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Nonlinear least square methods
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Least Squares Problem y
Find x*, a local minimizer for * y(t) = M(x, t) =X + xlt

F(x) = 1 . i(x))° * —
20 = g | £ =y, M(x,1)
where f; : R" — R, i=1,...,m are given functions, and m > n. LI . \
* t prediction
It is widely seen in data fitting. IR > residual
M(x,t)=x,+xt+ x2t3 is linear, too.
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Nonlinear least square

Function minimization

model M (x.t) = x3e™" + x4e™?"

parameters X = [x1,rz2, T3, .-1.-4]T

residuals fi(x) = yi — M(x, ;)
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Least square is related to function minimization.

Global Minimizer
Given F' : R" — R. Find

xt = argmin {F(x)} .

It is very hard to solve in general. Here, we only consider
a simpler problem of finding local minimum.

Local Minimizer
Given F' : R — R. Find x* so that

F(x*) < F(x) for [x—x"||<4d.
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Function minimization

We assume that the cost function F' is differentiable and so smooth that the
following Taylor expansion is valid,?

F(x+h) = F(x)+h'g+ h"Hh + O(||n*)

where g 1s the gradient,
or
8;1’1

—
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g = F'(x) = .
ar
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and H is the Hessian,

H=E) - | r ) -
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Ox;0x;

Quadratic functions

flz) = %mTA:r: —blz+e

Quadratic functions

isocontour gradient
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Descent methods RIVFX

1. Find a descent direction hy

2. find a step length giving a good decrease n the F'-value.

Descent direction RIFIVPX

Algorithm Descent method
begin
k:=10; X:=xgo; found .= [alse {Starting point}
while (not found) and (k < kyax)
hy := search_direction(x) {From x and downhill }
if (no such h exists)
found := true {x is stationary}
else
o := step_length(x, hy) {from x in direction hy}
x:=x+ahg; k:=k+1 {next iterate }
end

F(x+ah) = F(x) 4+ ah"F'(x) + O(a?)
~ F(x)+ah"F/(x) for a sufficiently small.

We say that h 1s a descent direction if F'(x+eah) 1s a decreasing function of
a at v = 0. This leads to the following definition.

Definition Descent direction.

h is a descent direction for F atx if h'F’(x) < 0.

If no such h exists, then F'/(x) = 0, showing that in this case x is stationary.

Steepest descent method

From (2.5) we see that when we perform a step ach with positive «, then the
relative gain 1n function value satisfies

lim Flx) = Flxtoh) 1 h'F/(x) = —||F/(x)| cos 6

a—0 allh]] I '
where 6 is the angle between the vectors h and F’(x). This shows that we
get the greatest gain rate if # = 7, 1e 1f we use the steepest descent direction
hgq given by

hy = -F'(x). (2.8)

It has good performance in the initial stage of the
iterative process.

Steepest descent method




Newton’s method Ve Hybrid method DigilZ:

We can derive this method from the condition that x* 1s a stationary pomt.

E onC E B 5 ¢ B . L : PR :
According to Definition 1.6 it satisfies F/(x*) =0. This is a nonlinear sys- if F'”(x) is positive definite

tem of equations, and from the Taylor expansion h:=h,
‘ 1‘
F/(x+h) = F/(x) + F”(x)h + O(||h|?) b= b
~ F/(x)+ F"”(x)h for | h| sufficiently small x:=x+ ah

we derive Newton'’s method: Find h, as the solutions to X . X .
This needs to calculate second-order derivative which

Hh, = —F'(x) with H=F"(x), (2.92) might not be available.

Suppose that H is positive definite, then it is nonsingular (implying that
(2.9a) has a unique solution), and u' Hu > 0 for all nonzero u. Thus, by
multiplying with h,| on both sides of (2.9a) we get

0<h)Hh, = —h F/(x), (2.10)
It has good performance in the final stage of the iterative
process.
Digil[Z3

Line search Levenberg-Marquardt method

pla) = F(x+ah), xandhfixed, @ >0. e LM can be thOUght of as a combination of

b steepest descent and the Newton method.
When the current solution is far from the
correct one, the algorithm behaves like a
steepest descent method: slow, but guaranteed
to converge. When the current solution is close
to the correct solution, it becomes a Newton
method.
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Nonlinear least square Cved Levenberg-Marquardt method
Given a set of measurements X, try to find For a small ||dp||, f(p +0p) = f(p) + Idp
the best parameter vector p so that the T e T %
. T - . e
squared distance g” is minimal. Here, it is required to find the d, that minimizes the quantity
&=x-X,withx = f(p). e = f@+ 8l = lx = f) — Iopll = [le — I5pl]
I35, = e
Nop = J7e
Niu=p+ [JTJ]
i i
damping term
Algorithm:

Levenberg-Marquardt method

If a covariance matrix 3, for the measured vector x is available, it can be incorporated
into the LM algorithm by minimizing the squared X3 '-norm ¢’ 3 ¢ instead of the
Euclidean e”'e. Accordingly, the minimum is found by solving a weighted least squares
problem defined by the weighted normal equations

