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Introduction
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» The integral equations generally don’t have
analytic solutions, so we must turn to numerical
methods.

» Standard methods like Trapezoidal integration
or Gaussian quadrature are not effective for
high-dimensional and discontinuous integrals.

cos 0,

Numerical quadrature

» Suppose we want to calculate I=ff(X)dx, but
can’t solve it analytically. The approximations
through quadrature rules have the form

=3 wf)

which is essentially the weighted sum of
samples of the function at various points

Midpoint rule
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Trapezoid rule
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Simpson’s rule

 Similar to trapezoid but using a quadratic
polynomial approximation
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assuming f has a continuous fourth derivative.
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Curse of dimensionality and discontinuity<{

» For alj] sd I= i i i Wiy Wiy =+~ Wi, f(Tiyy Tigy oo, T4,)
function f, fi=lio=1  is=1

« If the 1d rule has a convergence rate of O(n™),
the sd rule would require a much larger number
(n*) of samples to work as well as the 1d one.

Thus, the convergence rate is only O(n'”).
« If f is discontinuous, convergence is O(n'%) for

sd. \//n ) )
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Randomized algorithms

e Las Vegas v.s. Monte Carlo

» Las Vegas: always gives the right answer by
using randomness.

» Monte Carlo: gives the right answer on the
average. Results depend on random numbers
used, but statistically likely to be close to the
right answer.




Monte Carlo integration

» Monte Carlo integration: uses sampling to
estimate the values of integrals. It only
requires to be able to evaluate the integrand at
arbitrary points, making it easy to implement
and applicable to many problems.

« If n samples are used, its converges at the rate
of O(n'?). That is, to cut the error in half, it is
necessary to evaluate four times as many
samples.

« Images by Monte Carlo methods are often noisy.
Most current methods try to reduce noise.

Monte Carlo methods

» Advantages
- Easy to implement
- Easy to think about (but be careful of statistical bias)

- Robust when used with complex integrands and
domains (shapes, lights, ...)

- Efficient for high dimensional integrals
» Disadvantages
- Noisy
- Slow (many samples needed for convergence)

Basic concepts

« Xis a random variable

« Applying a function to a random variable gives
another random variable, Y=£(X).

o CDF (cumulative distribution function)

P(x)=Pr{X <x}

« PDF (probability density function): nonnegative,

sum to 1 () = dP(x)
dx

 canonical uniform random variable & (provided
by standard library and easy to transform to
other distributions)

Discrete probability distributions

« Discrete events X; with probability p;
pi >0 Zpl =1
i=1 pi
» Cumulative PDF (distribution)
J 1
p= ;pi

« Construction of samples:
To randomly select an event,
Select X;if P, <U<P
! { 0

Uniform random variable X.




Continuous probability distributions

Expected values

e PDF p(x) Uniform
p(x)=0
. CDF P(x) P()=1

P(x)= I p(x)dx
P(x)= 1031‘(X < X)

B
Pra < X < B) = jp(x)dx

-P(B)-Pla) ° :

» Average value of a function f{x) over some
distribution of values p(x) over its domain D

E[f0]=] f(0p(x)dx

» Example: cos function over [0, nt], p is uniform

7 1
E [cos(x)]= jo cosx;dx =0 h

-
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Variance

» Expected deviation from the expected value

« Fundamental concept of quantifying the error
in Monte Carlo methods
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Properties
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Monte Carlo estimator

e Assume that we want to

evaluate the integral of (F]-E boas iy
ft) over [ab] ['f(x)dx vI=E ;1( )
« Given a uniform random b-—a<a .,
variable X; over [a,b], N ZE[f(Xf)]
Monte Carlo estimator ) b
= ¢ N“ Ef{f( \)p( \)dr
i-1

= =%2 f{j)f(..\)dr
says that the expected f
value E[F,] of the = [ f(x)dx
estimator F, equals the
integral

General Monte Carlo estimator

e Given a random variable X drawn from an
arbitrary PDF p(x), then the estimator is

13 /(x,
1 f(X) f[r)= 3
- Z ) (\r}
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» Although the converge rate of MC estimator is
O(N'?), slower than other integral methods, its
converge rate is independent of the dimension,
making it the only practical method for high
dimensional integral

