	Announcements		
	 Project #1 artifacts voting. Project #2 camera.		
Camera calibration			
Digital Visual Effects, Spring 2005 <i>Yung-Yu Chuang</i> 2005/4/6			
with slides by Richard Szeliski, Steve Seitz, and Marc Pollefyes			
Outline			
 Nonlinear least square methods Camera projection models Camera calibration Bundle adjustment 			

Nonlinear least square methods

Least square

DigiVFX

Least Squares Problem

Find \mathbf{x}^* , a local minimizer for

$$F(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{m} (f_i(\mathbf{x}))^2 ,$$

where $f_i : \mathbb{R}^n \mapsto \mathbb{R}, i = 1, ..., m$ are given functions, and $m \ge n$.

It is widely seen in data fitting.

DigiVFX

Nonlinear least square

model
$$M(\mathbf{x}, t) = x_3 e^{x_1 t} + x_4 e^{x_2 t}$$

parameters $\mathbf{x} = [x_1, x_2, x_3, x_4]^\top$
residuals $f_i(\mathbf{x}) = y_i - M(\mathbf{x}, t_i)$
 $= y_i - x_3 e^{x_1 t_i} - x_4 e^{x_2 t_i}$

Function minimization

DigiVFX

Least square is related to function minimization.

 $M(x,t) = x_0 + x_1 t + x_2 t^3$ is linear, too.

Global Minimizer Given $F : \mathbb{R}^n \mapsto \mathbb{R}$. Find $\mathbf{x}^+ = \operatorname{argmin}_{\mathbf{x}} \{F(\mathbf{x})\}$.

It is very hard to solve in general. Here, we only consider a simpler problem of finding local minimum.

Function minimization

We assume that the cost function F is differentiable and so smooth that the following *Taylor expansion* is valid,²⁾

DigiVFX

$$F(\mathbf{x}+\mathbf{h}) = F(\mathbf{x}) + \mathbf{h}^{\mathsf{T}}\mathbf{g} + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}\mathbf{h} + O(\|\mathbf{h}\|^3)$$

where g is the gradient,

$$\mathbf{g} \equiv \mathbf{F}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial F}{\partial x_n}(\mathbf{x}) \end{bmatrix},$$

and H is the *Hessian*,

$$\mathbf{H} \equiv \mathbf{F}''(\mathbf{x}) = \left[\frac{\partial^2 F}{\partial x_i \partial x_j}(\mathbf{x})\right] \,.$$

Quadratic functions

Descent methods

Digi<mark>VFX</mark>

- 1. Find a descent direction h_d
- 2. find a step length giving a good decrease in the *F*-value.

Algorithm Descent method begin $k := 0; \mathbf{x} := \mathbf{x}_0; found :=$ false {Starting point} while (not found) and $(k < k_{\max})$ $\mathbf{h}_{d} := \text{search}_{direction}(\mathbf{x})$ {From **x** and downhill} if (no such h exists) $\{\mathbf{x} \text{ is stationary}\}\$ *found* := **true** else {from x in direction \mathbf{h}_d } $\alpha := \text{step_length}(\mathbf{x}, \mathbf{h}_{d})$ $\mathbf{x} := \mathbf{x} + \alpha \mathbf{h}_{\mathsf{d}}; \quad k := k+1$ {next iterate} end

Steepest descent method

Digi<mark>VFX</mark>

From (2.5) we see that when we perform a step α h with positive α , then the relative gain in function value satisfies

$$\lim_{\alpha \to 0} \frac{F(\mathbf{x}) - F(\mathbf{x} + \alpha \mathbf{h})}{\alpha \|\mathbf{h}\|} = -\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) = -\|\mathbf{F}'(\mathbf{x})\| \cos \theta ,$$

where θ is the angle between the vectors **h** and **F**'(**x**). This shows that we get the greatest gain rate if $\theta = \pi$, ie if we use the steepest descent direction **h**_{sd} given by

$$\mathbf{h}_{sd} = -\mathbf{F}'(\mathbf{x}) \,. \tag{2.8}$$

It has good performance in the initial stage of the iterative process.

Descent direction

$F(\mathbf{x}+\alpha \mathbf{h}) = F(\mathbf{x}) + \alpha \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) + O(\alpha^2)$ \$\sim F(\mathbf{x}) + \alpha \mbox{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x})\$ for \$\alpha\$ sufficiently small.

