reloaded

DigiVFX

Light stage 3

Application: The Matrix Reloaded

Reference

- DigiVFX
- F. Pighin, J. Hecker, D. Lischinski, D. H. Salesin, and R. Szeliski. <u>Synthesizing realistic facial expressions from photographs</u>. SIGGRAPH 1998, pp75-84.
- Brian Guenter, Cindy Grimm, Henrique Malvar, Daniel Wood, <u>Making Faces</u>, SIGGRAPH 1998.
- Li Zhang, Noah Snavely, Brian Curless, Steven M. Seitz, <u>Spacetime</u> <u>Faces: High Resolution Capture for Modeling and Animation</u>, SIGGRAPH 2004.
- Blanz, V. and Vetter, T., <u>A Morphable Model for the Synthesis of 3D</u> <u>Faces</u>, SIGGRAPH 1999, pp187-194.
- V. Blanz, C. Basso, T. Poggio and T. Vetter, <u>Reanimating Faces in</u> <u>Images and Video</u>, EUROGRAPHICS 2003.
- V. Blanz, K. Scherbaum, T. Vetter, H.P. Seidel, <u>Exchanging Faces</u> in <u>Images</u>, EUROGRAPHICS 2004.
- George Borshukov et al., <u>Universal Capture Image-based Facial</u> <u>Animation for "The Matrix Reloaded"</u>, SIGGRAPH 2003 Sketch.

Reference

- George Borshukov et al., <u>Realistic Human Face Rendering for "The</u> <u>Matrix Reloaded"</u>, SIGGRAPH 2003 Sketch.
- Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, Mark Sagar, <u>Acquiring the Reflectance Field of a</u> <u>Human Face</u>, SIGGRAPH 2000.
- Paul Debevec, Chris Tchou, Andreas Wenger, Tim Hawkins, Andy Gardner, Brian Emerson, Ansul Panday, <u>A Lighting Reproduction</u> <u>Approach to Live-Action Compositing</u>, SIGGRAPH 2002.
- Mark Sagar, <u>Reflectance Field Rendering of Human Faces for</u> <u>"Spider-Man 2"</u>, SIGGRAPH 2004 Sketch.
- Christoph Bregler, Malcolm Slaney, Michele Covell, <u>Video Rewrite:</u> <u>Driving Visual Speeach with Audio</u>, SIGGRAPH 1997.
- Tony Ezzat, Gadi Geiger, Tomaso Poggio, <u>Trainable Videorealistic</u> <u>Speech Animation</u>, SIGGRAPH 2002.
- Brett Allen, Brian Curless, Zoran Popovic, <u>The Space of Human</u> <u>Body Shapes: Reconstruction and Parameterization From Range</u> <u>Scans</u>, SIGGRAPH 2003.