Convergence of Monte Carlo

« Chebyshev’s inequality: let X be a random
variable with expected value p and variance o2.
For any real number k>0,

1
Pri| X —pzkoy <

« For example, for k=2, it shows that at least
half of the value lie in the interval(xz-+20, u++20)

o Let ¥, = f(X))/ p(X,), the MC estimate F, becomes

F-L$y

i
i=1

Convergence of Monte Carlo

» According to Chebyshev’s inequality,

Pr{ F, —E[F,]}> (@]/} <5
RV S5 o x| S ]

e Plugging into Chebyshev’s inequality,

e L (rY
Pr{|FN IBW( 5 j }35

So, for a fixed threshold, the error decreases at
the rate N"/7.




Properties of estimators

« An estimator F, is called unbiased if for all ¥

E[FN] = Q
That is, the expected value is independent of N.
« Otherwise, the bias of the estimator is defined

as
ﬂ[FN]:E[FN]_Q

« If the bias goes to zero as N increases, the
estimator is called consistent

}fim BlFy1=0
lim £[F, ]=0

Example of a biased consistent estimator{ )

» Suppose we are doing antialiasing on a 1d pixel,
to determine the pixel value, we need to
evaluate 7 = J' w(x) f(x)dx, where w(x) is the

0
filter function with j w(x)dx =1

« A common way to evaluate this is

> WX f(X,)

F. =

LX)
 When N=1, we have
ELF)= {%} ELFC0)= [ f ez 1

Example of a biased consistent estimator{

« When N=2, we have
E[F,]= J‘J’ W(xl)f(xl)+w(x2)f(x2)dxld 2]

w(x,) +w(x,)

« However, when N is very large, the bias
approaches to zero

v, NZ w(X;) f (X))
—Z w(X,;)

lim 37 wO)S0) [ua) £ (0
lim E[F, ]= ==

Now o1 N - 1
lm 3wy el

- jol Wwx) f(x)dx = 1

Choosing samples

:—Z S (X))
i=1 p(X)

» Carefully choosing the PDF from which samples
are drawn is an important technique to reduce
variance. We want the f/p to have a low
variance. Hence, it is necessary to be able to
draw samples from the chosen PDF.

» How to sample an arbitrary distribution from a
variable of uniform distribution?

- Inversion
- Rejection
- Transform




Inversion method

Proof for the inversion method

e Cumulative probability distribution function e Let U be an uniform random variable and its
CDF is P (x)=x. We will show that Y=P-/(U) has
P(x)=Pr(X <x) the CDF P(x).

e Construction of samples
Solve for X=P-1(U)

e Must know:
1. The integral of p(X)
2. Theinverse function P1(X) ¢

Proof for the inversion method Inversion method

e Let U be an uniform random variable and its « Compute CDF P(x) 4
CDF is P (x)=x. We will show that Y=P-/(U) has

the CDF P(x). f E
0 0

Pr{y < x}=Pr{P" (U) < x{=Pr{U < P(x)} = P,(P(x)) = P(x) « Compute P'(x)

because P is monotonic,
x, £x, = P(x)) < P(x,)

Thus, Y’s CDF is exactly P(x).

« Obtain &
« Compute X;=P-'(§)




Example: power function

It is used in sampling Blinn’s microfacet model.

p(x)oc x”

Example: power function

It is used in sampling Blinn’s microfacet model.

e Assume | ey

(x) = (n+1)x" Jxae = -—
P = 0 n+l, n+l

P(.x) — xn+1

X~p(x)= X =P U)="4U

Trick (It only works for sampling power distribution)

Y =max(U,,U,,---,U U .))

n+l
Pr(Y <x)= H Pr(U < x)=x""

i=1

Example: exponential distribution

p(x) =ce ™ useful for rendering participating media.

Compute CDF P(x)

Compute P-1(x)

Obtain §
Compute X=P-1(§)

Example: exponential distribution

p(x) =ce ™ useful for rendering participating media.
IO ce “dx=1— c=a
[ ] x — —
Compute CDF P(x) P(x) = J‘O e Sds=1—e ™

o Compute P-'(x)
P P (x) = —LInl— )
o Obtain £ | ¢ |
« Compute X=P'(§) X = ——In(1-&)=——1Iné
a a




Rejection method

« Sometimes, we can’t integrate into CDF or
invert CDF

1
o o
I={f(x)dx .
’ ® o y= f(X)
= U dx dy
yef () .
e Algorithm °

Pick U, and U,
Accept U, if U, < f(U,)

o Wasteful? Efficiency = Area / Area of rectangle

Rejection method

Rejection method is a dart-throwing method
without performing integration and inversion.

