
Intel x86 Architecture

Computer Organization and Assembly Languages p g z y g g
Yung-Yu Chuang
2008/12/82008/12/8

with slides by Kip Irvine

Intel microprocessor history

Early Intel microprocessors

• Intel 8080 (1972)
64K addressable RAM– 64K addressable RAM

– 8-bit registers
– CP/M operating systemCP/M operating system
– 5,6,8,10 MHz
– 29K transistros

• Intel 8086/8088 (1978)
– IBM-PC used 8088

my first computer (1986)

– 1 MB addressable RAM
– 16-bit registers
– 16-bit data bus (8-bit for 8088)
– separate floating-point unit (8087)

3
– used in low-cost microcontrollers now

The IBM-AT

• Intel 80286 (1982)
16 MB dd bl RAM– 16 MB addressable RAM

– Protected memory
several times faster than 8086– several times faster than 8086

– introduced IDE bus architecture
– 80287 floating point unit80287 floating point unit
– Up to 20MHz
– 134K transistors134K transistors

4

Intel IA-32 Family

• Intel386 (1985)
4 GB addressable RAM– 4 GB addressable RAM

– 32-bit registers
– paging (virtual memory)paging (virtual memory)
– Up to 33MHz

• Intel486 (1989)Intel486 (1989)
– instruction pipelining
– Integrated FPUg
– 8K cache

• Pentium (1993)()
– Superscalar (two parallel pipelines)

5

Intel P6 Family
• Pentium Pro (1995)

– advanced optimization techniques in microcodeadva ced opt at o tec ques c ocode
– More pipeline stages
– On-board L2 cache

• Pentium II (1997)
– MMX (multimedia) instruction set

Up to 450MHz– Up to 450MHz
• Pentium III (1999)

– SIMD (streaming extensions) instructions (SSE)SIMD (streaming extensions) instructions (SSE)
– Up to 1+GHz

• Pentium 4 (2000)
– NetBurst micro-architecture, tuned for multimedia
– 3.8+GHz

P ti D (2005 D l)
6

• Pentium D (2005, Dual core)

IA32 Processors

• Totally Dominate Computer Market
E l i D i• Evolutionary Design
– Starting in 1978 with 8086
– Added more features as time goes on
– Still support old features, although obsolete

• Complex Instruction Set Computer (CISC)
– Many different instructions with many different y y

formats
• But, only small subset encountered with Linux programs

– Hard to match performance of Reduced Instruction
Set Computers (RISC)
B I l h d j h !– But, Intel has done just that!

IA-32 Architecture

IA-32 architecture

• Lots of architecture improvements, pipelining,
superscalar branch prediction hyperthreading superscalar, branch prediction, hyperthreading
and multi-core.
F ’ i t f i IA 32 h t • From programmer’s point of view, IA-32 has not
changed substantially except the introduction
f t f hi h f i t tiof a set of high-performance instructions

9

Modes of operation

• Protected mode
ti d (Wi d Li) f ll f t – native mode (Windows, Linux), full features,

separate memory

• Virtual-8086 mode
• hybrid of Protectedy
• each program has its own 8086 computer

• Real-address mode
– native MS-DOS

• System management mode
– power management, system security, diagnostics

10

p g , y y, g

Addressable memory

• Protected mode
– 4 GB
– 32-bit address

• Real-address and Virtual-8086 modes
– 1 MB space M space
– 20-bit address

11

General-purpose registers

32-bit General-Purpose Registers

EAX
EBX

EBP

ESP
ECX

EDX

ESI

EDI

16-bit Segment Registers

CS

SS

ESEFLAGS

g g

FSSS

DSEIP
FS

GS

12

Accessing parts of registers

• Use 8-bit name, 16-bit name, or 32-bit name
A li EAX EBX ECX d EDX• Applies to EAX, EBX, ECX, and EDX

AH AL

88

AH AL

AX

8 bits + 8 bits

16 bitsAX

EAXEAX 32 bits

13

Index and base registers

• Some registers have only a 16-bit name for
their lower half (no 8 bit aliases) The 16 bit their lower half (no 8-bit aliases). The 16-bit
registers are usually used only in real-address
modemode.

14

Some specialized register uses (1 of 2)

• General-Purpose
EAX l t (t ti ll d b di i i – EAX – accumulator (automatically used by division
and multiplication)

– ECX – loop counterECX loop counter
– ESP – stack pointer (should never be used for

arithmetic or data transfer)
– ESI, EDI – index registers (used for high-speed

memory transfer instructions)
EBP t d d f i t (t k)– EBP – extended frame pointer (stack)

15

Some specialized register uses (2 of 2)

• Segment
– CS – code segment
– DS – data segment
– SS – stack segment
– ES, FS, GS - additional segments

• EIP – instruction pointer
• EFLAGSEFLAGS

– status and control flags
– each flag is a single binary bit (set or clear)each flag is a single binary bit (set or clear)

• Some other system registers such as IDTR,
GDTR LDTR etc

16

GDTR, LDTR etc.

