Cameras

Digital Image Synthesis
Yung-Yu Chuang
11/5/2009

with slides by Pat Hanrahan and Matt Pharr
class Camera {
public:
 return a weight, useful for simulating real lens
 virtual float GenerateRay(const Sample &sample, Ray *ray) const = 0;
...
protected:
 Transform WorldToCamera, CameraToWorld;
 float ClipHither, ClipYon;
 float ShutterOpen, ShutterClose;
};

for simulating motion blur, not Implemented yet
Camera space

NDC: (0,0,0)
NDC: (1,1,0)
NDC: (0,0,1)

z = hither
z = yon

Raster: (xRes, yRes, 0)
Raster: (xRes, yRes, 1)
Coordinate spaces

- world space
- object space
- camera space (origin: camera position, z: viewing direction, y: up direction)
- screen space: a 3D space defined on the image plane, z ranges from 0(near) to 1(far)
- normalized device space (NDC): (x, y) ranges from (0,0) to (1,1) for the rendered image, z is the same as the screen space
- raster space: similar to NDC, but the range of (x,y) is from (0,0) to (xRes, yRes)
Screen space

- Screen space
- Screen window
- Infinite image plane

NDC

Raster space
Projective camera models

- Transform a 3D scene coordinate to a 2D image coordinate by a 4x4 projective matrix

```cpp
class ProjectiveCamera : public Camera {
public:
    ProjectiveCamera(Transform &world2cam,
                      Transform &proj, float Screen[4],
                      float hither, float yon, float sopen,
                      float sclose, float lensr, float focald,
                      Film *film);

protected:
    Transform CameraToScreen, WorldToScreen,
               RasterToCamera;
    Transform ScreenToRaster, RasterToScreen;
    float LensRadius, FocalDistance;
};
```
Projective camera models

ProjectiveCamera::ProjectiveCamera(...) : Camera(w2c, hither, yon, sopen, sclose, f) {
...
CameraToScreen=proj;
WorldToScreen=CameraToScreen*WorldToCamera;

ScreenToRaster
= Scale(float(film->xResolution),
 float(film->yResolution), 1.f)*
 Scale(1.f / (Screen[1] - Screen[0]),
 1.f / (Screen[2] - Screen[3]), 1.f)*
 Translate(Vector(-Screen[0],-Screen[3],0.f));

RasterToScreen = ScreenToRaster.GetInverse();
RasterToCamera =
 CameraToScreen.GetInverse() * RasterToScreen;
}
Projective camera models

- orthographic
- perspective
Orthographic camera

Transform Orthographic(float znear,
 float zfar)
{
 return Scale(1.f, 1.f, 1.f/(zfar-znear))
 *Translate(Vector(0.f, 0.f, -znear));
}

OrthoCamera::OrthoCamera(...)
 : ProjectiveCamera(world2cam,
 Orthographic(hither, yon),
 Screen, hither, yon, sopen, sclose,
 lensr, focald, f) {
}
float OrthoCamera::GenerateRay
 (const Sample &sample, Ray *ray) const {
 Point Pras(sample.imageX,sample.imageY,0);
 Point Pcamera;
 RasterToCamera(Pras, &Pcamera);
 ray->o = Pcamera;
 ray->d = Vector(0,0,1);
 <Modify ray for depth of field>
 ray->mint = 0.;
 ray->maxt = ClipYon - ClipHither;
 ray->d = Normalize(ray->d);
 CameraToWorld(*ray, ray);
 return 1.f;
}
Perspective camera

\[x' = \frac{x}{z} \]
\[y' = \frac{y}{z} \]

\[z' = \frac{z - n}{f - n} \]

But, you must divide by \(z \) because of \(x' \) and \(y' \)
Perspective camera

image plane

\[
x' = \frac{x}{z}
\]

\[
y' = \frac{y}{z}
\]

\[
z' = \frac{f(z-n)}{z(f-n)}
\]
Transform Perspective(float fov, float n, float f) {
 float inv_denom = 1.f/(f-n);
 Matrix4x4 *persp =
 new Matrix4x4(1, 0, 0, 0,
 0, 1, 0, 0,
 0, 0, f*inv_denom, -f*n*inv_denom,
 0, 0, -1, 0);

 float invTanAng= 1.f / tanf(Radians(fov)/2.f);
 return Scale(invTanAng, invTanAng, 1) *
 Transform(persp);
}
float PerspectiveCamera::GenerateRay
 (const Sample &sample, Ray *ray) const
{
 // Generate raster and camera samples
 Point Pras(sample.imageX, sample.imageY, 0);
 Point Pcamera;
 RasterToCamera(Pras, &Pcamera);
 ray->o = Pcamera;
 ray->d = Vector(Pcamera.x, Pcamera.y, Pcamera.z);
 <Modify ray for depth of field>
 ray->d = Normalize(ray->d);
 ray->mint = 0.;
 ray->maxt = (ClipYon-ClipHither)/ray->d.z;
 CameraToWorld(*ray, ray);
 return 1.f;
}
Depth of field

