Camera calibration

Digital Visual Effects, Spring 2005 YungYu Chuang
2005/4/6
with sides byRidardSzdiski, SteeSeitz, andMarcPdlefyes

Announcements

- Project \#l artifacts voting.
- Project \#2 camera.

Outline

- Nonlinear least square methods
- Camera projection models
- Camera calibration
- Bundle adjustment

Nonlinear least square methods

Least square

Least Squares Problem

Find x^{*}, a local minimizer for

$$
F(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})\right)^{2}
$$

where $f_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}, i=1, \ldots, m$ are given functions, and $m \geq n$.

It is widely seen in data fitting.

Linear least square

$$
\begin{aligned}
& M(x, t)=x_{0}+x_{1} t+x_{2} t^{3} \text { is linear, too. }
\end{aligned}
$$

Nonlinear least square

$$
\begin{aligned}
& \text { model } M(\mathbf{x}, t)=x_{3} e^{x_{1} t}+x_{4} e^{x_{2} t} \\
& \text { parameters } \mathbf{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\top} \\
& \text { residuals } \begin{aligned}
f_{i}(\mathbf{x}) & =y_{i}-M\left(\mathbf{x}, t_{i}\right) \\
& =y_{i}-x_{3} e^{x_{1} t_{i}}-x_{4} e^{x_{2} t_{i}}
\end{aligned}
\end{aligned}
$$

Function minimization

Least square is related to function minimization.

Global Minimizer

Given $F: \mathbb{R}^{n} \mapsto \mathbb{R}$. Find

$$
\mathbf{x}^{+}=\operatorname{argmin}_{\mathbf{x}}\{F(\mathbf{x})\}
$$

It is very hard to solve in general. Here, we only consider a simpler problem of finding local minimum.

Local Minimizer
Given $F: \mathbb{R}^{n} \mapsto \mathbb{R}$. Find \mathbf{x}^{*} so that

$$
F\left(\mathrm{x}^{*}\right) \leq F(\mathrm{x}) \quad \text { for } \quad\left\|\mathrm{x}-\mathrm{x}^{*}\right\|<\delta
$$

Function minimization

We assume that the cost function F is differentiable and so smooth that the following Taylor expansion is valid, ${ }^{2)}$

$$
F(\mathbf{x}+\mathbf{h})=F(\mathbf{x})+\mathbf{h}^{\top} \mathbf{g}+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)
$$

where \mathbf{g} is the gradient,

$$
\mathbf{g} \equiv \mathbf{F}^{\prime}(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial F}{\partial x_{1}}(\mathbf{x}) \\
\vdots \\
\frac{\partial F}{\partial x_{n}}(\mathbf{x})
\end{array}\right]
$$

and \mathbf{H} is the Hessian,

$$
\mathbf{H} \equiv \mathbf{F}^{\prime \prime}(\mathbf{x})=\left[\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}(\mathbf{x})\right]
$$

Quadratic functions

$f(x)=\frac{1}{2} x^{T} A x-b^{T} x+c$

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right], \quad b=\left[\begin{array}{r}
2 \\
-8
\end{array}\right], \quad c=0 .
$$

Quadratic functions

gradient

Quadratic functions

Descent methods

1. Find a descent direction \mathbf{h}_{d}
2. find a step length giving a good decrease in the F-value.
```
Algorithm Descent method
begin
    k:=0; \mathbf{x}:=\mp@subsup{\mathbf{x}}{0}{};\mathrm{ found := false}
    while (not found) and (k< k
        \mp@subsup{\mathbf{h}}{\textrm{d}}{}}:=\mathrm{ search_direction(x)
        if (no such h exists)
        found:= true
    else
        \alpha:= step_length ( }\mathbf{x},\mp@subsup{\mathbf{h}}{\textrm{d}}{}
        x := x + \alpha'\mathbf{h}}\mp@subsup{\mathbf{d}}{}{\prime};\quadk:=k+
end
```


Descent direction

$$
\begin{aligned}
F(\mathbf{x}+\alpha \mathbf{h}) & =F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})+O\left(\alpha^{2}\right) \\
& \simeq F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \quad \text { for } \alpha \text { sufficiently small. }
\end{aligned}
$$

We say that \mathbf{h} is a descent direction if $F(\mathbf{x}+\alpha \mathbf{h})$ is a decreasing function of α at $\alpha=0$. This leads to the following definition.