I8 136, = ITE e (4)

k=10 v:i=2 p:=pg
A=0"0 ¢, i=x— f(p): g:=TT¢p;
stop:=(||gllec < €1); p == 7 * maxi=,.m(Aii);
while (not stop) and (k < kpas)
k=k+1
repeat
|Solve (A + pI)dp = g; |
if ([[dp]] < e2[pl])
stop:=true;
else

Prew =P+ 5p;

ifp>0
P = Paew
A =TT ey = x— f(p); g:= T ep;
stop:=(||g||e < £1);
W= gk max(% 1—(2p— 1Y) v:=2;

else
pi=pEy vi=2x 0

endif

endif
until (p > 0) or (stop)
endwhile




Camera projection models

. JIVFX
Pinhole camera

illwm 1n rabula per radios Solis, quam in ceelo contin-
gir: hoe eft,fi in eeelo fuperior pars deliquid pariatar,in
radiis apparebirinferior deficere,vt ratio exigit oprica.

35 e e it

..Euwy

Sic nos exaété Anne 1944 . Louanii cclipfim Solis
ebleruavimus , inuenimusl; deficere pauld plus § dex-

. |:J|-IVFX
Pinhole camera model
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Pinhole camera model Principal point offset
A
g intrinsic matrix T
x ~ K[10]x
X X
xﬂ(fOOlOOOY ijfOxOIOOOY
y~fY=OfOOlOOZ y~fY:OfyOOIOOZ
IZOOIOOIO1 IZOOIOOIO1
Intrinsic matrix Camera rotation and translation Sl
Is this form of K good enough? f 0 x -
K=|0 f yO C }“‘“ —
0O 0 1 am - A NG .
X' X i
« non-square pixels (digital video) Y'1=R,,| ¥ |+t ’
. skeY\/ | | fa s x, VA VA Py
« radial distortion K=[0 f y XY [f 0 x, x~K[R\t]X
Y ——
0 0 1 v~10 £ Rl , f
1 0O 0 1 extrinsic matrix
1




Two kinds of parameters ]

e internal or intrinsic parameters such as focal
length, optical center, aspect ratio:
what kind of camera?

» external or extrinsic (pose) parameters
including rotation and translation:
where is the camera?

Other projection models

Digi

Orthographic projection

» Special case of perspective projection
— Distance from the COP to the PP is infinite

] v —[%;}] = (a.1)

— Also called “parallel projection”: (x, Yy, z) — (X, Y)

Digi

Other types of projection

» Scaled orthographic
— Also called “weak perspective”

100 O E "
010 O .| = v |= (dv,dy)
0 0 0 1/d 1 1/d

 Affine projection
— Also called “paraperspective”
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Fun with perspective
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Perspective cues

Perspective cues
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Fun with perspective
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Forced perspective in LOTR v

Camera calibration

. . Digil[24
Camera calibration x

Estimate both intrinsic and extrinsic parameters
Mainly, two categories:

. Photometric calibration: use reference objects
with known geometry

2. Self calibration: only assume static scene, e.g.
structure from motion

. . _m\. /F
Camera calibration approaches .

1. linear regression (least squares)
2. nonlinear optinization
3. multiple planar patterns




Chromaglyphs (HP research) P P
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Linear regression

x ~ K[R|t[X = MX

X
u mopo ™M™mo1 ™Mp2 M™mMQE3 Y
v |~ | mio M1 M12 M13 7
1 mog m21 m22 1 1
Linear regression AT Linear regression AT
* Directly estimate 11 unknowns in the M matrix mooX; + mo1Y; + mo2Z; + mos3
using known 3D points (X;,Y;,Z;) and measured Ui = m20X; + molY; + mooZ; + 1
feature positions (u;,v;) ’ ! !
b = MoXitmiiY;+mioZ; +mis
. =

moaoX; + ma1Y; +mo2Z; + 1

ui(mooXi + mo1Y; +mooZi + 1) = mooX; + mo1Y; + mo2Z; + mo3

vi(mooX; + mo1Y; + mooZ; + 1) = mioX;i +m11Yi + m12Z; +mi3

Solve for Projection Matrix M using least-square
techniques




Normal equation v

Given an overdetermined system

Ax=Db

the normal equation is that which minimizes the
sum of the square differences between left and
right sides

A'Ax=A"b

Linear regression v

» Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the
image
» Disadvantages:
- Doesn’t tell us about particular parameters

- Mixes up internal and external parameters
« pose specific: move the camera and everything breaks

Nonlinear optimization e

Optimal estimation

» Feature measurement equations

w = f ,xi) +n;,=14;+n;, mn;~ N(0,0)
v; = g(M,x;) 4+ m; =v; +m;, mj ~ N(O,0)

+ Likelihood of M given {(u;,v;)}
L = [[p(uilt)pv;|v;)
i

_ H e_(Uz'_ﬂz')g/026_(1}3'_@1)2/02
1

* Log likelihood of M given {(u;,v;)}
C=-logL=> (u;— ﬁt‘)z/ag + (v; — ﬁ@)z/(riz

* How do we minimize C?