- Circle of confusion: \(\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \)
- Depth of field: the range of distances from the lens at which objects appear in focus (circle of confusion roughly smaller than a pixel)
Depth of field

without depth of field
Depth of field

with depth of field
Sample the lens

pinhole

image plane
Sample the lens

virtual lens

? focus point

image plane focal plane
In `GenerateRay(...)`

```c
if (LensRadius > 0.) {
    // Sample point on lens
    float lensU, lensV;
    ConcentricSampleDisk(sample.lensU, sample.lensV, &lensU, &lensV);

    lensU *= LensRadius;
    lensV *= LensRadius;

    // Compute point on plane of focus
    float ft = (FocalDistance - ClipHither) / ray->d.z;
    Point Pfocus = (*ray)(ft);

    // Update ray for effect of lens
    ray->o.x += lensU;
    ray->o.y += lensV;
    ray->d = Pfocus - ray->o;
}
```
Environment camera

\[\phi = 0..2\pi \]

\[\theta = 0..\pi \]
Environment camera

\[x = \sin\theta \cos\phi \]
\[y = \sin\theta \sin\phi \]
\[z = \cos\theta \]
EnvironmentCamera

EnvironmentCamera::

 EnvironmentCamera(const Transform &world2cam,
 float hither, float yon,
 float sopen, float sclose,
 Film *film)

 : Camera(world2cam, hither, yon,
 sopen, sclose, film)

{
 rayOrigin = CameraToWorld(Point(0,0,0));
}

in world space
EnvironmentCamera::GenerateRay

float EnvironmentCamera::GenerateRay
(const Sample &sample, Ray *ray) const
{
 ray->o = rayOrigin;
 float theta=M_PI*sample.imageY/film->yResolution;
 float phi=2*M_PI*sample.imageX/film->xResolution;
 Vector dir(sinf(theta)*cosf(phi), cosf(theta),
 sinf(theta)*sinf(phi));
 CameraToWorld(dir, &ray->d);
 ray->mint = ClipHither;
 ray->maxt = ClipYon;
 return 1.f;
}
Distributed ray tracing

- SIGGRAPH 1984, by Robert L. Cook, Thomas Porter and Loren Carpenter from LucasFilm.
- Apply distribution-based sampling to many parts of the ray-tracing algorithm.
Distributed ray tracing

Gloss/Translucency
• Perturb directions reflection/transmission, with distribution based on angle from ideal ray

Depth of field
• Perturb eye position on lens

Soft shadow
• Perturb illumination rays across area light

Motion blur
• Perturb eye ray samples in time
Distributed ray tracing
DRT: Gloss/Translucency

- Blurry reflections and refractions are produced by randomly perturbing the reflection and refraction rays from their "true" directions.
Glossy reflection

4 rays

64 rays
Translucency

4 rays

16 rays
Depth of field
Soft shadows
Motion blur
Realistic camera model

• Most camera models in graphics are not geometrically or radiometrically correct.
• Model a camera with a lens system and a film backplane. A lens system consists of a sequence of simple lens elements, stops and apertures.
Why a realistic camera model?

- Physically-based rendering. For more accurate comparison to empirical data.
- Seamlessly merge CGI and real scene, for example, VFX.
- For vision and scientific applications.
- The camera metaphor is familiar to most 3d graphics system users.
Real Lens

Cutaway section of a Vivitar Series 1 90mm f/2.5 lens
Cover photo, Kingslake, *Optics in Photography*
Exposure

- Two main parameters:
 - Aperture (in f stop)
 - Shutter speed (in fraction of a second)
Double Gauss