. Find ¢(x) so that p(x)<Mqg(x)
. Dart throwing

a. Choose a pair (X, ¢), where X is sampled from g(x)
b. If (&<p(X)/Mg(X)) return X

« Equivalently, we pick
point (X, EMq(X)). If
it lies beneath p(X)
then we are fine.

N —

Why it works

« For each iteration, we generate X; from ¢. The
sample is returned if &<p(X)/Mgq(X), which
happens with probability p(X)/Mq(X).

» So, the probability to return x is

X X
4(x) px) _ p(x)
Mg(x) M
whose integral is 1/M

« Thus, when a sample is returned (with
probability 1/M), X; is distributed according to

p(x).

Example: sampling a unit disk

void RejectionSampleDisk(float *x, float *y) {
float sx, sy;
do {
sx = 1.f -2_Ff * RandomFloat();
sy = 1.f -2_F * RandomFloat();
} while (sx*sx + sy*sy > 1.1)
*X = sX; *y = sy;

}

m/4~78.5% good samples, gets worse in higher
dimensions, for example, for sphere, m/6~52.4%




Transformation of variables

« Given a random variable X from distribution p (x)
to a random variable Y=y(X), where y is one-to-
one, i.e. monotonic. We want to derive the
distribution of Y, p ().

« P,(y(x)) =Pr{Y < y(x)} =Pr{X < x} = P (x)

_ Py
. PDF: dP,(y(x)) _dP.(x) | |

dx dx ; x

/ \ : P.)
O L C X O S P
" dx dy dx\ e

-1 y
P2 =(%] p.(0)

Example

p.(x)=2x
Y=sinX

X _ 2sin”" y

. 2
p,(y)=(cosx) px(X)—Cos)C M

Transformation method

» A problem to apply the above method is that
we usually have some PDF to sample from, not
a given transformation.

 Given a source random variable X with p (x) and
a target distribution p (y), try transform X into
to another random variable Y so that Y has the
distribution p ().

« We first have to find a transformation y(x) so
that P (x)=P,(y(x)). Thus,

y(x)= P (P.(x))

Transformation method

» Let’s prove that the above transform works.

We first prove that the random variable Z= P (x)
has a uniform distribution. If so, then Py‘l(Z)

should have distribution P, from the inversion
method.

Pr{Z < x}=Pr{P,(X)<x}=Pr{X < P"'(x)}= P.(P'(x)) = x
Thus, Z is uniform and the transformation works.

« It is an obvious generalization of the inversion
method, in which X is uniform and P (x)=x.




Example

y y

p,(y)=e

p.(x)=x

Example

p.(x)=x —2~p,(»)=¢
O
Pl(y)=Iny

2

y(x) = P7(P.(x)) = 1n(x7) ~2Inx—In2

Thus, if X has the distribution p_(x) = x, then the
random variableY =2In X —In2 has the distribution

p,(y)=¢

Multiple dimensions

e Easily generalized - using the Jacobian of
Y=-T(X =
()= () pu )
_ : X =rcost
e Example - polar coordinates

ox  ox

N | or 20 =(COSQ —rsinf)
JT(—X) (—}y ﬂ ksine FCOSQ
dr  d0
p(x.y)=r"p(r.6)

y =rsinf

We often need the other way around, p(i‘,@) =r P(-’C,}-‘)

Spherical coordinates

» The spherical coordinate representation of
directions is x=rsinfcos¢
y=rsinfsing
z=rcosf

| J, =7 sin@

p(r,0,9) = r? sin (x,y,z)




Spherical coordinates

« Now, look at relation between spherical
directions and a solid angles

dw = sin 6d6d ¢
 Hence, the density in terms of 8,¢

p(0,9)d0d¢ = p(w)dw
p(0,9) =sinp(w)

Multidimensional sampling

» Separable case: independently sample X from p,
and Y from p,. p(x.y)=p.(x)p,(»)

