Cameras

Digital Image Synthesis

Yung-Yu Chuang

with slides by Pat Hanrahan and Matt Pharr
class Camera {
public:
 // return a weight, useful for simulating real lens
 virtual float GenerateRay(const CameraSample &sample, Ray *ray) const = 0;

 // sample position corresponding at the image plane normalized ray in the world space

 virtual float GenerateRayDifferential(const CameraSample &sample, RayDifferential *rd) const;

 // data members
 AnimatedTransform CameraToWorld;
 float ShutterOpen, ShutterClose;
 Film *film;
};
float Camera::GenerateRayDifferential(...) {
 float wt = GenerateRay(sample, rd);
 CameraSample sshift = sample;
 ++(sshift.imageX);
 Ray rx;
 float wtx = GenerateRay(sshift, &rx);
 rd->rxOrigin = rx.o; rd->rxDirection = rx.d;

 --(sshift.imageX); ++(sshift.imageY);
 Ray ry;
 float wty = GenerateRay(sshift, &ry);
 rd->ryOrigin = ry.o; rd->ryDirection = ry.d;
 if (wtx == 0.f || wty == 0.f) return 0.f;
 rd->hasDifferentials = true;
 return wt;
}
Camera space

NDC: (0,0,0)
NDC: (0,0,1)

Camera space: (0,0,0)
Raster: (xRes,yRes,0)

z = hither
NDC: (1,1,0)
Raster: (xRes,yRes,1)

z = yon
NDC: (1,1,1)
Coordinate spaces

• world space
• object space
• camera space (origin: camera position, z: viewing direction, y: up direction)
• screen space: a 3D space defined on the image plane, z ranges from 0(near) to 1(far); it defines the visible window
• normalized device space (NDC): (x, y) ranges from (0,0) to (1,1) for the rendered image, z is the same as the screen space
• raster space: similar to NDC, but the range of (x,y) is from (0,0) to (xRes, yRes)
Screen space

- Screen space
- Screen window
- Infinite image plane
- NDC
- Raster space
Projective camera models

- Transform a 3D scene coordinate to a 2D image coordinate by a 4x4 projective matrix

```cpp
class ProjectiveCamera : public Camera {
public:
    camera to screen projection (3D to 2D)
    ProjectiveCamera(AnimatedTransform &cam2world, Transform &proj,
        float Screen[4], float sopen, float sclose,
        float lensr, float focald, Film *film);

protected:
    Transform CameraToScreen, RasterToCamera;
    Transform ScreenToRaster, RasterToScreen;
    float lensRadius, focalDistance;
};
```
Projective camera models

ProjectiveCamera::ProjectiveCamera(...) : Camera(cam2world, sopen, sclose, f) {

...}

CameraToScreen=proj;
WorldToScreen=CameraToScreen*WorldToCamera;

ScreenToRaster
= Scale(float(film->xResolution),
 float(film->yResolution), 1.f)*
 Scale(1.f / (Screen[1] - Screen[0]),
 1.f / (Screen[2] - Screen[3]), 1.f)*
 Translate(Vector(-Screen[0],-Screen[3],0.f));

RasterToScreen = Inverse(ScreenToRaster);
RasterToCamera =
 Inverse(CameraToScreen) * RasterToScreen;
Projective camera models

orthographic

perspective
Orthographic camera

Transform Orthographic(float znear, float zfar)
{
 return Scale(1.f, 1.f, 1.f/(zfar-znear))
 * Translate(Vector(0.f, 0.f, -znear));
}