We say that **h** is a *descent direction* if $F(\mathbf{x}+\alpha\mathbf{h})$ is a decreasing function of α at $\alpha = 0$. This leads to the following definition.

Definition Descent direction.

h is a descent direction for F at **x** if $\mathbf{h}^{\top} \mathbf{F}'(\mathbf{x}) < 0$.

If no such h exists, then $\mathbf{F}'(\mathbf{x}) = \mathbf{0}$, showing that in this case x is stationary.

Steepest descent method

Newton's method

We can derive this method from the condition that \mathbf{x}^* is a stationary point. According to Definition 1.6 it satisfies $\mathbf{F}'(\mathbf{x}^*) = \mathbf{0}$. This is a nonlinear system of equations, and from the Taylor expansion

$$\mathbf{F}'(\mathbf{x}+\mathbf{h}) = \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} + O(\|\mathbf{h}\|^2)$$

 $\simeq \ \mathbf{F}^{\,\prime}(\mathbf{x}) + \mathbf{F}^{\,\prime\prime}(\mathbf{x})\mathbf{h} \quad \text{for } \|\mathbf{h}\| \text{ sufficiently small}$

we derive Newton's method: Find \mathbf{h}_n as the solutions to

$$\mathbf{H} \mathbf{h}_{n} = -\mathbf{F}'(\mathbf{x}) \quad \text{with } \mathbf{H} = \mathbf{F}''(\mathbf{x}) , \qquad (2.9a)$$

Suppose that **H** is positive definite, then it is nonsingular (implying that (2.9a) has a unique solution), and $\mathbf{u}^{\mathsf{T}} \mathbf{H} \mathbf{u} > 0$ for all nonzero \mathbf{u} . Thus, by multiplying with $\mathbf{h}_{n}^{\mathsf{T}}$ on both sides of (2.9a) we get

$$0 < \mathbf{h}_{n}^{\top} \mathbf{H} \, \mathbf{h}_{n} = -\mathbf{h}_{n}^{\top} \mathbf{F}'(\mathbf{x}) \,, \tag{2.10}$$

It has good performance in the final stage of the iterative process.

Digi<mark>VFX</mark>

DigiVFX

$\label{eq:horizontal} \begin{array}{l} \text{if } \mathbf{F}^{\prime\prime}(\mathbf{x}) \text{ is positive definite} \\ \mathbf{h} := \mathbf{h}_n \\ \text{else} \\ \mathbf{h} := \mathbf{h}_{sd} \\ \mathbf{x} := \mathbf{x} + \alpha \mathbf{h} \end{array}$

This needs to calculate second-order derivative which might not be available.

Levenberg-Marquardt method

DigiVFX

 LM can be thought of as a combination of steepest descent and the Newton method.
 When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton method.

Nonlinear least square

DigiVFX

Given a set of measurements x, try to find the best parameter vector **p** so that the squared distance $\varepsilon \varepsilon^T$ is minimal. Here, $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$, with $\hat{\mathbf{x}} = f(\mathbf{p})$.

Levenberg-Marquardt method

For

it is

Algorithm:

 $k := 0; \nu := 2; \mathbf{p} := \mathbf{p}_0;$

k := k + 1;

else

repeat

 $\mathbf{A} := \mathbf{J}^T \mathbf{J}; \ \boldsymbol{\epsilon}_{\mathbf{p}} := \mathbf{x} - f(\mathbf{p}); \ \mathbf{g} := \mathbf{J}^T \boldsymbol{\epsilon}_{\mathbf{p}};$ stop:=($||\mathbf{g}||_{\infty} \leq \varepsilon_1$); $\mu := \tau * \max_{i=1,\dots,m}(A_{ii})$;

Solve $(\mathbf{A} + \mu \mathbf{I})\delta_{\mathbf{p}} = \mathbf{g};$

while (not stop) and $(k < k_{max})$

if $(||\delta_{\mathbf{p}}|| \le \varepsilon_2 ||\mathbf{p}||)$

stop:=true;

if $\rho > 0$ $\mathbf{p} = \mathbf{p}_{new};$

else

endif endif until $(\rho > 0)$ or (stop)

endwhile

 $\mathbf{p}_{new} := \mathbf{p} + \delta_{\mathbf{p}};$

stop:=($||\mathbf{g}||_{\infty} \leq \varepsilon_1$);