« Often, this is not possible. Compute the
marginal density function p(x) first.

p(x) = j p(x,y)dy
« Then, compute the conditional density function
p(x,)

p(x)
» Use 1D sampling with p(x) and p(y|x).

p(y|x)=

Sampling a hemisphere

e Sample a hemisphere uniformly, i.e. p(w)=c

Sampling a hemisphere

» Sample a hemisphere uniformly, i.e. p(w)=c

1 - L

lzjgp(w) C:Z — P(a’)—27z

« Sample 0 first p(0.4) =07
’ 2r

sin @
27

p(0)= Tp(é’, $)dp = 2j d¢=sin6

» Now sampling ¢

_p0,9) 1
p(80)= 0 2n




Sampling a hemisphere

« Now, we use inversion technique in order to
sample the PDF’s

9
P(O) = j sin@'d0' =1-cos 6

0 ¢
P|0)=[ gL

o 27T 2r
 Inverting these:

0 =cos™' &
¢ =276,

Sampling a hemisphere

e Convert these to Cartesian coordinate

x =sin @ cos @ = cos(27E,) )1 - &
b=2mt, y =sin@sin @ =sin(27E, )1 - &

z=cosd=¢

 Similar derivation for a full sphere

Sampling a disk

WRONG = Equi-Areal RIGHT = Equi-Areal
0 =2rU, 0 =2rU,
r= Uz r=.U

Sampling a disk

WRONG # Equi-Areal RIGHT = Equi-Areal

0 =2nU,
r=U,




Sampling a disk Shirley’s mapping

« Uni 1
Uniform (v )=~ p(r.8)=rp(x,y) ==
T T
« Sample r first. x
p(r)= [ p(r.0)d0 =2 |:>
0
« Then, sample 6.
r,0 1
p(0r) =20
p(r)y 2«
e Invert the CDF. 0 r=U,
P(ry=r*  POI)=_" /| \ AU,
é% 4 U,
r=y& = 0=2x | i
Sampling a triangle Sampling a triangle
\ « Here u and v are not independent! p(#.v)=2
» Conditional probability
u>0 (u,1—u) p(u,v)
b0 ; p(u)= jp(u,v)dv plulv)= W
u+v<l1 =2Hd =2(1-
p(u) j v=2(1-u) w1 T
! \ S P(uy) = [ "201-u)ydu =(1-u,)’
—u —1)? : _ 1 Yo :\/Ule
A= avau=[ -wyau=-9221 -1 P =T
0J0 0 2 v, v, 1 v
0 Py, [uy)= [ " p(v]uy)dv = dv =—2
pu,v) =2 0 O (-u) ()




Cosine weighted hemisphere

p(w) o< cosb
1= jQ p(w)dw

27 px //
1= IO IOZ ccos @'sin 0d60d ¢ /

1= cZﬂJ.Og cos@sin 6d o

\\’\/

C — 1 v ~— __'__,--"'

2(0.4) =L cosOsin @ dw=sin 4ty
T

Cosine weighted hemisphere

p(0,9) = L cos@siné
T

p0)= Lz”%cos Osin @d¢ =2 cosfsin @ =sin 260

_p,¢) 1
p(910)= 20 2m
1 1 |
P(¢9)=—Ecos26?+§=§1 ¢9=§cos 1-2¢)
_9 _ _
P(¢10)= 5 =S ¢ =278,

Cosine weighted hemisphere

» Malley’s method: uniformly generates points on
the unit disk and then generates directions by
projecting them up to the hemisphere above it.

Vector CosineSampleHemisphere(float ul,float u2){
Vector ret;

ConcentricSampleDisk(ul, u2, &ret.x, &ret.y);

ret.z = sqrtf(max(0.f,1.F - ret.x*ret.x -
ret.y*ret.y));
return ret;

}

Ny

Cosine weighted hemisphere

» Why does Malley’s method wrork?
« Unit disk sampling P(’”,¢)=;
» Map to hemisphere (r,¢)= (sin8,9)