<table>
<thead>
<tr>
<th>Radius (mm)</th>
<th>Thick (mm)</th>
<th>n_d</th>
<th>V-no</th>
<th>aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.950</td>
<td>7.520</td>
<td>1.670</td>
<td>47.1</td>
<td>50.4</td>
</tr>
<tr>
<td>169.660</td>
<td>0.240</td>
<td></td>
<td></td>
<td>50.4</td>
</tr>
<tr>
<td>38.550</td>
<td>8.050</td>
<td>1.670</td>
<td>47.1</td>
<td>46.0</td>
</tr>
<tr>
<td>81.540</td>
<td>6.550</td>
<td>1.699</td>
<td>30.1</td>
<td>46.0</td>
</tr>
<tr>
<td>25.500</td>
<td>11.410</td>
<td></td>
<td></td>
<td>36.0</td>
</tr>
<tr>
<td>9.000</td>
<td></td>
<td></td>
<td></td>
<td>34.2</td>
</tr>
<tr>
<td>-28.990</td>
<td>2.360</td>
<td>1.603</td>
<td>38.0</td>
<td>34.0</td>
</tr>
<tr>
<td>81.540</td>
<td>12.130</td>
<td>1.658</td>
<td>57.3</td>
<td>40.0</td>
</tr>
<tr>
<td>-40.770</td>
<td>0.380</td>
<td></td>
<td></td>
<td>40.0</td>
</tr>
<tr>
<td>874.130</td>
<td>6.440</td>
<td>1.717</td>
<td>48.0</td>
<td>40.0</td>
</tr>
<tr>
<td>-79.460</td>
<td>72.228</td>
<td></td>
<td></td>
<td>40.0</td>
</tr>
</tbody>
</table>

Data from W. Smith, Modern Lens Design, p 312
Measurement equation

\[R = \int \int \int \int L(T(x, \omega, \lambda); \lambda)S(x, t)P(x, \lambda) \cos \theta \, dx \, d\omega \, dt \, d\lambda \]

L: radiance \hspace{1cm} *T*: image to object space transformation

S: shutter function \hspace{1cm} *P*: sensor response characteristics
Measurement equation

\[R = \Delta t \cdot \int \int L(T(x, \omega)) \cos \theta \, dx \, d\omega \]

\(L \): radiance \quad \(T \): image to object space transformation
Solving the integral

Problem: given a function f and domain Ω, how to calculate

$$\int_{\Omega} f(x) \, dx$$

Solution: Monte Carlo method:

$$\int_{\Omega} f(x) \, dx \approx \left[\frac{1}{N} \sum_{i=1}^{N} f(x_i) \right] \cdot \int_{\Omega} \, dx$$

where x_1, x_2, \ldots, x_N are uniform distributed random samples in Ω.
Algorithm

1. For each pixel on the image, generate some random samples x_i and ω_i uniformly.
2. For each x_i and ω_i, calculate $T(x_i, \omega_i)$.
3. Shoot the ray according to the result of $T(x_i, \omega_i)$ into the scene, and calculate the radiance.
4. Set the pixel value to the average of radiance.
Tracing rays through lens system

1. \(R = Ray(x_i, \omega_i) \)

2. Calculate the intersection point \(p \) for each lens element \(E_i \) from rear to front.

 1. Return zero if \(p \) is outside the aperture of \(E_i \).

 2. Compute the new direction by Snell’s law if the medium is different.
Sampling a disk uniformly

- Now we need to obtain random samples on a disk uniformly.
- How about uniformly sample r in $[0, R]$ and θ in $[0, 2\pi]$ and let $x = r \cos \theta, y = r \sin \theta$?
 - The result is not uniform due to coordinate transformation.
1. Uniformly sample a point in the bounding square of the disk.
2. If the sample lies outside the disk, reject it and sample another one.
Another method

- Sample r and θ in a specific way so that the result is uniform after coordinate transformation.
- Let

$$r = \sqrt{\xi_1}, \quad \theta = 2\pi \xi_2$$

where ξ_1 and ξ_2 are random samples distributed in $[0, 1]$ uniformly.

- This produce uniform samples on a disk after coordinate transformation. We will prove it later in chapter 14 “Monte Carlo integration”.

Ray Tracing Through Lenses

200 mm telephoto

35 mm wide-angle

50 mm double-gauss

16 mm fisheye

From Kolb, Mitchell and Hanrahan (1995)
Assignment #2

- Write the “realistic” camera plugin for PBRT which implements the realistic camera model.
- The description of lens system will be provided.
- `GenerateRay(const Sample &sample, Ray *ray)`
 - PBRT generate rays by calling `GenerateRay()`, which is a virtual function of `Camera`.
 - PBRT will give you pixel location in `sample`.
 - You need to fill the content of `ray` and return a value for its weight.
1. Sample a point on the exit pupil uniformly.
 - Hint: `sample.lensU` and `sample.lensV` are two random samples distributed in $[0, 1]$ uniformly.

