Intel x86 Architecture

Computer Organization and Assembly 1anguages
Yung-Yn Chuang
2008/12/8

with slides by Kip Irvine

Intel microprocessor history

Early Intel microprocessors et

The IBM-AT e

* Intel 8080 (1972)
- 64K addressable RAM
8-bit registers
CP/M operating system
5,6,8,10 MHz
29K transistros
- Intel 8086/8088 (1978) ~— My first computer (1986)
IBM-PC used 8088
1 MB addressable RAM
16-bit registers
16-bit data bus (8-bit for 8088)
separate floating-point unit (8087)
used in low-cost microcontrollers now

e Intel 80286 (1982)
- 16 MB addressable RAM
- Protected memory
- several times faster than 8086
- introduced IDE bus architecture
- 80287 floating point unit
- Up to 20MHz
- 134K transistors

Intel 1A-32 Family I e

Intel P6 Family fio i

* Intel386 (1985)
- 4 GB addressable RAM
- 32-bit registers
- paging (virtual memory)
- Up to 33MHz
* Intel486 (1989)
- instruction pipelining
- Integrated FPU
- 8K cache
e Pentium (1993)
- Superscalar (two parallel pipelines)

Pentium Pro (1995)

- advanced optimization techniques in microcode
- More pipeline stages

- On-board L2 cache

Pentium Il (1997)

- MMX (multimedia) instruction set

- Up to 450MHz

Pentium Il (1999)

- SIMD (streaming extensions) instructions (SSE)

- Up to 1+GHz

Pentium 4 (2000)

- NetBurst micro-architecture, tuned for multimedia
- 3.8+GHz

Pentium D (2005, Dual core)

IA32 Processors Tt

» Totally Dominate Computer Market

» Evolutionary Design
- Starting in 1978 with 8086
- Added more features as time goes on
- Still support old features, although obsolete

e Complex Instruction Set Computer (CISC)

- Many different instructions with many different
formats
= But, only small subset encountered with Linux programs

- Hard to match performance of Reduced Instruction
Set Computers (RISC)

- But, Intel has done just that!

IA-32 Architecture

IA-32 architecture iy

e Lots of architecture improvements, pipelining,
superscalar, branch prediction, hyperthreading
and multi-core.

e From programmer’s point of view, 1A-32 has not
changed substantially except the introduction
of a set of high-performance instructions

Modes of operation 7~,,

e Protected mode

- native mode (Windows, Linux), full features,
separate memory

* Virtual-8086 mode
* hybrid of Protected
» each program has its own 8086 computer

e Real-address mode
- native MS-DOS

« System management mode
- power management, system security, diagnostics

10

Addressable memory 7~=,

e Protected mode
- 4GB
- 32-bit address
e Real-address and Virtual-8086 modes
- 1 MB space
- 20-bit address

11

General-purpose registers Tt

32-bit General-Purpose Registers

EAX EBP
EBX ESP
ECX ESI
EDX EDI

16-bit Segment Registers

\ EFLAGS H Ccs ES

SS FS

‘ EIP H DS GS

12

Accessing parts of registers it

e Use 8-bit name, 16-bit name, or 32-bit name
« Applies to EAX, EBX, ECX, and EDX

8 8
AH | AL H 8 bits + 8 bits

AX 16 bits
EAX 32 bits
32-bit 16-bit 8-hit (high) B-hit (low)

EAX AX AH AL

ERX LR {4131]

ECX X CH CL

X 17X mn L.

13

Index and base registers it

e Some registers have only a 16-bit name for
their lower half (no 8-bit aliases). The 16-bit
registers are usually used only in real-address
mode.

32-bit 16-bit
ESI SI
EDI DI
EBP BP
ESP SP

14

Some specialized register uses (1 of2) ‘==t

e General-Purpose
- EAX — accumulator (automatically used by division
and multiplication)
- ECX — loop counter

- ESP — stack pointer (should never be used for
arithmetic or data transfer)

- ESI, EDI — index registers (used for high-speed
memory transfer instructions)

- EBP - extended frame pointer (stack)

15

Some specialized register uses (2 of 2) 5"

e Segment

- CS — code segment

- DS — data segment

- SS — stack segment

- ES, FS, GS - additional segments
e EIP — instruction pointer

e EFLAGS
- status and control flags
- each flag is a single binary bit (set or clear)

e Some other system registers such as IDTR,
GDTR, LDTR etc.