* Non-linear regression (least squares), because
0; and v; are non-linear functions of M

* We can use Levenberg-Marquardt method to
minimize it




Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
« Only requires a plane
« Don’t have to know positions/orientations
» Good code available online!

- Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

- Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

- Zhengyou Zhang’s web site: http://research.microsoft.com/-zhang/Calib/

Step 1: data acquisition
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Step 2: specify corner order Dig

Click on the four axtreme comars of th rectanguiar pattem (first comer = origin). . Image 1 Click an tha four sxtrams comers of the ractangular pattem (irst comer = argin) .. Imags 1
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Step 3: corner extraction
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The red crosses should be close to the image comers
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Step 3: corner extraction ]
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Step 4: minimize projection error
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Reprojection error (in pixel) - To exit: right button
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Calibration res

[ 8.31819 8.34046 ]

a.08008 ]

Focal Length: fc = [ 657.46298 657.94673 ] 2

Principal point: cc = [ 383.13665 242 _56935 ] + [ B.6L682 8.59218 ]
Skew: alpha_c = [ 8.806868 ] + [ 6.88808 ] => angle of pixel axes
Distortion: ke = [ -0.25483 8.12143 -@.08621 a.88082

Pixel error: err = [ B.11689 8.11588 ]

00

00

-200

Step 4: camera calibration
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Step 5: refinement v

Reprojection errar {in pixel) - To exit: right button
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Bundle adjustment

Bundle adjustment

» Bundle adjustment (BA) is a technique for
simultaneously refining the 3D structure and
camera parameters

« It is capable of obtaining an optimal
reconstruction under certain assumptions on
image error models. For zero-mean Gaussian
image errors, BA is the maximum likelihood
estimator.

Bundle adjustment

n 3D points are seen in m views

X;; is the projection of the i-th point on image j
a; is the parameters for the j-th camera

b; is the parameters for the i-th point

BA attempts to minimize the projection error

e

mmz Z d(Q(a;, b;), Xﬁ‘j)z
a;;b i=1 j=1 ‘
predicted projection

Euclidean distance




Bundle adjustment

Algorithm:
k=0 vi=2; p:=po;
A=TT ey i=x— f(p) g:=TTep;
stop:=(|[glloe < €1); p == 7 # maxi=1,_m(dii);
while (not stop) and (k < kpar)
k=k+1:
repeat
|Solve (A +pl)o, = g; |
if ([|dp]| < e2||pl[)
stop:=true;
else

Prew ‘=P + 5p§

p:= (llepll® = 1% = F(Pnew)|*)/ (0F (1 + 8)):

ifp=>0
P = Pnew:
A=JTT ¢, =x— f(p); g:= e
stop:=(||g]| e < €1);
pi=prmax(31—(2p— 1)) v:=2;

else
por= ppkowy 1= 2 1

endif

endif
until (p > 0) or (stop)
endwhile

Bundle adjustment
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3 views and 4 points
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Bundle adjustment
u, 0 0 Wi Wy Wi Wy Oa, €a,
0 U, 0 Wy Wy Wi Wy Oa, €a,
0 0 U; Wiz Wy Wiy Wy Oa, Eay
Wil Wil Wit vy 0 0 0 ob, | = | €b,
Wal Wyl Wil 0 Vs 0 0 By €bs
W:-HT W:%*ZT W:%:%T ] 0 Vi 0 b, €hy
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U 0o o0 ‘? ‘E* g g Wi Wi Wy Wy
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Block structure of normal equation

W

Bundle adjustment AT

Multiplied by (I ~-W V*‘l)
0 I

(U*—WV*‘le 0 ) (a:.,) B (ea—wv*-l eb)
th

(U - WV T W =ca - WV g

V* &, = ep — W7 4,

Recognising panoramas
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e Parameterise each camera by rotation and
focal length

0 b3 b
R, = 9%, (0]« = l9i3 0 _Hil}
—0io 63 O
fi 00
K;=10 f; O
0O 0 1

e This gives pairwise homographies

~ rr -~ T v n nlv—1
u; = H;;u;, H;; = KGR K. 7
2 27U : % gty Eh g




Error function

A sparse BA software using LM

e Sum of squared projection errors

n
=Y ¥ ¥ fah)?
) =1 jeZ(i) keF (i,5)
- n = #images

- I(i) = set of image matches to image i
- F(i, j) = set of feature matches between images i,j
- ry* = residual of k" feature match between images
]’J
e Robust error function

) = {yx|, if x| < Zmao

Tmaz, T ’X‘ > Tmaz

» sba is a generic C implementation for bundle

adjustment using Levenberg-Marquardt method.
It is available at
http://wwwe.ics.forth.gr/~lourakis/sba.

» You can use this library for your project #2.

MatchMove RV
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