OrthoCamera::OrthoCamera(...)
: ProjectiveCamera(cam2world,
 Orthographic(0., 1.),
 Screen, sopen, sclose, lensr, focald, f)
{
 All differential rays have the same dir and origin shift
 dxCamera = RasterToCamera(Vector(1, 0, 0));
 dyCamera = RasterToCamera(Vector(0, 1, 0));
}
float OrthoCamera::GenerateRay(const CameraSample &sample, Ray *ray) const {
 Point Pras(sample.imageX, sample.imageY, 0);
 Point Pcamera;
 RasterToCamera(Pras, &Pcamera);
 *ray = Ray(Pcamera, Vector(0, 0, 1),
 0.0f, INFINITY);
 <Modify ray for depth of field>
 ray->time = Lerp(sample.time,
 shutterOpen, shutterClose);
 CameraToWorld(*ray, ray);
 return 1.0f;
}
float OrthoCamera::GenerateRay(const CameraSample &sample, RayDifferential *ray) {
 Point Pras(sample.imageX, sample.imageY, 0);
 Point Pcamera;
 RasterToCamera(Pras, &Pcamera);
 *ray = RayDifferential(Pcamera, Vector(0, 0, 1), 0., INFINITY);
 /*Modify ray for depth of field*/
 ray->time = Lerp(sample.time,
 shutterOpen, shutterClose);
 ray->rxOrigin = ray->o + dxCamera;
 ray->ryOrigin = ray->o + dyCamera;
 ray->rxDirection = ray->ryDirection = ray->d;
 ray->hasDifferentials = true;
 CameraToWorld(*ray, ray);
 return 1.f;
}
Perspective camera

\[\begin{align*}
x' &= \frac{x}{z} \\
y' &= \frac{y}{z}
\end{align*}\]

image plane

But, you must divide by \(z\) because of \(x'\) and \(y'\)
Perspective camera

\[x' = \frac{x}{z} \]
\[y' = \frac{y}{z} \]
\[z' = \frac{f(z - n)}{z(f - n)} \]
Perspective camera

Transform Perspective(float fovy, float near, float far)
{
 Matrix4x4 *persp =
 new Matrix4x4(1, 0, 0, 0,
 0, 1, 0, 0,
 0, 0, f/(f-n), -f*n/(f-n),
 0, 0, 1, 0);

 float invTanAng= 1.f / tanf(Radians(fovy)/2.f);
 return Scale(invTanAng, invTanAng, 1) *
 Transform(persp);
}
float PerspectiveCamera::GenerateRay
 (const CameraSample &sample, Ray *ray) const
{
 // Generate raster and camera samples
 Point Pras(sample.imageX, sample.imageY, 0);
 Point Pcamera;
 RasterToCamera(Pras, &Pcamera);
 *ray = Ray(Point(0,0,0), Vector(Pcamera),
 0.f, INFINITY);

 <Modify ray for depth of field>
 ray->time = Lerp(sample.time,
 shutterOpen, shutterClose);
 CameraToWorld(*ray, ray);
 return 1.f;
}
GenerateRayDifferential

the same as GenerateRay

precomputed in the constructor

dxCamera = RasterToCamera(Point(1,0,0)) - RasterToCamera(Point(0,0,0));
dyCamera = RasterToCamera(Point(0,1,0)) - RasterToCamera(Point(0,0,0));

ray->rxOrigin = ray->ryOrigin = ray->o;
ray->rxDirection = Normalize(Vector(Pcamera) + dxCamera);
ray->ryDirection = Normalize(Vector(Pcamera) + dyCamera);

ray->time = Lerp(sample.time, shutterOpen, shutterClose);
CameraToWorld(*ray, ray);
ray->hasDifferentials = true;
return 1.f;
Depth of field

- Circle of confusion:
\[\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \]

- Depth of field: the range of distances from the lens at which objects appear in focus (circle of confusion roughly smaller than a pixel)
Depth of field

without depth of field
Depth of field

with depth of field
Sample the lens

Pinhole

Image plane
Sample the lens

virtual lens

? focus point

image plane focal plane
In `GenerateRay(...)`

```cpp
if (LensRadius > 0.) {
    // Sample point on lens
    float lensU, lensV;
    ConcentricSampleDisk(sample.lensU, sample.lensV,
                          &lensU, &lensV);
    lensU *= lensRadius;
    lensV *= lensRadius;
    // Compute point on plane of focus
    float ft = focalDistance / ray->d.z;
    Point Pfocus = (*ray)(ft);
    // Update ray for effect of lens
    ray->o = Point(lensU, lensV, 0.f);
    ray->d = Normalize(Pfocus - ray->o);
}
```
Environment camera

\[\phi = 0..2\pi \]

\[\theta = 0..\pi \]
Environment camera

\[x = \sin \theta \cos \phi \]
\[y = \sin \theta \sin \phi \]
\[z = \cos \theta \]
EnvironmentCamera

