
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.cs.Princeton.EDU/IntroCS

TOY assembly

2

TOY assembly

jl rd, addrjlF
jr rd (rt)jrE
bp rd, addrbpD
bz rd, addrbzC
sti rd, rtstiB
ldi rd, rtldiA
st rd, addrst9
ld rd, addrld8
lda rd, addrlda7
shr rd, rs, rtshr6
shl rd, rs, rtshl5
xor rd, rs, rtxor4
and rd, rs, rtand3
sub rd, rs, rtsub2
add rd, rs, rtadd1
hlthlt0

syntaxmnemonicopcode
Data directives
A DW n: initialize a
variable A as n
B DUP n: reserve n words
(n is decimal)
Support two types of
literals, decimal and
hexadecimal (0x)
Label begins with a letter
Comment begins with ;
Case insensitive
Program starts with the
first instruction it meets

Some tricks to handle the
starting address 0x10

Not mapping to instruction

3

Assembler
Assembler’s task:

Convert mnemonic operation codes to their
machine language equivalents
Convert symbolic operands to their equivalent
machine addresses
Build machine instructions in proper format
Convert data constants into internal machine
representations (data formats)
Write object program and the assembly listing

4

Forward Reference

Definition
A reference to a label that is defined later in the
program

Solution
Two passes
– First pass: scan the source program for label definition,

address accumulation, and address assignment
– Second pass: perform most of the actual instruction

translation

5

Assembly version of REVERSE
A DUP 32

lda R1, 1
lda RA, A
lda RC, 0

read ld RD, 0xFF
bz RD, exit
add R2, RA, RC
sti RD, R2
add RC, RC, R1
bz R0, read

exit jl RF, printr
hlt

int A[32];

i=0;
Do {

RD=stdin;
if (RD==0) break;

A[i]=RD;
i=i+1;

} while (1);

printr();

10: C020

20: 7101
21: 7A00
22: 7C00

23: 8DFF
24: CD29
25: 12AC
26: BD02
27: 1CC1
28: C023

29: FF2B
2A: 0000

6

Assembly version of REVERSE
; print reverse
; array address (RA)
; number of elements (RC)
printr sub RC, RC, R1

add R2, RA, RC
ldi RD, R2
st RD, 0xFF
bp RC, printr
bz RC, printr

return jr RF

printr()
{

do {
i=i-1;

print A[i];
} while (i>=0);

return;
}

toyasm < reverse.asm > reverse.toy

2B: 2CC1
2C: 12AC
2D: AD02
2E: 9DFF
2F: DC2B
30: CC2B
31: EF00

7

stack
STK_TOP DW 0xFF

; these procedures will use R8, R9
; assume return address is in RE, instead of RF
; it is the only exception

; push RF into stack
push lda R8, 1

ld R9, STK_TOP
sub R9, R9, R8
st R9, STK_TOP
sti RF, R9
jr RE

stdin/stdoutFF

FE
stack

STK_TOP

data

code

8

stack
; pop and return [top] to RF
pop lda R8, 0xFF

ld R9, STK_TOP
sub R8, R8, R9
bz R8, popexit
ldi RF, R9
lda R8, 1
add R9, R9, R8
st R9, STK_TOP

popexitjr RE

; the size of the stack, the result is in R9
stksize lda R8, 0xFF

ld R9, STK_TOP
sub R9, R8, R9
jr RE

9

Procedure prototype
With a stack, the procedure prototype is
changed. It allows us to have a deeper call
graph by using the stack.
mul

jr RF

code

mul jl RE, push

jl RE, pop
jr RF

code

before after

A()

call B

B()

call C

C()

A A

B

A

10

Assembly programming flow

assembler

linker

loader

source

object

executable

Bring the object program into
memory for execution

•Combine separate object codes
•Supply necessary information for
references between them

Target machine

11

Linking
Many programs will need multiply. Since multiply will
be used by many applications, could we make multiply
a library?

Toyasm has an option to generate an object file so
that it can be later linked with other object files.

That is why we need linking. Write a subroutine mul3
which multiplies three numbers in RA, RB, RC
together and place the result in RD.
Three files:

stack.obj: implementation of stack, needed for
procedure
mul.obj: implementation of multiplication.
multest.obj: main program and procedure of mul3

toylink multest.obj mul.obj stack.obj > multest.toy
12

object file (multest.obj)
A DW 3
B DW 4
C DW 5
; calculate A*B*C
main ld RA, A

ld RB, B
ld RC, C
jl RF, mul3
st RD, 0xFF
hlt

; RD=RA*RB*RC
; return address is in RF
mul3 jl RE, push

lda RD, 0
add RD, RC, R0
jl RF, mul
add RA, RC, R0
add RB, RD, R0
jl RF, mul
add RD, RC, R0
jl RE, pop
jr RF

13

object file (mul.obj)
SIXTEEN DW 16

; multiply RC=RA*RB
; return address is in RF
; it will modify R2, R3 and R4 as well
mul jl RE, push

lda RC, 0
lda R1, 1
ld R2, SIXTEEN

m_loop sub R2, R2, R1
shl R3, RA, R2
shr R4, RB, R2
and R4, R4, R1
bz R4, m_end
add RC, RC, R3

m_end bp R2, m_loop

jl RE, pop
jr RF

// size 29
// export 4
// SIXTEEN 0x00
// mul 0x10
// m_loop 0x14
// m_end 0x1A
// literal 2 17 18
// lines 14
00: 0010
10: FE00
11: 7C00
12: 7101
13: 8200
14: 2221
15: 53A2
16: 64B2
17: 3441
18: C41A
19: 1CC3
1A: D214
1B: FE00
1C: EF00
// import 2
// push 1 0x10
// pop 1 0x1B

export
table

import
table

need to fill in
address of push
once we know it

need to fill in
address of pop
once we know it

These are literals.
No need to relocate

14

Linking
multest.obj mul.obj

stack.obj

32

35

29

0x20

0x00

0x3Dpush 0x10
pop 0x16

mul 0x10

push 0x10
pop 0x1B

start address=0
start address
=0+32=0x20

start address
=32+29=0x3D

0x3D+0x10=0x4D
0x3D+0x16=0x53

15

Resolve external symbols

20: 0010
30: FE4D
31: 7C00
32: 7101
33: 8220
34: 2221
35: 53A2
36: 64B2
37: 3441
38: C43A
39: 1CC3
3A: D234
3B: FE53
3C: EF20

// size 29
// export 4
// SIXTEEN 0x00
// mul 0x10
// m_loop 0x14
// m_end 0x1A
// literal 2 17 18
// lines 14
00: 0010
10: FE00
11: 7C00
12: 7101
13: 8200
14: 2221
15: 53A2
16: 64B2
17: 3441
18: C41A
19: 1CC3
1A: D214
1B: FE00
1C: EF00
// import 2
// push 1 0x10
// pop 1 0x1B

export
table

import
table

need to fill in
address of push
once we know it

need to fill in
address of pop
once we know it

These are literals.
No need to relocate

16

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

compiler

17

Operating System

Operating system is a resource allocator
– Managing all resources (memory, I/O,

execution)
– Resolving requests for efficient and fair usage
Operating system is a control program

– Controlling execution of programs to prevent
errors and improper use of the computer

18

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

assembler

19

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

architecture

20

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

DSD, electronics