 $\mu := \mu * \nu; \ \nu := 2 * \nu;$

 $\rho := (||\boldsymbol{\epsilon}_{\mathbf{p}}||^2 - ||\mathbf{x} - f(\mathbf{p}_{new})||^2) / (\delta_{\mathbf{p}}^T (\mu \delta_{\mathbf{p}} + \mathbf{g}));$

 $\mathbf{A} := \mathbf{J}^T \mathbf{J}; \, \boldsymbol{\epsilon}_{\mathbf{p}} := \mathbf{x} - f(\mathbf{p}); \, \mathbf{g} := \mathbf{J}^T \boldsymbol{\epsilon}_{\mathbf{p}};$

 $\mu := \mu * \max(\frac{1}{3}, 1 - (2\rho - 1)^3); \nu := 2;$

For a small
$$||\delta_{\mathbf{p}}||, f(\mathbf{p} + \delta_{\mathbf{p}}) \approx f(\mathbf{p}) + \mathbf{J}\delta_{\mathbf{p}}$$

 \mathbf{J} is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$
it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity
 $||\mathbf{x} - f(\mathbf{p} + \delta_{\mathbf{p}})|| \approx ||\mathbf{x} - f(\mathbf{p}) - \mathbf{J}\delta_{\mathbf{p}}|| = ||\epsilon - \mathbf{J}\delta_{\mathbf{p}}|$
 $\mathbf{J}^{T}\mathbf{J}\delta_{\mathbf{p}} = \mathbf{J}^{T}\epsilon$
 $\mathbf{N}\delta_{\mathbf{p}} = \mathbf{J}^{T}\epsilon$
 $\mathbf{N}_{ii} = \mu + [\mathbf{J}^{T}\mathbf{J}]_{ii}$
 $damping term$

DigiVFX

Levenberg-Marquardt method

DigiVFX

If a covariance matrix $\Sigma_{\mathbf{x}}$ for the measured vector \mathbf{x} is available, it can be incorporated into the LM algorithm by minimizing the squared $\Sigma_{\mathbf{x}}^{-1}$ -norm $\epsilon^T \Sigma_{\mathbf{x}}^{-1} \epsilon$ instead of the Euclidean $\epsilon^T \epsilon$. Accordingly, the minimum is found by solving a weighted least squares problem defined by the *weighted normal equations*

$$\mathbf{J}^T \mathbf{\Sigma}_{\mathbf{x}}^{-1} \mathbf{J} \delta_{\mathbf{p}} = \mathbf{J}^T \mathbf{\Sigma}_{\mathbf{x}}^{-1} \epsilon.$$
(4)

Two kinds of parameters

•

- *internal* or *intrinsic* parameters such as focal length, optical center, aspect ratio: *what kind of camera?*
- *external* or *extrinsic* (pose) parameters including rotation and translation: where is the camera?

Other projection models

Orthographic projection

DigiVFX

Special case of perspective projection
 Distance from the COP to the PP is infinite

– Also called "parallel projection": (x, y, z) \rightarrow (x, y)

Other types of projection

- Scaled orthographic
 - Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

Affine projection

 Also called "paraperspective"

$$\left[\begin{array}{ccc}a&b&c&d\\e&f&g&h\\0&0&0&1\end{array}\right]\left[\begin{array}{c}x\\y\\z\\1\end{array}\right]$$

Fun with perspective

Perspective cues

Perspective cues

Digi<mark>VFX</mark>

DigiVFX

Fun with perspective

Forced perspective in LOTR

Camera calibration

Camera calibration

- Estimate both intrinsic and extrinsic parameters
- Mainly, two categories:
- 1. Photometric calibration: use reference objects with known geometry
- 2. Self calibration: only assume static scene, e.g. structure from motion

Camera calibration approaches

- 1. linear regression (least squares)
- 2. nonlinear optinization
- 3. multiple planar patterns

Chromaglyphs (HP research)

DigiVFX Linear regression $x \sim K \Big[R \big| t \Big] X = M X$ $\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$ DigiVFX Linear regression $m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$

$$u_{i} = \frac{1}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$
$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{11}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

