# Newton Method for Convolutional Neural Networks

#### Chih-Jen Lin Department of Computer Science National Taiwan University



< □ > < □ > < □ > < □ > < □ > < □ >

## Outline

#### Introduction

- Optimization problem for convolutional neural networks (CNN)
- Newton method for CNN
- Experiments
- Discussion and conclusions

イロト イヨト イヨト

### Outline

#### Introduction

- 2 Optimization problem for convolutional neural networks (CNN)
- 3 Newton method for CNN
- Experiments
- Discussion and conclusions

イロト イヨト イヨト

## Introduction

- Training a neural network involves a difficult optimization problem
- SG (stochastic gradient) is the major optimization technique for deep learning.
- SG is simple and effective, but sometimes not robust (e.g., selecting the learning rate may be difficult)
- Is it possible to consider other methods?
- In this work, we investigate Newton methods



### Outline

#### Introduction

- Optimization problem for convolutional neural networks (CNN)
  - 3 Newton method for CNN
  - Experiments
  - Discussion and conclusions

< □ > < □ > < □ > < □ > < □ > < □ >

## **Optimization and Neural Networks**

- In a typical setting, a neural network is no more than an empirical risk minimization problem
- We will show an example using convolutional neural networks (CNN)
- CNN is a type of networks useful for image classification

< □ > < □ > < □ > < □ > < □ > < □ >

## Convolutional Neural Networks (CNN)

• Consider a K-class classification problem with training data

$$(\mathbf{y}^i, Z^{1,i}), i=1,\ldots,\ell.$$

 $y^i$ : label vector  $Z^{1,i}$ : input image • If  $Z^{1,i}$  is in class k, then

$$\mathbf{y}^i = [\underbrace{0,\ldots,0}_{k-1}, 1, 0, \ldots, 0]^T \in R^K.$$

• CNN maps each image Z<sup>1,i</sup> to y<sup>i</sup>

・ロト ・四ト ・ヨト ・ヨト

## Convolutional Neural Networks (CNN)

- Typically, CNN consists of multiple convolutional layers followed by fully-connected layers.
- We discuss only convolutional layers.
- Input and output of a convolutional layer are assumed to be images.

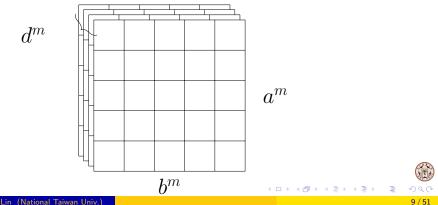
< 日 > < 同 > < 三 > < 三 >

### **Convolutional Layers**

For *m*th layer, let the input be an image

$$a^m imes b^m imes d^m$$
.

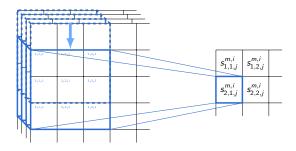
 $a^m$ : height,  $b^m$ : width, and  $d^m$ : #channels.



- Consider *d*<sup>*m*+1</sup> filters.
- Each filter includes weights to extract local information
- Filter  $j \in \{1, \ldots, d^{m+1}\}$  has dimensions

 $h \times h \times d^m$ .

 $\begin{bmatrix} w_{1,1,1}^{m,j} & w_{1,h,1}^{m,j} \\ & \ddots & \\ w_{h,1,1}^{m,j} & w_{h,h,1}^{m,j} \end{bmatrix} \dots \begin{bmatrix} w_{1,1,d^m}^{m,j} & w_{1,h,d^m}^{m,j} \\ & \ddots & \\ w_{h,1,d^m}^{m,j} & w_{h,h,d^m}^{m,j} \end{bmatrix} .$   $h: \text{ filter height/width } (m \text{ of } h^m \text{ omitted})$ 



- To compute the *j*th channel of output, we scan the input from top-left to bottom-right to obtain the sub-images of size h × h × d<sup>m</sup>
- Then calculate the inner product between each sub-image and the *j*th filter