Definition Descent direction.

\mathbf{h} is a descent direction for F at \mathbf{x} if $\mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})<0$.
If no such \mathbf{h} exists, then $\mathbf{F}^{\prime}(\mathbf{x})=\mathbf{0}$, showing that in this case x is stationary.

Steepest descent method

From (2.5) we see that when we perform a step $\alpha \mathbf{h}$ with positive α, then the relative gain in function value satisfies

$$
\lim _{\alpha \rightarrow 0} \frac{F(\mathbf{x})-F(\mathbf{x}+\alpha \mathbf{h})}{\alpha\|\mathbf{h}\|}=-\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})=-\left\|\mathbf{F}^{\prime}(\mathbf{x})\right\| \cos \theta
$$

where θ is the angle between the vectors \mathbf{h} and $\mathbf{F}^{\prime}(\mathbf{x})$. This shows that we get the greatest gain rate if $\theta=\pi$, ie if we use the steepest descent direction $\mathbf{h}_{\text {sd }}$ given by

$$
\begin{equation*}
\mathbf{h}_{\mathrm{sd}}=-\mathbf{F}^{\prime}(\mathbf{x}) . \tag{2.8}
\end{equation*}
$$

It has good performance in the initial stage of the iterative process.

Steepest descent method

Newton's method

We can derive this method from the condition that x^{*} is a stationary point. According to Definition 1.6 it satisfies $\mathbf{F}^{\prime}\left(\mathbf{x}^{*}\right)=\mathbf{0}$. This is a nonlinear system of equations, and from the Taylor expansion

$$
\begin{aligned}
\mathbf{F}^{\prime}(\mathbf{x}+\mathbf{h}) & =\mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{2}\right) \\
& \simeq \mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h} \text { for }\|\mathbf{h}\| \text { sufficiently small }
\end{aligned}
$$

we derive Newton's method: Find \mathbf{h}_{n} as the solutions to

$$
\begin{equation*}
\mathbf{H} \mathbf{h}_{\mathrm{n}}=-\mathbf{F}^{\prime}(\mathbf{x}) \quad \text { with } \mathbf{H}=\mathbf{F}^{\prime \prime}(\mathbf{x}) \tag{2.9a}
\end{equation*}
$$

Suppose that \mathbf{H} is positive definite, then it is nonsingular (implying that (2.9a) has a unique solution), and $\mathbf{u}^{\top} \mathbf{H} \mathbf{u}>0$ for all nonzero \mathbf{u}. Thus, by multiplying with $\mathbf{h}_{\mathrm{n}}^{\top}$ on both sides of (2.9a) we get

$$
\begin{equation*}
0<\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{H} \mathbf{h}_{\mathrm{n}}=-\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{F}^{\prime}(\mathbf{x}), \tag{2.10}
\end{equation*}
$$

It has good performance in the final stage of the iterative process.

Hybrid method

$$
\begin{aligned}
& \text { if } \mathbf{F}^{\prime \prime}(\mathbf{x}) \text { is positive definite } \\
& \mathbf{h}:=\mathbf{h}_{\mathrm{n}} \\
& \text { else } \\
& \quad \mathbf{h}:=\mathbf{h}_{\mathrm{sd}} \\
& \mathbf{x}:=\mathbf{x}+\alpha \mathbf{h}
\end{aligned}
$$

This needs to calculate second-order derivative which might not be available.

Line search

$$
\varphi(\alpha)=F(\mathbf{x}+\alpha \mathbf{h}), \quad \mathbf{x} \text { and } \mathbf{h} \text { fixed, } \alpha \geq 0 .
$$

Levenberg-Marquardt method

- LM can be thought of as a combination of steepest descent and the Newton method. When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton method.

Nonlinear least square

Given a set of measurements \mathbf{x}, try to find the best parameter vector \mathbf{p} so that the squared distance $\varepsilon \varepsilon^{T}$ is minimal. Here, $\varepsilon=\mathbf{x}-\hat{\mathbf{x}}$, with $\hat{\mathbf{x}}=f(\mathbf{p})$.