 $u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$

 $v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$

Solve for Projection Matrix M using least-square techniques

Linear regression

DigiVFX

DigiVFX

• Directly estimate 11 unknowns in the **M** matrix using known 3D points (X_i, Y_i, Z_i) and measured feature positions (u_i, v_i)

Normal equation

DigiVFX

Given an overdetermined system

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Nonlinear optimization

Digi<mark>VFX</mark>

- Feature measurement equations
 - $u_i = f(\mathbf{M}, \mathbf{x}_i) + n_i = \hat{u}_i + n_i, \quad n_i \sim N(0, \sigma)$ $v_i = g(\mathbf{M}, \mathbf{x}_i) + m_i = \hat{v}_i + m_i, \quad m_i \sim N(0, \sigma)$
- Likelihood of **M** given $\{(u_i, v_i)\}$

$$L = \prod_{i} p(u_{i}|\hat{u}_{i})p(v_{i}|\hat{v}_{i})$$

=
$$\prod_{i} e^{-(u_{i}-\hat{u}_{i})^{2}/\sigma^{2}} e^{-(v_{i}-\hat{v}_{i})^{2}/\sigma^{2}}$$

Linear regression

• Advantages:

- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image
- Disadvantages:
 - Doesn't tell us about particular parameters
 - Mixes up internal and external parameters
 - pose specific: move the camera and everything breaks

Optimal estimation

DigiVFX

• Log likelihood of **M** given $\{(u_i, v_i)\}$

$$C = -\log L = \sum_{i} (u_i - \hat{u}_i)^2 / \sigma_i^2 + (v_i - \hat{v}_i)^2 / \sigma_i^2$$

- How do we minimize *C*?
- Non-linear regression (least squares), because *û_i* and *v_i* are non-linear functions of *M*
- We can use Levenberg-Marquardt method to minimize it

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: <u>http://research.microsoft.com/-zhang/Calib/</u>

Step 1: data acquisition

Step 2: specify corner order

Step 3: corner extraction

DigiVFX

Step 5: refinement

Bundle adjustment

Bundle adjustment

DigiVFX

- Bundle adjustment (BA) is a technique for simultaneously refining the 3D structure and camera parameters
- It is capable of obtaining an optimal reconstruction under certain assumptions on image error models. For zero-mean Gaussian image errors, BA is the maximum likelihood estimator.

Bundle adjustment

- n 3D points are seen in m views
- x_{ij} is the projection of the *i*-th point on image *j*
- a_i is the parameters for the *j*-th camera
- b_i is the parameters for the *i*-th point
- BA attempts to minimize the projection error


```
\mathbf{A} := \mathbf{J}^T \mathbf{J}; \ \boldsymbol{\epsilon}_{\mathbf{p}} := \mathbf{x} - f(\mathbf{p}); \ \mathbf{g} := \mathbf{J}^T \boldsymbol{\epsilon}_{\mathbf{p}};
stop:=(||\mathbf{g}||_{\infty} \leq \varepsilon_1); \mu := \tau * \max_{i=1,\dots,m}(A_{ii});
                           \rho := (||\boldsymbol{\epsilon}_{\mathbf{p}}||^2 - ||\mathbf{x} - f(\mathbf{p}_{new})||^2) / (\delta_{\mathbf{p}}^T(\mu \delta_{\mathbf{p}} + \mathbf{g}));
                                   \mathbf{A} := \mathbf{J}^T \mathbf{J}; \, \boldsymbol{\epsilon}_{\mathbf{p}} := \mathbf{x} - f(\mathbf{p}); \, \mathbf{g} := \mathbf{J}^T \boldsymbol{\epsilon}_{\mathbf{p}};
                                    stop:=(||\mathbf{g}||_{\infty} \leq \varepsilon_1);
                                   \mu := \mu * \max(\frac{1}{3}, 1 - (2\rho - 1)^3); \nu := 2;
                                    \mu := \mu * \nu; \nu := 2 * \nu;
```