2. Trace this ray through the lens system. You can return zero if this ray is blocked by an aperture stop.

3. Fill ray with the result and return $\frac{\cos^4 \theta'}{Z'^2}$ as its weight.
Whitted’s method

\[\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2 \]

\[T' = \alpha(I' + N) - N \] for some \(\alpha \)
\[I' = I/(-I \cdot N) \]
\[|I' + N| = \tan \theta_1 \]
\[\alpha |I' + N| - \tan \theta_2 \]

\[\alpha = \frac{\tan \theta_2}{\tan \theta_1} = \frac{\sin \theta_2 \cos \theta_1}{\sin \theta_1 \cos \theta_2} = \frac{(\eta_1/\eta_2) \cos \theta_1}{\sqrt{1 - \sin^2 \theta_2}} \]

\[= \frac{(\eta_1/\eta_2) \cos \theta_1}{\sqrt{1 - \eta_1^2/\eta_2^2 \sin^2 \theta_1}} = \frac{1}{\sqrt{n^2 \sec^2 \theta_1 - \tan^2 \theta_1}} \]

\[|I'| = \sec \theta_1 \]

\[\alpha = (n^2 |I'|^2 - |I' + N|^2)^{-1/2} \]
Whitted’s method

<table>
<thead>
<tr>
<th>(\sqrt{ })</th>
<th>/</th>
<th>(\times)</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

- \(n = \frac{\eta_2}{\eta_1} \)
- \(I' = I / (-I \cdot N) \)
- \(J = I' + N \)
- \(\alpha = \frac{1}{\sqrt{n^2(I' \cdot I') - (J \cdot J)}} \)
- \(T' = \alpha J - N \)
- \(T = T' / |T'| \)

TOTAL
Heckber’s method

\[T = \sin \theta_2 M - \cos \theta_2 N \]

\[M = \frac{I_{\perp}}{|I_{\perp}|} = \frac{I + c_1 N}{\sin \theta_1} \]

\[T = \frac{\sin \theta_2}{\sin \theta_1} (I + c_1 N) - \cos \theta_2 N \]

\[T = \eta I + (\eta c_1 - c_2) N \]

\[c_2 = \cos \theta_2 = \sqrt{1 - \sin^2 \theta_2} \]

\[= \sqrt{1 - \eta^2 \sin^2 \theta_1} = \sqrt{1 - \eta^2 (1 - c_1^2)} \]
Heckbert’s Method

<table>
<thead>
<tr>
<th>√</th>
<th>/</th>
<th>×</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

- \(\eta = \eta_1 / \eta_2 \)
- \(c_1 = - I \cdot N \)
- \(c_2 = \sqrt{1 - \eta^2 (1 - c_1^2)} \)
- \(T = \eta I + (\eta c_1 - c_2)N \)

TOTAL
Other method

\[T = \eta I + (\eta c_1 - \sqrt{1 - \eta^2 (1 - c_1^2)})N \]

\[= \frac{I}{n} + \frac{c_1 - n\sqrt{1 - (1 - c_1^2)/n^2}}{n}N \]

\[= \frac{I + (c_1 - \sqrt{n^2 - 1 + c_1^2})N}{n} \]

<table>
<thead>
<tr>
<th>Other Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{ }$</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
Whitted’s Method

<table>
<thead>
<tr>
<th>√</th>
<th>/</th>
<th>×</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

\[n = \eta_2/\eta_1 \]
\[I' = I/(-I \cdot N) \]
\[J = I' + N \]
\[\alpha = 1/\sqrt{n^2(I' \cdot I') - (J \cdot J)} \]
\[T' = \alpha J - N \]
\[T = T'/|T'| \]

Heckbert’s Method

<table>
<thead>
<tr>
<th>√</th>
<th>/</th>
<th>×</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

\[\eta = \eta_1/\eta_2 \]
\[c_1 = -I \cdot N \]
\[c_2 = \sqrt{1 - \eta^2(1 - c_1^2)} \]
\[T = \eta I + (\eta c_1 - c_2)N \]

Other Method

<table>
<thead>
<tr>
<th>√</th>
<th>/</th>
<th>×</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

\[n = \eta_2/\eta_1 \]
\[c_1 = -I \cdot N \]
\[\beta = c_1 - \sqrt{n^2 - 1 + c_1^2} \]
\[T = (I + \beta N)/n \]