Levenberg-Marquardt method

For a small $\left\|\delta_{\mathbf{p}}\right\|, f\left(\mathbf{p}+\delta_{\mathbf{p}}\right) \approx f(\mathbf{p})+\mathbf{J} \delta_{\mathbf{p}}$

$$
\mathbf{J} \text { is the Jacobian matrix } \frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}
$$

it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

$$
\begin{gathered}
\left\|\mathbf{x}-f\left(\mathbf{p}+\delta_{\mathbf{p}}\right)\right\| \approx\left\|\mathbf{x}-f(\mathbf{p})-\mathbf{J} \delta_{\mathbf{p}}\right\|=\left\|\epsilon-\mathbf{J} \delta_{\mathbf{p}}\right\| \\
\mathbf{J}^{T} \mathbf{J} \delta_{\mathbf{p}}=\mathbf{J}^{T} \epsilon \\
\mathbf{N} \delta_{\mathbf{p}}=\mathbf{J}^{T} \epsilon \\
\mathbf{\mathbf { N } _ { i i }}=\underset{\uparrow}{\mu}+\left[\mathbf{J}^{T} \mathbf{J}\right]_{i i} \\
\text { damping term }
\end{gathered}
$$

Levenberg-Marquardt method

If a covariance matrix $\boldsymbol{\Sigma}_{\mathbf{x}}$ for the measured vector \mathbf{x} is available, it can be incorporated into the LM algorithm by minimizing the squared $\boldsymbol{\Sigma}_{\mathbf{x}}^{-1}$-norm $\epsilon^{T} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} \epsilon$ instead of the Euclidean $\epsilon^{T} \epsilon$. Accordingly, the minimum is found by solving a weighted least squares problem defined by the weighted normal equations

$$
\begin{equation*}
\mathbf{J}^{T} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} \mathbf{J} \delta_{\mathbf{p}}=\mathbf{J}^{T} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} \epsilon . \tag{4}
\end{equation*}
$$

```
Algorithm:
\(k:=0 ; \nu:=2 ; \mathbf{p}:=\mathbf{p}_{0}\);
\(\mathbf{A}:=\mathbf{J}^{T} \mathbf{J} ; \epsilon_{\mathbf{p}}:=\mathbf{x}-f(\mathbf{p}) ; \mathbf{g}:=\mathbf{J}^{T} \epsilon_{\mathbf{p}} ;\)
stop: \(=\left(\|\mathbf{g}\|_{\infty} \leq \varepsilon_{1}\right) ; \mu:=\tau * \max _{i=1, \ldots, m}\left(A_{i i}\right)\);
while (not stop) and ( \(k<k_{\text {max }}\) )
    \(k:=k+1\);
    repeat
        Solve \((\mathbf{A}+\mu \mathbf{I}) \delta_{\mathbf{p}}=\mathbf{g} ;\)
if \(\left(\left\|\delta_{\mathbf{p}}\right\| \leq \varepsilon_{2}\|\mathbf{p}\|\right)\)
            stop:=true;
        else
            \(\mathbf{p}_{\text {new }}:=\mathbf{p}+\delta_{\mathbf{p}} ;\)
            \(\rho:=\left(\left\|\epsilon_{\mathbf{p}}\right\|^{2}-\left\|\mathbf{x}-f\left(\mathbf{p}_{\text {new }}\right)\right\|^{2}\right) /\left(\delta_{\mathbf{p}}^{T}\left(\mu \delta_{\mathbf{p}}+\mathbf{g}\right)\right)\);
            if \(\rho>0\)
                \(\mathbf{p}=\mathbf{p}_{\text {new }} ;\)
                    \(\mathbf{A}:=\mathbf{J}^{T} \mathbf{J} ; \epsilon_{\mathbf{p}}:=\mathbf{x}-f(\mathbf{p}) ; \mathbf{g}:=\mathbf{J}^{T} \epsilon_{\mathbf{p}} ;\)
                    stop: \(=\left(\|\mathbf{g}\|_{\infty} \leq \varepsilon_{1}\right)\);
                    \(\mu:=\mu * \max \left(\frac{1}{3}, 1-(2 \rho-1)^{3}\right) ; \nu:=2 ;\)
            else
                    \(\mu:=\mu * \nu ; \nu:=2 * \nu ;\)
            endif
        endif
    until ( \(\rho>0\) ) or (stop)
endwhile
```


Camera projection models

Pinhole camera

illum in tabula per radios Solis, quam in ceelo contingit: hoc eff,fi in ccelo fuperior pars delıquiü patiatur, in radis apparebit inferior deficere, vt ratio exigit optica.