Bundle adjustment

3 views and 4 points

	/ A 11	0	0	\mathbf{B}_{11}	0	0	0 \
	0	\mathbf{A}_{12}	0	\mathbf{B}_{12}	0	0	0
	0	0	\mathbf{A}_{13}	\mathbf{B}_{13}	0	0	0
	A_{21}	0	0	0	\mathbf{B}_{21}	0	0
	0	\mathbf{A}_{22}	0	0	\mathbf{B}_{22}	0	0
$\partial \mathbf{X}$	0	0	\mathbf{A}_{23}	0	\mathbf{B}_{23}	0	0
$\overline{\partial \mathbf{P}}$ =	A_{31}	0	0	0	0	\mathbf{B}_{31}	0
	0	\mathbf{A}_{32}	0	0	0	\mathbf{B}_{32}	0
	0	0	\mathbf{A}_{33}	0	0	\mathbf{B}_{33}	0
	\mathbf{A}_{41}	0	0	0	0	0	\mathbf{B}_{41}
	0	\mathbf{A}_{42}	0	0	0	0	\mathbf{B}_{42}
	0 /	0	\mathbf{A}_{43}	0	0	0	${\bf B}_{43}$

Typical Jacobian

DigiVFX

Bundle adjustment

DigiVFX

Multiplied by $\begin{pmatrix} \mathbf{I} & -\mathbf{W} \mathbf{V}^{*-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$

$$\begin{pmatrix} \mathbf{U}^* - \mathbf{W} \, \mathbf{V}^{*-1} \, \mathbf{W}^T & \mathbf{0} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} - \mathbf{W} \, \mathbf{V}^{*-1} \, \epsilon_{\mathbf{b}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

$$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \, \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \, \mathbf{V}^{*-1} \, \epsilon_{\mathbf{b}}$$
$$\mathbf{V}^* \, \delta_{\mathbf{b}} = \epsilon_{\mathbf{b}} - \mathbf{W}^T \, \delta_{\mathbf{a}}$$

Block structure of normal equation

Recognising panoramas

- DigiVFX
- Parameterise each camera by rotation and focal length

$$\mathbf{R}_{i} = e^{[\boldsymbol{\theta}_{i}]_{\times}}, \quad [\boldsymbol{\theta}_{i}]_{\times} = \begin{bmatrix} 0 & -\theta_{i3} & \theta_{i2} \\ \theta_{i3} & 0 & -\theta_{i1} \\ -\theta_{i2} & \theta_{i1} & 0 \end{bmatrix}$$
$$\mathbf{K}_{i} = \begin{bmatrix} f_{i} & 0 & 0 \\ 0 & f_{i} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• This gives pairwise homographies

$$\tilde{\mathbf{u}}_i = \mathbf{H}_{ij} \tilde{\mathbf{u}}_j$$
, $\mathbf{H}_{ij} = \mathbf{K}_i \mathbf{R}_i \mathbf{R}_j^T \mathbf{K}_j^{-1}$

Error function

DigiVFX

DigiVFX

• Sum of squared projection errors

$$e = \sum_{i=1}^{n} \sum_{j \in \mathcal{I}(i)} \sum_{k \in \mathcal{F}(i,j)} f(\mathbf{r}_{ij}^{k})^{2}$$

- n = #images
- I(i) = set of image matches to image i
- F(i, j) = set of feature matches between images i, j
- r_{ij}^{k} = residual of kth feature match between images i,j
- Robust error function

$$f(\mathbf{x}) = \begin{cases} |\mathbf{x}|, & \text{if } |\mathbf{x}| < x_{max} \\ x_{max}, & \text{if } |\mathbf{x}| \ge x_{max} \end{cases}$$

MatchMove

A sparse BA software using LM

- sba is a generic C implementation for bundle adjustment using Levenberg-Marquardt method. It is available at http://www.ics.forth.gr/~lourakis/sba.
- You can use this library for your project #2.

Reference

- Manolis Lourakis and Antonis Argyros, <u>The Design and</u> <u>Implementation of a Generic Sparse Bundle Adjustment Software</u> <u>Package Based on the Levenberg-Marquardt Algorithm</u>, FORTH-ICS/TR-320 2004.
- K. Madsen, H.B. Nielsen, O. Timgleff, <u>Methods for Non-Linear Least</u> Squares Problems, 2004.
- Zhengyou Zhang, <u>A Flexible New Techniques for Camera</u> <u>Calibration</u>, MSR-TR-98-71, 1998.
- Bill Triggs, Philip McLauchlan, Richard Hartley and Andrew Fitzgibbon, <u>Bundle Adjustment A Modern Symthesis</u>, Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp298-372, 1999.

DigiVEX