Efficient Image-Based Methods for Rendering Soft Shadows

Maneesh Agrawala Ravi Ramamoorthi Alan Heirich Laurent Moll Pixar Animation Studios Stanford University Compaq Computer Corporation Compaq Computer Corporation

SIGGRAPH 2001

Hard vs. Soft Shadows

Hard Shadows

Soft Shadows

Shadow maps

- Image-based hard shadows [Williams 78]
- Time, memory depend on image size, not geometric scene complexity
- Disadvantage: bias and aliasing artifacts
- Soft shadows [Chen and Williams 93]
 - View interpolate multiple shadow maps

IBR good for soft shadows

- IBR good for secondary effects
 - Artifacts less perceptible
- IBR works well for nearby viewpoints
- Shadow maps from light source
 - Light source localized area
 - Poorly sampled regions are also dimly lit

IBR good for soft shadows

• Poorly sampled regions are also dimly lit

Contributions

- Extend shadow maps to soft shadows
- Image-based rendering especially suitable
- Two novel image-based algorithms:
 - Layered attenuation maps (LAM)
 - Coherence-based raytracing (CBRT)

• LAM

Display: 5-10 fps
Some aliasing artifacts
Interactive applications

Games
Previewing

• CBRT

Render: 19.83 minSpeedup: 12.96xProduction quality images

Preliminaries

$$E = \int_{A_{light}} \left[\frac{L\cos\theta_i\cos\theta_l}{\pi r^2} \right] V \, dA$$

$$ATT = \frac{1}{A} \int_{A} V \, dA$$

Refresher: LDIs

• Layered depth images [Shade et al. 98]

Refresher: LDIs

LDI

• Layered depth images [Shade et al. 98]

Refresher: LDIs

• Layered depth images [Shade et al. 98] LDI (Depth, Color)

• Render views from points on light (hardware)

(software)

- Create layered attenuation map
 - Warp views into LDI
 - Store (depth, attenuation)
- Objects in LAM visible in at least 1 view

Display

(software)

- Render scene without shadows (hardware)
- Project into LAM
 - Read off attenuation
 - Attenuation modulates shadowless rendering

Precompute algorithm

procedure Precompute1foreach light sample l_i 2 $Viewpoint \leftarrow l_i$ 3Render(SCENE)4foreach pixel (x, y)5 $(x', y') \leftarrow WarpCenter(x, y, z(x, y))$ 6Insert($(x', y'), z, \epsilon$)7Process Attenuation Maps

Illustration

Rendered images from light

Layered images

Layered attenuation map

Display algorithm

procedure Display

- 1 RenderWithLightingAndTextures(SCENE)
- 2 foreach pixel (x, y)
- 3 $(x', y', z') \leftarrow \text{WarpLDI}((x, y, z(x, y)))$
- 4 $layer \leftarrow Layer((x', y'), z', \epsilon)$
- 5 $color \leftarrow color * \operatorname{AttMap}((x', y'), layer)$

LAM size: 512 x 512Avg num depth layers: 1.5Precomp:

7.7 sec (64 views)
29.4 sec (256 views)
Display: 5-10 fps

LAM size: 512 x 512Avg num depth layers: 2Precomp:

- 6.0 sec (64 views)
- 22.4 sec (256 views)Display: 5-10 fps

- Layered attenuation maps fast, aliases
- Coherence-based raytracing slow, noise

Coherence-based raytracing

- Hierarchical raytracing through depth images
 - Time, memory decoupled from geometric scene complexity
- Coherence-based sampling
 - Light source visibility changes slowly
 - Reduce number shadow rays traced
 - Also usable with geometric raytracer

Image-based raytracing

• Represent scene with multiple shadow maps

Image-based raytracing

• Represent scene with multiple shadow maps

Image-based raytracing

• Trace shadow ray through shadow maps

Coherence-based sampling

- Compute visibility image at first point s₁
- Loop over following surface points s_i
 Predict visibility image at s_i from s_{i-1}
 - Trace rays where prediction confidence low

Prediction confidence

36

- Low confidence
 Light source edges
 Blocked/unblocked edges
- Trace rays in all X'ed cells
 - High confidence: 5
 - Low confidence: 31
 - Total cells:
 - Ratio: 5/36 = 0.14

Prediction confidence

144

- Low confidence
 Light source edges
 Blocked/unblocked edges
- Trace rays in all X'ed cells
 - High confidence: 56
 - Low confidence: 88
 - Total cells:
 - Ratio: 56/144 = 0.40

Predicted visibility

Propagating low confidence

If traced ray ≠ prediction trace neighbor cells

• Similar to [Hart et al. 99]

Propagating low confidence

If traced ray ≠ prediction trace neighbor cells

Prediction incorrect

- Light cells: 16 x 16 (256)
 Four 1024 x 1024 maps
- Precomp: 2.33 min
 Render: 19.83 min
- Rays:

19.83 min **79.86**

• Speedup: 12.96x

2.27x due to image-based raytracing accelerations5.71x due to coherence-based sampling

- Light cells: 16 x 16 (256)
 Four 1024 x 1024 maps
- Precomp: 3.93 min
- Render: 65.13 min
- Rays:

65.1*3* n 88.74

• Speedup: 8.52x

2.16x due to image-based raytracing accelerations3.94x due to coherence-based sampling

Ray tracing

Conclusions

- Two efficient image-based methods
- Layered attenuation maps
 - Interactive applications
- Coherence-based raytracing
 - Production quality images

• IBR ideal for soft shadows – secondary effects