EnvironmentCamera:

 EnvironmentCamera(const Transform &world2cam,
 float hither, float yon,
 float sopen, float sclose,
 Film *film)

 : Camera(world2cam, hither, yon,
 sopen, sclose, film)

{
 rayOrigin = CameraToWorld(Point(0,0,0));
}

in world space
EnvironmentCamera::GenerateRay

float EnvironmentCamera::GenerateRay
 (CameraSample &sample, Ray *ray) const
{
 float time = Lerp(sample.time,
 shutterOpen, shutterClose);
 float theta=M_PI*sample.imageY/film->yResolution;
 float phi=2*M_PI*sample.imageX/film->xResolution;
 Vector dir(sinf(theta)*cosf(phi), cosf(theta),
 sinf(theta)*sinf(phi));
 *ray = Ray(Point(0,0,0), dir, 0.f, INFINITY,time);
 CameraToWorld(*ray, ray);
 return 1.f;
}
Distributed ray tracing

- Apply distribution-based sampling to many parts of the ray-tracing algorithm.
Distributed ray tracing

Gloss/Translucency
• Perturb directions reflection/transmission, with distribution based on angle from ideal ray

Depth of field
• Perturb eye position on lens

Soft shadow
• Perturb illumination rays across area light

Motion blur
• Perturb eye ray samples in time
Distributed ray tracing
DRT: Gloss/Translucency

- Blurry reflections and refractions are produced by randomly perturbing the reflection and refraction rays from their "true" directions.
Glossy reflection

4 rays

64 rays
Translucency

4 rays

16 rays
Depth of field
Soft shadows
Motion blur
Results
Adventures of Andre & Wally B (1986)
Realistic camera model

- Most camera models in graphics are not geometrically or radiometrically correct.
- Model a camera with a lens system and a film backplane. A lens system consists of a sequence of simple lens elements, stops and apertures.
Why a realistic camera model?

- Physically-based rendering. For more accurate comparison to empirical data.
- Seamlessly merge CGI and real scene, for example, VFX.
- For vision and scientific applications.
- The camera metaphor is familiar to most 3d graphics system users.
Real Lens

Cutaway section of a Vivitar Series 1 90mm f/2.5 lens
Cover photo, Kingslake, *Optics in Photography*
Exposure

• Two main parameters:
 - Aperture (in f stop)
 - Shutter speed (in fraction of a second)
Double Gauss

Data from W. Smith, *Modern Lens Design*, p 312

<table>
<thead>
<tr>
<th>Radius (mm)</th>
<th>Thick (mm)</th>
<th>n<sub>d</sub></th>
<th>V-no</th>
<th>aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.950</td>
<td>7.520</td>
<td>1.670</td>
<td>47.1</td>
<td>50.4</td>
</tr>
<tr>
<td>169.660</td>
<td>0.240</td>
<td></td>
<td></td>
<td>50.4</td>
</tr>
<tr>
<td>38.550</td>
<td>8.050</td>
<td>1.670</td>
<td>47.1</td>
<td>46.0</td>
</tr>
<tr>
<td>81.540</td>
<td>6.550</td>
<td>1.699</td>
<td>30.1</td>
<td>46.0</td>
</tr>
<tr>
<td>25.500</td>
<td>11.410</td>
<td></td>
<td></td>
<td>36.0</td>
</tr>
<tr>
<td>9.000</td>
<td></td>
<td></td>
<td></td>
<td>34.2</td>
</tr>
<tr>
<td>-28.990</td>
<td>2.360</td>
<td>1.603</td>
<td>38.0</td>
<td>34.0</td>
</tr>
<tr>
<td>81.540</td>
<td>12.130</td>
<td>1.658</td>
<td>57.3</td>
<td>40.0</td>
</tr>
<tr>
<td>-40.770</td>
<td>0.380</td>
<td></td>
<td></td>
<td>40.0</td>
</tr>
<tr>
<td>874.130</td>
<td>6.440</td>
<td>1.717</td>
<td>48.0</td>
<td>40.0</td>
</tr>
<tr>
<td>-79.460</td>
<td>72.228</td>
<td></td>
<td></td>
<td>40.0</td>
</tr>
</tbody>
</table>
Measurement equation

\[
R = \iiint \iiint L(T(x, \omega, \lambda); \lambda) S(x, t) P(x, \lambda) \cos \theta \, dx \, d\omega \, dt \, d\lambda
\]