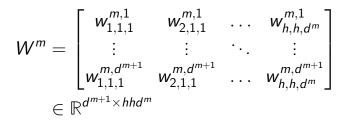
< □ > < □ > < □ > < □ > < □ > < □ >

- It's known that convolutional operations can be done by matrix-matrix and matrix-vector operations
- Let's collect images of all channels as the input

$$Z^{m,i} = \begin{bmatrix} z_{1,1,1}^{m,i} & z_{2,1,1}^{m,i} & \dots & z_{a^m,b^m,1}^{m,i} \\ \vdots & \vdots & \ddots & \vdots \\ z_{1,1,d^m}^{m,i} & z_{2,1,d^m}^{m,i} & \dots & z_{a^m,b^m,d^m}^{m,i} \end{bmatrix} \in \mathbb{R}^{d^m \times a^m b^m}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let all filters



be variables (parameters) of the current layerUsually a bias term is considered but we omit it here

• Operations at a layer

$$\mathcal{S}^{m,i} = \mathcal{W}^m \phi(\mathcal{Z}^{m,i}) \qquad \mathcal{Z}^{m+1,i} = \sigma(\mathcal{S}^{m,i}),$$

•  $\phi(Z^{m,i})$  collects all sub-images in  $Z^{m,i}$  into a matrix

$$\phi(Z^{m,i}) = \begin{bmatrix} z_{1,1,1}^{m,i} & z_{1+s^{m},1,1}^{m,i} & & z_{1+(a^{m+1}-1)s^{m},1+(b^{m+1}-1)s^{m},1}^{m,i} \\ z_{2,1,1}^{m,i} & z_{2+s^{m},1,1}^{m,i} & & z_{2+(a^{m+1}-1)s^{m},1+(b^{m+1}-1)s^{m},1}^{m,i} \\ \vdots & \vdots & & & \vdots \\ z_{h,h,1}^{m,i} & z_{h+s^{m},h,1}^{m,i} & & z_{h+(a^{m+1}-1)s^{m},h+(b^{m+1}-1)s^{m},1}^{m,i} \\ \vdots & \vdots & & & \vdots \\ z_{h,h,d^{m}}^{m,i} & z_{h+s^{m},h,d^{m}}^{m,i} & & z_{h+(a^{m+1}-1)s^{m},h+(b^{m+1}-1)s^{m},d^{m}}^{m,i} \end{bmatrix}$$

- $\sigma$  is an element-wise activation function
- In the matrix-matrix product

$$S^{m,i} = W^m \phi(Z^{m,i}), \tag{1}$$

< 日 > < 同 > < 三 > < 三 >

each element is the inner product between a filter and a sub-image

## **Optimization Problem**

• We collect all weights to a vector variable  $\boldsymbol{\theta}$ .

$$\boldsymbol{\theta} = \begin{bmatrix} \operatorname{vec}(W^1) \\ \vdots \\ \operatorname{vec}(W^L) \end{bmatrix} \in R^n, \quad n : \text{total } \# \text{ variables}$$

- The output of the last fully-connected layer L is a vector z<sup>L+1,i</sup>(θ).
- Consider any loss function such as the squared loss

$$\xi_i(\boldsymbol{\theta}) = ||\boldsymbol{z}^{L+1,i}(\boldsymbol{\theta}) - \boldsymbol{y}^i||^2.$$

# Optimization Problem (Cont'd)

• The optimization problem is

 $\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}),$ 

where

$$egin{aligned} f(oldsymbol{ heta}) &= ext{regularization} + ext{losses} \ &= & rac{1}{2C} oldsymbol{ heta}^{ op} oldsymbol{ heta} + rac{1}{\ell} \sum_{i=1}^{\ell} \xi_i(oldsymbol{ heta}) \end{aligned}$$

• C: regularization parameter.