Y =(r,)—— X = (0,4)
r=sin@
$=¢

p,(T(x) =, ()| p.(x)

cosd O
0 1

‘JT (x)‘ = =cosd -




Cosine weighted hemisphere

Y =(r.¢)—— X = (0.9)

r=sinf@
¢=¢
p,(T(x) =|J, )| p.(x)

|JT (x)| _ [cos& O]
0 1

p(0.4)=\J;|p(r.¢) =

=cos@

cos@sin @

Sampling Phong lobe

p(w) o< cos” @
27 7wl2
p(w)=ccos" 8 —>I jccos"@sin@d@dgb:l
$=0 0=0
° 27mc
— =21 Icos”@dcosﬁzl—'—=1
cosf=1 l’l+1
n+l1
—.Cc=
27

2(0.6) =" cos” Osin 0
2

Sampling Phong lobe

2(0.6) =" os” Osin o
2

2z
p(0)= | 1t os" Osin g =(n + 1) cos” Osin 0
;o 27

o
PO = I(n+1) cos” @sin Gd 6O

6=0

il cosd'
cos"" @

n+l

”
=—(n+1) jcos" 6d cos @ =—(n+1)

=0 cosf=1
=1-cos"" &'

0 =cos™ (@/El)

Sampling Phong lobe

p(0,9) = n—”cos" fsin 6
2

p(6,¢)  “lcos" Osind 1

PO = o) = ntDcos' Osind 27
P10)= | Lap=?

o0 270 2
¢ =278,




Sampling Phong lobe

When n=1, it is actually equivalent to cosine-weighted hemisphere

n=1,(0,4)=(cos” \/gl,2ﬂ§2) (6,9) = (% cos(1- 261),27z§2j

1 1
P(@)=1-cos""@=1-cos’ 0 P(O)= ~ cos 26’+5
1 R PR B 2
——c0s20+—=——(1-2sin" @)+ —=sin"@=1-cos” &
2 2 2 2

Piecewise-constant 2d distributions

» Sample from discrete 2D distributions. Useful
for texture maps and environment lights.

 Consider f(u, v) defined by a set of n, xn, values
Slu; vl

» Given a continuous /u, v/, we will use /u’, v’] to
denote the corresponding discrete (u; v,
indices.

Piecewise-constant 2d distributions

integral 1, = [[ /. v)dudv=——3"3" flu,.v,]

nunv i=0 ;=0

fuy) flwv]
[[ £ vyduav Ynn) Y flu.v,]

W/n)Y. flu.v]
1

’

pdf p(u,v)=

marginal
density

p) = [ plu,v)du =

conditional .\ p(u,v) _ f[”"""]/[f
probability p(v) plv']

Piecewise-constant 2d distributions

Distribution2D

low-res § low-res
marginal conditional
density probability
pOv) 7 pulv)




Metropolis sampling

» Metropolis sampling can efficiently generate a
set of samples from any non-negative function f
requiring only the ability to evaluate f.

» Disadvantage: successive samples in the
sequence are often correlated. It is not possible
to ensure that a small number of samples
generated by Metropolis is well distributed over
the domain. There is no technique like
stratified sampling for Metropolis.

Metropolis sampling

» Problem: given an arbitrary function
f(x) =R, 2 €8

assuming - J(f) = [ f(2)dQ
fpdf — f/I(f)

generate a set of samples

X = {/ng}, €Xj ~ fpdf

Metropolis sampling

o Steps
- Generate initial sample x,
- mutating current sample x; to propose x’
- If it is accepted, x,,, = x’
Otherwise, x,., = x;
» Acceptance probability guarantees distribution
is the stationary distribution f

Metropolis sampling

 Mutations propose x’ given x;
» T(x—x’) is the tentative transition probability
density of proposing x’ from x

» Being able to calculate tentative transition
probability is the only restriction for the choice
of mutations

* a(x—x’) is the acceptance probability of
accepting the transition

« By defining a(x—x’) carefully, we ensure

zi ~ f(x)




Metropolis sampling

» Detailed balance
fla)T(x — 2" ale — 2') =
fa) T2 — x)ala’ — x)

ﬂ o) = min (1‘ .j;((:j:)) 1{((:’:11:))>

stationary distribution

Pseudo code

x = x0
for 1 =1 ton
x’ = mutate(x)
a = accept(x, x’)
if (random() < a)
x = x’
record(x)