- \(L \): radiance
- \(T \): image to object space transformation
- \(S \): shutter function
- \(P \): sensor response characteristics
Measurement equation

\[R = \Delta t \cdot \int \int L(T(x, \omega)) \cos \theta \, dx \, d\omega \]

L: radiance \(T \): image to object space transformation
Solving the integral

Problem: given a function f and domain Ω, how to calculate

$$\int_{\Omega} f(x) \, dx$$

Solution: Monte Carlo method:

$$\int_{\Omega} f(x) \, dx \approx \left[\frac{1}{N} \sum_{i=1}^{N} f(x_i) \right] \cdot \int_{\Omega} \, dx$$

where x_1, x_2, \ldots, x_N are uniform distributed random samples in Ω.
Algorithm

1. For each pixel on the image, generate some random samples x_i and ω_i uniformly.
2. For each x_i and ω_i, calculate $T(x_i, \omega_i)$.
3. Shoot the ray according to the result of $T(x_i, \omega_i)$ into the scene, and calculate the radiance.
4. Set the pixel value to the average of radiance.
Tracing rays through lens system

1. \[R = Ray(x_i, \omega_i) \]

2. Calculate the intersection point \(p \) for each lens element \(E_i \) from rear to front.
 - Return zero if \(p \) is outside the aperture of \(E_i \).
 - Compute the new direction by Snell’s law if the medium is different.
Sampling a disk uniformly

- Now we need to obtain random samples on a disk uniformly.
- How about uniformly sample r in $[0, R]$ and θ in $[0, 2\pi]$ and let $x = r \cos \theta, y = r \sin \theta$?
 - The result is not uniform due to coordinate transformation.
Rejection

1. Uniformly sample a point in the bounding square of the disk.
2. If the sample lies outside the disk, reject it and sample another one.
Another method

- Sample \(r \) and \(\theta \) in a specific way so that the result is uniform after coordinate transformation.

- Let

\[
 r = \sqrt{\xi_1}, \quad \theta = 2\pi \xi_2
\]

where \(\xi_1 \) and \(\xi_2 \) are random samples distributed in \([0, 1]\) uniformly.

- This produce uniform samples on a disk after coordinate transformation. We will prove it later in chapter 14 “Monte Carlo integration”.
Ray Tracing Through Lenses

200 mm telephoto

35 mm wide-angle

50 mm double-gauss

16 mm fisheye

From Kolb, Mitchell and Hanrahan (1995)
Assignment #2

- Write the “realistic” camera plugin for PBRT which implements the realistic camera model.
- The description of lens system will be provided.
- `GenerateRay(const Sample &sample, Ray *ray)`
 - PBRT generate rays by calling `GenerateRay()`, which is a virtual function of `Camera`.
 - PBRT will give you pixel location in sample.
 - You need to fill the content of `ray` and return a value for its weight.
Assignment #2

1. Sample a point on the exit pupil uniformly.
 - Hint: `sample.lensU` and `sample.lensV` are two random samples distributed in [0, 1] uniformly.