Sic nos exaAct Anno. 1544. Louanii celipfim Solis obleruzuimus, inuenimusq; deficere paulo plus ä dex-

Pinhole camera model

Pinhole camera model

$$
\begin{aligned}
& x=\frac{f X}{Z} \\
& y=\frac{f Y}{Z}
\end{aligned}
$$

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Pinhole camera model

$$
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Principal point offset

$$
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{l}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Intrinsic matrix

Is this form of K good enough?

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- non-square pixels (digital video)
- skew
- radial distortion

$$
\mathbf{K}=\left[\begin{array}{ccc}
f a & s & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

Camera rotation and translation

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right][\mathbf{R} \left\lvert\, \mathbf{t}\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \quad \mathbf{x} \sim \mathbf{K} \underbrace{[\mathbf{R} \mid \mathbf{t}] \mathbf{X}}_{\uparrow}\right.
$$

Two kinds of parameters

- internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- external or extrinsic (pose) parameters including rotation and translation: where is the camera?

Other projection models

Orthographic projection

- Special case of perspective projection
- Distance from the COP to the PP is infinite

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

- Also called "parallel projection": $(x, y, z) \rightarrow(x, y)$

Other types of projection

- Scaled orthographic
- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Affine projection
- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Fun with perspective

Perspective cues

Perspective cues

Fun with perspective

Ames room

Forced perspective in LOTR

Camera calibration

Camera calibration

- Estimate both intrinsic and extrinsic parameters
- Mainly, two categories:

1. Photometric calibration: use reference objects with known geometry
2. Self calibration: only assume static scene, e.g. structure from motion

Camera calibration approaches

1. linear regression (least squares)
2. nonlinear optinization
3. multiple planar patterns

Chromaglyphs (HP research)

Linear regression

$\mathrm{x} \sim \mathrm{K}[\mathrm{R} \mathrm{t} \mid \mathrm{X}=\mathrm{MX}$

$$
\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \sim\left[\begin{array}{lllc}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Linear regression

- Directly estimate 11 unknowns in the M matrix using known 3D points $\left(X_{i}, Y_{i}, Z_{i}\right)$ and measured feature positions (u_{i}, v_{i})

Linear regression

$$
\begin{gathered}
u_{i}=\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1} \\
v_{i}=\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1} \\
u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03} \\
v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}
\end{gathered}
$$

Solve for Proj ection Matrix M using least-square techniques

Normal equation

Given an overdetermined system

$$
\mathbf{A x}=\mathbf{b}
$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Linear regression

- Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image
- Disadvantages:
- Doesn't tell us about particular parameters
- Mixes up internal and external parameters
- pose specific: move the camera and everything breaks

Nonlinear optimization

- Feature measurement equations

$$
\begin{aligned}
u_{i} & =f\left(\mathbf{M}, \mathbf{x}_{i}\right)+n_{i}=\widehat{u}_{i}+n_{i}, \quad n_{i} \sim N(0, \sigma) \\
v_{i} & =g\left(\mathbf{M}, \mathbf{x}_{i}\right)+m_{i}=\widehat{v}_{i}+m_{i}, \quad m_{i} \sim N(0, \sigma)
\end{aligned}
$$

- Likelihood of \mathbf{M} given $\left\{\left(u_{i}, v_{i}\right)\right\}$

$$
\begin{aligned}
L & =\prod_{i} p\left(u_{i} \mid \widehat{u}_{i}\right) p\left(v_{i} \mid \widehat{v}_{i}\right) \\
& =\prod_{i} e^{-\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma^{2}} e^{-\left(v_{i}-\widehat{v}_{i}\right)^{2} / \sigma^{2}}
\end{aligned}
$$

Optimal estimation

- Log likelihood of \mathbf{M} given $\left\{\left(u_{i}, v_{i}\right)\right\}$

$$
C=-\log L=\sum_{i}\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma_{i}^{2}+\left(v_{i}-\widehat{v}_{i}\right)^{2} / \sigma_{i}^{2}
$$