Status flags
• Carry

– unsigned arithmetic out of rangeunsigned arithmetic out of range

• Overflow
– signed arithmetic out of range– signed arithmetic out of range

• Sign
result is negative– result is negative

• Zero
result is zero– result is zero

• Auxiliary Carry
carry from bit 3 to bit 4– carry from bit 3 to bit 4

• Parity
sum of 1 bits is an even number

17

– sum of 1 bits is an even number

Floating-point, MMX, XMM registers

• Eight 80-bit floating-point data
registers

ST(0)
ST(1)registers

– ST(0), ST(1), . . . , ST(7)

ST(1)

ST(2)

ST(3)– arranged in a stack

– used for all floating-point

ST(3)

ST(4)
ST(5)

arithmetic

• Eight 64-bit MMX registers

ST(5)

ST(6)

ST(7)g g

• Eight 128-bit XMM registers for
single-instruction multiple-data

ST(7)

g p
(SIMD) operations

18

Programmer’s model

19

Programmer’s model

20

IA-32 Memory Management

Real-address mode

• 1 MB RAM maximum addressable (20-bit address)
• Application programs can access any area of

memory
• Single tasking
• Supported by MS-DOS operating system• Supported by MS DOS operating system

22

Segmented memory
Segmented memory addressing: absolute (linear) address
is a combination of a 16-bit segment value added to a 16-g
bit offset

C0000

D0000

E0000

F0000

8000:FFFF

90000

A0000

B0000

one segment

50000

60000

70000

80000

8000:0250

(64K)

20000

30000

40000

50000

8000:0000

0250

23
00000

10000
seg ofs

Calculating linear addresses

• Given a segment address, multiply it by 16 (add
a hexadecimal zero) and add it to the offseta hexadecimal zero), and add it to the offset

• Example: convert 08F1:0100 to a linear address

Adjusted Segment value: 0 8 F 1 0
Add the offset: 0 1 0 0
Linear address: 0 9 0 1 0Linear address: 0 9 0 1 0

• A typical program has three segments: code • A typical program has three segments: code,
data and stack. Segment registers CS, DS and SS
are used to store them separately

24

are used to store them separately.

Example

What linear address corresponds to the segment/offset
address 028F:0030?

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

25

Protected mode (1 of 2)

• 4 GB addressable RAM (32-bit address)
(00000000 t FFFFFFFFh)– (00000000 to FFFFFFFFh)

• Each program assigned a memory partition
hi h i d f h which is protected from other programs

• Designed for multitasking
• Supported by Linux & MS-Windows

26

Protected mode (2 of 2)

• Segment descriptor tables
• Program structure

– code, data, and stack areas
– CS, DS, SS segment descriptors
– global descriptor table (GDT)

• MASM Programs use the Microsoft flat memory
modelodel

27

Flat segmentation model

• All segments are mapped to the entire 32-bit physical
address space at least two one for data and one for address space, at least two, one for data and one for
code

• global descriptor table (GDT)g p ()

28

Multi-segment model

• Each program has a local descriptor table (LDT)
holds descriptor for each segment used by the program– holds descriptor for each segment used by the program

RAM

Local Descriptor Tablep

26000

00008000 000A
00026000 0010

base limit access
26000

00003000 0002
00008000 000A

8000
multiplied by

29

30001000h

Translating Addresses

• The IA-32 processor uses a one- or two-step
process to convert a variable's logical address process to convert a variable s logical address
into a unique memory location.
h fi bi l i h • The first step combines a segment value with a

variable’s offset to create a linear address.
• The second optional step, called page

translation, converts a linear address to a
physical address.

Converting Logical to Linear Address

The segment
selector points to a Selector Offset

Logical address

selector points to a
segment descriptor,
which contains the

Descriptor table

base address of a
memory segment.
The 32-bit offset

Segment Descriptor +The 32 bit offset
from the logical
address is added to
the segment’s base
address, generating
a 32 bit linear

GDTR/LDTR

Linear addressa 32-bit linear
address.

(contains base address of
descriptor table)

Linear address

Indexing into a Descriptor Table
Each segment descriptor indexes into the program's local
descriptor table (LDT). Each table entry is mapped to a
linear address:

Linear address space

Logical addresses

(unused)

DRAML l D i T bl

0018 0000003A

DRAM
SS ESP

Local Descriptor Table

001A0000
0002A000

0010 000001B6
DS

18

10

(index)offset

0001A000
00003000

0008 00002CD3

08

00
IP

LDTR register

Paging (1 of 2)

• Virtual memory uses disk as part of the memory,
thus allowing sum of all programs can be larger thus allowing sum of all programs can be larger
than physical memory
O l t f t b k t i • Only part of a program must be kept in
memory, while the remaining parts are kept on
di k disk.

• The memory used by the program is divided
into small units called pages (4096-byte).

• As the program runs, the processor selectively p g , p y
unloads inactive pages from memory and loads
other pages that are immediately required.p g y q

Paging (2 of 2)

• OS maintains page directory and page tables
• Page translation: CPU converts the linear

address into a physical address
• Page fault: occurs when a needed page is not

in memory, and the CPU interrupts the y, p
program

• Virtual memory manager (VMM) – OS utility • Virtual memory manager (VMM) OS utility
that manages the loading and unloading of
pagespages

• OS copies the page into memory, program
resumes executionresumes execution

Page Translation

A linear address is Linear Address
10 10 12

divided into a page
directory field, page
table field and page

Directory Table Offset

Page Frame

table field, and page
frame offset. The
CPU uses all three to

Page Directory Page Table

Physical Address
CPU uses all three to
calculate the
physical address.

Page-Table Entry

p y
Directory Entry

CR3CR3
32