16

Status flags T

Floating-point, MMX, XMM registers

- Carry = Eight 80-bit floating-point data ST(0)
- unsigned arithmetic out of range registers ST(1)
= Overflow - ST(0), ST(), . . . , ST(7) ST@)
- signed arithmetic out of range . ST(3)
. - arranged in a stack
* Sign _ _ ST(4)
_result is negative - used for all floating-point ST(5)
- Zero arithmetic ST(6)
_ result is zero e Eight 64-bit MMX registers ST(7)
- Auxiliary Carry « Eight 128-bit XMM registers for
- carry from bit 3 to bit 4 single-instruction multiple-data
- Parity (SIMD) operations
- sum of 1 bits is an even number
17 18
’ :'.. . -_I‘ ’
Programmer’s model S Programmer’s model
Basic Program Execution Registers Address Space*
-y [1 Opcode Register (11-bits)
))) | 48 bits | FPU Instruction Pointer Register
Eight 32-bit - i
Registers General-Purpose Registers | 48 bits | FPU Data (Operand) Pointer Register
Six 16-bit Segment Registers X Reglstors
Registers
Eight 64-hit)
32-bits EFLAGS Register FI*gEQ‘S‘ETSI MMX Registers
[32-hits | EIP (Instruction Pointer Register)
FPU Registers
XMM Registers
Eight 80-bit Floating-Point
Registers Data Registers 0 Eight 126-bit .
"The address space can be Registers XMM Registers
16 bits gtor:lro::!e.gi:ter ::f; ;;;E%e:;;:lé::mg
16 bits atus Register extension mechanism, a MXCSR Register
i i

TIA-32 Memory Management

Real-address mode Tt

1 MB RAM maximum addressable (20-bit address)

Application programs can access any area of
memory

Single tasking
Supported by MS-DOS operating system

22

Segmented memory I

Segmented memory addressing: absolute (linear) address
is a combination of a 16-bit segment value added to a 16-
bit offset

F0000
E0000 8000:FFFF
D0000
C0000
B000O
A0000 P
90000

80000 (64K)

70000

one segment

60000
7777777777777 8000:0250

50000
40000 0250

30000 8000:0000

20000 T T
10000

seg ofs

linear addresses

00000

23

Calculating linear addresses Tt

e Given a segment address, multiply it by 16 (add
a hexadecimal zero), and add it to the offset

e Example: convert 08F1:0100 to a linear address

Adjusted Segment value: 0 8 F 1 0
Add the offset: 0100
Linear address: 09010

« A typical program has three segments: code,
data and stack. Segment registers CS, DS and SS
are used to store them separately.

24

Example Tt

What linear address corresponds to the segment/offset
address 028F:0030?

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

25

Protected mode (1 of 2) I e

4 GB addressable RAM (32-bit address)
- (00000000 to FFFFFFFFh)

Each program assigned a memory partition
which is protected from other programs

Designed for multitasking
Supported by Linux & MS-Windows

26

Protected mode (2 of 2) I

» Segment descriptor tables

e Program structure
- code, data, and stack areas
- CS, DS, SS segment descriptors
- global descriptor table (GDT)

e MASM Programs use the Microsoft flat memory
model

27

Flat segmentation model '-f!.-[:.;.;:e.

= All segments are mapped to the entire 32-bit physical
address space, at least two, one for data and one for
code

« global descriptor table (GDT)

FFFFFFFF
(4GB)

Segment descriptor in the
Global Descriptor Table

pasn jou

base address limit access 00040000

00000000 | 0040 | ----

WYY [eoisAyd

00000000

28

Multi-segment model 1SS

e Each program has a local descriptor table (LDT)
- holds descriptor for each segment used by the program

RAM
Local Descriptor Table
26000
base limit access
00026000 | 0010
00008000 | 000A —‘
o 00003000 | 0002 8000
multiplied by I
1000h 3000

29

Translating Addresses]

e The IA-32 processor uses a one- or two-step
process to convert a variable's logical address
into a unique memory location.

« The first step combines a segment value with a
variable’s offset to create a linear address.

» The second optional step, called page
translation, converts a linear address to a
physical address.

Converting Logical to Linear Address 7-=~

The segment Logical address
selector points to a [_seecor | ofset |
segment descriptor,
which contains the
base address of a
memory segment.
The 32-bit offset
from the logical
address is added to
the segment’s base

Descriptor table

Segment Descriptor

address, generating GDTRILDTR

a 32-bit linear
(contains base address of

ad d ress. descriptor table)

Indexing into a Descriptor Table ‘f%*ffﬁa

Each segment descriptor indexes into the program's local
descriptor table (LDT). Each table entry is mapped to a
linear address:

Linear address space

(unused)

Logical addresses

Local Descriptor Table DRAM
SS ESP
0018 | 0000003A |
DS offset (index)

010 | 000001B6 | 18 001A0000

»10| 0002A000
»0s| 0001A000

i

i 00| 00003000
0008 | 00002CD3 | .

LDTR register

Paging (1 of 2) I

« Virtual memory uses disk as part of the memory,
thus allowing sum of all programs can be larger
than physical memory

e Only part of a program must be kept in
memory, while the remaining parts are kept on
disk.

 The memory used by the program is divided
into small units called pages (4096-byte).

e As the program runs, the processor selectively
unloads inactive pages from memory and loads
other pages that are immediately required.

Paging (2 of 2) ety

» OS maintains page directory and page tables

» Page translation: CPU converts the linear
address into a physical address

e Page fault: occurs when a needed page is not
in memory, and the CPU interrupts the
program

e Virtual memory manager (VMM) — OS utility
that manages the loading and unloading of
pages

« OS copies the page into memory, program
resumes execution

Page Translation Tt
A linear address is , nearaddess
divided into a page Directory | Table | Offset

directory field, page

Page Frame

table field, and page
frame offset. The

Page Directory Page Table

Physical Address

CPU uses all three to
Calculate the Page-Table Entry

physical address.

A4

Directory Entry

cRs i

32