- How do we minimize C?
- Non-linear regression (least squares), because \hat{u}_{i} and v_{i} are non-linear functions of \mathbf{M}
- We can use Levenberg-Marquardt method to minimize it

Multi-plane calibration

DigjVFX

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/ orientations
- Good code available online!
- Intel's OpenCV library: http://www.intel.com/ research/ mrl/ research/ opencv/
- Matlab version by J ean-Yves Bouget:
http:/ / www. vision. caltech. edu/ bouguetj/ calib_doc/ index. html
- Zhengyou Zhang's web site: http:// research. microsoft.com/ -zhang/ Calib/

Step 1: data acquisition

DigjVFX

Step 2: specify corner order

Click on the four extreme comers of the rectangular pattem (first comer = origin)... Image 1 Click on the four extreme comers of the rectangular pattern (first comer = origin)... Image 1

Cick on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1

Step 3: corner extraction

Step 3: corner extraction

Step 4: minimize projection error

Reprojection error (in pixel) - To exit: right button

Calibration res
Focal Length:
Principal point:
Skew:
Distortion:
Pixel error:

$$
\begin{aligned}
& \mathrm{fc}=\left[\begin{array}{ll}
657.46290 & 657.94673
\end{array}\right] \pm\left[\begin{array}{lll}
6.31819 & 0.34046
\end{array}\right] \\
& c c=[303.13665242 .56935] \pm\left[\begin{array}{lll}
{[0.64682} & 0.59218
\end{array}\right] \\
& \text { alpha_c }=[6.00606] \pm[6.60606] \Rightarrow \text { angle of pixel axes }= \\
& \overline{\mathbf{k}} \mathbf{c}=\left[\begin{array}{lllll}
-0.25403 & 0.12143 & -0.00021 & 0.00602 & 0.00000
\end{array}\right] \\
& \mathrm{err}=\left[\begin{array}{ll}
0.11689 & 0.11506
\end{array}\right]
\end{aligned}
$$

Step 4: camera calibration

Step 4: camera calibration

Step 5: refinement

Bundle adjustment

Bundle adj ustment

- Bundle adj ustment (BA) is a technique for simultaneously refining the 3D structure and camera parameters
- It is capable of obtaining an optimal reconstruction under certain assumptions on image error models. For zero-mean Gaussian image errors, BA is the maximum likelihood estimator.

Bundle adjustment

- n 3D points are seen in m views
- $x_{i j}$ is the projection of the i-th point on image j
- a_{j} is the parameters for the j -th camera
- b_{i} is the parameters for the i-th point
- BA attempts to minimize the proj ection error

$$
\left.\min _{\mathbf{a}_{j}, \mathbf{b}_{i}} \sum_{i=1}^{n} \sum_{j=1}^{m} d\left(\underset{\uparrow}{\mathbf{Q}} \underset{\text { predicted proj ection }}{ } d \mathbf{a}_{j}, \mathbf{b}_{i}\right), \mathbf{x}_{i j}\right)^{2}
$$

Euclidean distance

Bundle adjustment


```
Algorithm:
\(k:=0 ; \nu:=2 ; \mathbf{p}:=\mathbf{p}_{0}\);
\(\mathbf{A}:=\mathbf{J}^{T} \mathbf{J} ; \epsilon_{\mathbf{p}}:=\mathbf{x}-f(\mathbf{p}) ; \mathbf{g}:=\mathbf{J}^{T} \epsilon_{\mathbf{p}} ;\)
stop: \(=\left(\|\mathbf{g}\|_{\infty} \leq \varepsilon_{1}\right) ; \mu:=\tau * \max _{i=1, \ldots, m}\left(A_{i i}\right)\);
while (not stop) and ( \(k<k_{\text {max }}\) )
    \(k:=k+1\);
    repeat
        Solve \((\mathbf{A}+\mu \mathbf{I}) \delta_{\mathbf{p}}=\mathbf{g} ;\)
if \(\left(\left\|\delta_{\mathbf{p}}\right\| \leq \varepsilon_{2}\|\mathbf{p}\|\right)\)
            stop:=true;
        else
            \(\mathbf{p}_{\text {new }}:=\mathbf{p}+\delta_{\mathbf{p}} ;\)
            \(\rho:=\left(\left\|\epsilon_{\mathbf{p}}\right\|^{2}-\left\|\mathbf{x}-f\left(\mathbf{p}_{\text {new }}\right)\right\|^{2}\right) /\left(\delta_{\mathbf{p}}^{T}\left(\mu \delta_{\mathbf{p}}+\mathbf{g}\right)\right)\);
            if \(\rho>0\)
                \(\mathbf{p}=\mathbf{p}_{\text {new }} ;\)
                    \(\mathbf{A}:=\mathbf{J}^{T} \mathbf{J} ; \epsilon_{\mathbf{p}}:=\mathbf{x}-f(\mathbf{p}) ; \mathbf{g}:=\mathbf{J}^{T} \epsilon_{\mathbf{p}} ;\)
                    stop: \(=\left(\|\mathbf{g}\|_{\infty} \leq \varepsilon_{1}\right)\);
                    \(\mu:=\mu * \max \left(\frac{1}{3}, 1-(2 \rho-1)^{3}\right) ; \nu:=2 ;\)
            else
                    \(\mu:=\mu * \nu ; \nu:=2 * \nu ;\)
            endif
        endif
    until ( \(\rho>0\) ) or (stop)
endwhile
```