Pseudo code (expected value)

x = x0
for 1 =1 ton
x’ = mutate(x)
a = accept(x, x’)
record(x, (1-a) * weight)
record(x’, a * weight)
if (random() < a)
X =x’

Binary example |

Q=a,band f(a)=9, f(b)=1

a : £<0.5
mutate(x) = ' .
(@) { b otherwise

Then transition densities are

T({a,b} — {a,b}) =1/2

It directly follows that
a(a — b) =min (1, f(b)/f(a)) = .1111...

ala —a)=alb—a)=alb—0)=1




Binary example Il

Q=a.band f(a)=9, f(b)=1

mutate(x) @ £<8/9
ate(x) = .
b otherwise

THa, b} — a)=8/9
transition densities

T({a,b} —b)=1/9

ala —0)=.9/9=1
Acceptance probabilities
alb—a)=.9/9=1

Better transitions improve acceptance probability

Acceptance probability

» Does not affect unbiasedness; just variance

« Want transitions to happen because transitions
are often heading where f'is large

» Maximize the acceptance probability
- Explore state space better
- Reduce correlation

Mutation strategy

« Very free and flexible; the only requirement is
to be able to calculate transition probability

« Based on applications and experience
 The more mutation, the better
« Relative frequency of them is not so important

Start-up bias

» Using an initial sample not from f’s distribution
leads to a problem called start-up bias.

 Solution #1: run MS for a while and use the
current sample as the initial sample to re-start
the process.
- Expensive start-up cost
- Need to guess when to re-start

 Solution #2: use another available sampling
method to start




1D example

1D example (mutation)

}(l(q)_{(ﬁ—fj)z 0<ax<1
B 0 otherwise mutate; (z) — &
" Tl(’?j — {L',) = 1
Ih mutates(r) — x+.1%(£—.5)
1 /
= r—a' <.05
0.1 TQ(:B N :B/> — 0.1 | |- =
0 : otherwise
UIUD 00 0.12’* 0.!’-0 5 1.:1)0
1D example 1D example
I\I‘I ‘l\‘l ""I‘I‘ \I‘I‘ IAI‘ .
06 k.\. ‘,/V"‘I 06 I"‘.‘I‘ os—k\‘ I‘/\I\'I‘ 06|
0.4 ‘Iﬁx"\ ."I 0.4 I‘I‘l 0.4 ‘l‘f\‘."\ 0.4 ‘I"‘- /
I\“-/-‘I‘ | N ‘-L‘I‘ \"‘/‘.‘I l;,«."‘ \\‘ //./
0.0 T \‘\" T / T | 0.0 T I“\\ T T 1 0.0 T \‘\" ‘/ T 1 0.0 \ —

mutaEion 1

mutation 2
10,000 iterations

mutatxion 1

mutation 2
300,000 iterations




1D example

0.8+ 0.8~ f'

| I /
" i o /

02 \\ 02 | \ /
00 0.0 ‘ \\ / ‘
0 025 0.75

T T T T
0.00 0.25 0.50 0.75 1.00 0 0.50

mutation 1 90% mutation 2
+ 10% mutation 1

Periodically using uniform mutations increases ergodicity

2D example (image copy)

void makeHistogram(float F[w][h], float histogram[w][h], int mutations)

{

int i, x0, x1, y0, y1;
float Fx, Fy, Txy, Tyx, Axy;

// Create an initial sample point
x() = randomInteger(0, w-1);

x1 = randomInteger(0, h-1);

Fx = F[x0][x1];

// In this example, the tentative transition function T simply chooses
// a random pixel location, so Txy and Tyx are always equal.

Txy = 1.0/ (w * h);

Tyx = 1.0/ (w * h);

2D example (image copy)

// Create a histogram of values using Metropolis sampling.
for (i=0: i < mutations; i++) {
/f choose a tentative next sample according to T.
y0 = randomInteger(0, w-1);
yv1 = randomlInteger(0, h-1);
Fy = F[y0][y1];
Axy = MIN(1, (Fy * Txy) / (Fx * Tyx)); // equation 2.
if (randomReal(0.0, 1.0) < Axy) {
x0 = y0;
xl=yl;
Fx =Fy;
}

histogram[x0][x1] += 1;

2D example (image copy)

1 sample 8 samples 256 samples
per pixel per pixel per pixel