2. Trace this ray through the lens system. You can return zero if this ray is blocked by an aperture stop.

3. Fill ray with the result and return $\frac{\cos^4 \theta'}{Z'^2}$ as its weight.
Whitted’s method

\[\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2 \]

\[T' = \alpha (I' + N) - N \text{ for some } \alpha \]
\[I' = I/(I \cdot N) \]
\[|I' + N| = \tan \theta_1 \]
\[\alpha |I' + N| - \tan \theta_2 \]

\[\alpha = \frac{\tan \theta_2}{\tan \theta_1} = \frac{\sin \theta_2 \cos \theta_1}{\sin \theta_1 \cos \theta_2} = \frac{(\eta_1/\eta_2) \cos \theta_1}{\sqrt{1 - \sin^2 \theta_2}} \]

\[= \frac{(\eta_1/\eta_2) \cos \theta_1}{\sqrt{1 - \eta_1^2/\eta_2^2 \sin^2 \theta_1}} = \frac{1}{\sqrt{n^2 \sec^2 \theta_1 - \tan^2 \theta_1}} \]
\[|I'| = \sec \theta_1 \]

\[\alpha = (n^2 |I'|^2 - |I' + N|^2)^{-1/2} \]
Whitted’s Method

<table>
<thead>
<tr>
<th>√</th>
<th>/</th>
<th>×</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

- $n = \eta_2/\eta_1$
- $I' = I/(-I \cdot N)$
- $J = I' + N$
- $\alpha = 1/\sqrt{n^2(I' \cdot I') - (J \cdot J)}$
- $T' = \alpha J - N$
- $T = T'/|T'|$

TOTAL
Heckber’s method

\[T = \sin \theta_2 M - \cos \theta_2 N \]

\[M = \frac{I_{\text{perp}}}{|I_{\text{perp}}|} = \frac{I + c_1 N}{\sin \theta_1} \]

\[T = \frac{\sin \theta_2}{\sin \theta_1} (I + c_1 N) - \cos \theta_2 N \]

\[T = \eta I + (\eta c_1 - c_2) N \]

\[c_2 = \cos \theta_2 = \sqrt{1 - \sin^2 \theta_2} = \sqrt{1 - \eta^2 \sin^2 \theta_1} = \sqrt{1 - \eta^2 (1 - c_1^2)} \]
Heckbert’s method

<table>
<thead>
<tr>
<th></th>
<th>(\sqrt{\ })</th>
<th>(/)</th>
<th>(\times)</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta = \eta_1/\eta_2)</td>
<td>(c_1 = -I \cdot N)</td>
<td>(c_2 = \sqrt{1 - \eta^2(1 - c_1^2)})</td>
<td>(T = \eta I + (\eta c_1 - c_2)N)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>8</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>
Other method

\[T = \eta I + (\eta c_1 - \sqrt{1 - \eta^2 (1 - c_1^2)})N \]

\[= \frac{I}{n} + \frac{c_1 - n \sqrt{1 - (1 - c_1^2)/n^2}}{n} N \]

\[= \frac{I + (c_1 - \sqrt{n^2 - 1 + c_1^2})N}{n} \]

<table>
<thead>
<tr>
<th>(\sqrt{\ })</th>
<th>(l)</th>
<th>(\times)</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

\(n = \eta_2/\eta_1 \)
\(c_1 = -I \cdot N \)
\(\beta = c_1 - \sqrt{n^2 - 1 + c_1^2} \)
\(T = (I + \beta N)/n \)

TOTAL
Comparisons

Whitted’s Method

<table>
<thead>
<tr>
<th>$\sqrt{}$</th>
<th>/</th>
<th>\times</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

- $n = \eta_2/\eta_1$
- $I' = I/(-I \cdot N)$
- $J = I' + N$
- $\alpha = 1/\sqrt{n^2(I' \cdot I') - (J \cdot J)}$
- $T' = \alpha J - N$
- $T = T'/|T'|$

Heckbert’s Method

<table>
<thead>
<tr>
<th>$\sqrt{}$</th>
<th>/</th>
<th>\times</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

- $\eta = \eta_1/\eta_2$
- $c_1 = - I \cdot N$
- $c_2 = \sqrt{1 - \eta^2(1 - c_1^2)}$
- $T = \eta I + (\eta c_1 - c_2)N$

Other Method

<table>
<thead>
<tr>
<th>$\sqrt{}$</th>
<th>/</th>
<th>\times</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- $n = \eta_2/\eta_1$
- $c_1 = - I \cdot N$
- $\beta = c_1 - \sqrt{n^2 - 1 + c_1^2}$
- $T = (I + \beta N)/n$