Bundle adjustment

3 views and 4 points

$$
\frac{\partial \mathbf{X}}{\partial \mathbf{P}}=\left(\begin{array}{ccccccc}
\mathbf{A}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{12} & \mathbf{0} & \mathbf{B}_{12} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{13} & \mathbf{B}_{13} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{A}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{21} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{22} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{23} & \mathbf{0} & \mathbf{B}_{23} & \mathbf{0} & \mathbf{0} \\
\mathbf{A}_{31} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{31} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{32} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{32} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{33} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{33} & \mathbf{0} \\
\mathbf{A}_{41} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{41} \\
\mathbf{0} & \mathbf{A}_{42} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{42} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{43} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{43}
\end{array}\right)
$$

Typical J acobian

Bundle adjustment

$$
\begin{gathered}
\left(\begin{array}{ccccccc}
\mathbf{U}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\
\mathbf{0} & \mathbf{U}_{2} & \mathbf{0} & \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\
\mathbf{0} & \mathbf{0} & \mathbf{U}_{3} & \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \\
\mathbf{W}_{11}{ }^{T} & \mathbf{W}_{12}{ }^{T} & \mathbf{W}_{13}{ }^{T} & \mathbf{V}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{W}_{21}{ }^{T} & \mathbf{W}_{22}{ }^{T} & \mathbf{W}_{23}{ }^{T} & \mathbf{0} & \mathbf{V}_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{W}_{31}{ }^{T} & \mathbf{W}_{32}{ }^{T} & \mathbf{W}_{33}{ }^{T} & \mathbf{0} & \mathbf{0} & \mathbf{V}_{3} & \mathbf{0} \\
\mathbf{W}_{41}{ }^{T} & \mathbf{W}_{42}{ }^{T} & \mathbf{W}_{43}{ }^{T} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{V}_{4}
\end{array}\right)\left(\begin{array}{c}
\delta_{\mathbf{a}_{1}} \\
\delta_{\mathbf{a}_{2}} \\
\delta_{\mathbf{a}_{3}} \\
\delta_{\mathbf{b}_{1}} \\
\delta_{\mathbf{b}_{2}} \\
\delta_{\mathbf{b}_{3}} \\
\delta_{\mathbf{b}_{4}}
\end{array}\right)=\left(\begin{array}{c}
\epsilon_{\mathbf{a}_{1}} \\
\epsilon_{\mathbf{a}_{2}} \\
\epsilon_{\mathbf{a}_{3}} \\
\epsilon_{\mathbf{b}_{1}} \\
\epsilon_{\mathbf{b}_{2}} \\
\epsilon_{\mathbf{b}_{3}} \\
\epsilon_{\mathbf{b}_{4}}
\end{array}\right) \\
\mathbf{U}^{*}=\left(\begin{array}{cccc}
\mathbf{U}_{1}^{*} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{U}_{2}^{*} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{U}_{3}^{*}
\end{array}\right), \mathbf{v}^{*}=\left(\begin{array}{cccc}
\mathbf{V}_{\mathbf{1}}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{V}_{2}^{*} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{V}_{3}^{*} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{V}_{4}^{*}
\end{array}\right), \mathbf{W}=\left(\begin{array}{llll}
\mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\
\mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\
\mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43}
\end{array}\right) \\
\left(\begin{array}{c}
\mathbf{U}^{*} \\
\mathbf{W}^{T} \\
\mathbf{W} \\
\mathbf{W}
\end{array}\right)\binom{\delta_{\mathbf{a}}^{*}}{\delta_{\mathbf{b}}}=\binom{\epsilon_{\mathbf{a}}}{\epsilon_{\mathbf{b}}}
\end{gathered}
$$

Block structure of normal equation

Bundle adjustment

Multiplied by $\left(\begin{array}{cc}\mathbf{I} & -\mathbf{W ~ V}^{*-1} \\ \mathbf{0} & \mathbf{I}\end{array}\right)$

$$
\left(\begin{array}{cc}
\mathbf{U}^{*}-\mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^{T} & \mathbf{0} \\
\mathbf{W}^{T} & \mathbf{V}^{*}
\end{array}\right)\binom{\delta_{\mathbf{a}}}{\delta_{\mathbf{b}}}=\binom{\epsilon_{\mathbf{a}}-\mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}}{\epsilon_{\mathbf{b}}}
$$

$$
\begin{aligned}
& \left(\mathbf{U}^{*}-\mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^{T}\right) \delta_{\mathbf{a}}=\epsilon_{\mathbf{a}}-\mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}} \\
& \mathbf{V}^{*} \delta_{\mathbf{b}}=\epsilon_{\mathbf{b}}-\mathbf{W}^{T} \delta_{\mathbf{a}}
\end{aligned}
$$

Recognising panoramas

- Parameterise each camera by rotation and focal length

$$
\begin{gathered}
\mathbf{R}_{i}=e^{\left[\boldsymbol{\theta}_{i}\right]_{\times}}, \quad\left[\boldsymbol{\theta}_{i}\right]_{\times}=\left[\begin{array}{ccc}
0 & -\theta_{i 3} & \theta_{i 2} \\
\theta_{i 3} & 0 & -\theta_{i 1} \\
-\theta_{i 2} & \theta_{i 1} & 0
\end{array}\right] \\
\mathbf{K}_{i}=\left[\begin{array}{ccc}
f_{i} & 0 & 0 \\
0 & f_{i} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

- This gives pairwise homographies

$$
\tilde{\mathbf{u}}_{i}=\mathbf{H}_{i j} \tilde{\mathbf{u}}_{j}, \quad \mathbf{H}_{i j}=\mathbf{K}_{i} \mathbf{R}_{i} \mathbf{R}_{j}^{T} \mathbf{K}_{j}^{-1}
$$

Error function

- Sum of squared projection errors

$$
e=\sum_{i=1}^{n} \sum_{j \in \mathcal{I}(i)} \sum_{k \in \mathcal{F}(i, j)} f\left(\mathbf{r}_{i j}^{k}\right)^{2}
$$

- $\mathrm{n}=$ \#mages
- I(i) = set of image matches to image i
- $F(i, j)=$ set of feature matches between images i, j
- $r_{i j}{ }^{k}=$ residual of $k^{\text {th }}$ feature match between images i,
- Robust error function

$$
f(\mathbf{x})= \begin{cases}|\mathbf{x}|, & \text { if }|\mathbf{x}|<x_{\max } \\ x_{\max }, & \text { if }|\mathbf{x}| \geq x_{\max }\end{cases}
$$

A sparse BA software using LM

- sba is a generic C implementation for bundle adj ustment using Levenberg-Marquardt method. It is available at http:/ / www. ics. forth. gr/ †ourakis/ sba.
- You can use this library for your project \#2.

MatchMove

Reference

- Manolis Lourakis and Antonis Argyros, The Design and

Implementation of a Generic Sparse Bundle Adj ustment Software Package Based on the Levenberg-Marquardt Al gorithm, FORTHICS/ TR-320 2004.

- K. Madsen, H.B. Nielsen, O. Timgleff, Methods for Non-Linear Least Squares Problems, 2004.
- Zhengyou Zhang, A Flexible New Techniques for Camera Calibration, MSR-TR-98-71, 1998.
- Bill Triggs, Philip McLauchlan, Richard Hartley and Andrew Fitzgibbon, Bundle Adj ustment - A Modern Symthesis, Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp298-372, 1999.