イロン 不聞 とくほとう ほとう

## Outline

#### Introduction

- 2 Optimization problem for convolutional neural networks (CNN)
- ③ Newton method for CNN
- Experiments
- Discussion and conclusions

### Mini-batch Stochastic Gradient

- We begin with explaining why stochastic gradient (SG) is popular for deep learning
- Recall the function is

$$f(\boldsymbol{\theta}) = \frac{1}{2C} \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\theta} + \frac{1}{\ell} \sum_{i=1}^{\ell} \xi(\boldsymbol{\theta}; \mathbf{y}^{i}, Z^{1,i})$$

• The gradient is

$$rac{oldsymbol{ heta}}{C}+rac{1}{\ell}
abla_{oldsymbol{ heta}}\sum_{i=1}^{\ell}\xi(oldsymbol{ heta};oldsymbol{y}^{i},Z^{1,i})$$

# Mini-batch Stochastic Gradient (Cont'd)

Going over all data is time consumingFrom

$$E(\nabla_{\boldsymbol{\theta}}\xi(\boldsymbol{\theta};\boldsymbol{y},Z^{1})) = \frac{1}{\ell}\nabla_{\boldsymbol{\theta}}\sum_{i=1}^{\ell}\xi(\boldsymbol{\theta};\boldsymbol{y}^{i},Z^{1,i})$$

we may just use a subset S (called a batch)

$$\frac{\boldsymbol{\theta}}{C} + \frac{1}{|S|} \nabla_{\boldsymbol{\theta}} \sum_{i:i \in S} \xi(\boldsymbol{\theta}; \boldsymbol{y}^{i}, Z^{1,i})$$

# Mini-batch SG: Algorithm

- 1: Given an initial learning rate  $\eta$ .
- 2: while do
- 3: Choose  $S \subset \{1, \ldots, \ell\}$ .
- 4: Calculate

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - oldsymbol{\eta} (rac{oldsymbol{ heta}}{C} + rac{1}{|S|} 
abla_{oldsymbol{ heta}} \sum_{i:i\in S} \xi(oldsymbol{ heta}; oldsymbol{y}^i, Z^{1,i}))$$

- 5: May adjust the learning rate η
  6: end while
  - But deciding a suitable learning rate may be tricky



## Why SG Popular for Deep Learning?

• The special property of data classification is essential

$$E(
abla_{m{ heta}}\xi(m{ heta};m{y},Z^1)) = rac{1}{\ell}
abla_{m{ heta}}\sum_{i=1}^{\ell}\xi(m{ heta};m{y}^i,Z^{1,i})$$

- Indeed stochastic gradient is less used outside machine learning
- High-order methods with fast final convergence may not be needed in machine learning

An approximate solution may give similar accuracy to the final solution



# Why SG Popular for Deep Learning? (Cont'd)

- Easy implementation. It's simpler than methods using, for example, second derivative
- Non-convexity plays a role
  - For convex, a global minimum usually gives a good model (loss is minimized) Thus we want to efficiently find the global minimum
  - But for non-convex, efficiency to reach a stationary point is less useful



< □ > < □ > < □ > < □ > < □ > < □ >

### Drawback of SG

- Tuning the learning rate is not easy
- Thus if we would like to consider other methods, robustness rather than efficiency may be the main reason

< □ > < □ > < □ > < □ > < □ > < □ >

### Newton Method

• Newton method finds a direction d that minimizes the second-order approximation of  $f(\theta)$ 

$$\min_{\boldsymbol{d}} \quad \nabla f(\boldsymbol{\theta})^{\top} \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^{\top} \nabla^2 f(\boldsymbol{\theta}) \boldsymbol{d}.$$
(2)

If ∇<sup>2</sup> f(θ) is positive definite, (2) is equivalent to solving

$$abla^2 f(\boldsymbol{ heta}) \boldsymbol{d} = -\nabla f(\boldsymbol{ heta}).$$

イロト 不得 トイヨト イヨト

# Newton Method (Cont'd)

#### while stopping condition not satisfied **do** Let G be $\nabla^2 f(\theta)$ or its approximation Exactly or approximately solve

$$G\boldsymbol{d} = -\nabla f(\boldsymbol{\theta})$$

Find a suitable step size  $\alpha$  (e.g., line search) Update

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{d}.$$

end while

< 日 > < 同 > < 回 > < 回 > .

#### Hessian may not be Positive Definite

Hessian of  $f(\theta)$  is (derivation omitted)

$$\nabla^2 f(\boldsymbol{\theta}) = \frac{1}{C} \mathcal{I} + \frac{1}{\ell} \sum_{i=1}^{\ell} (J^i)^\top B^i J^i$$
  
+ a non-PSD (positive semi-definite) term

 $\mathcal{I}$ : identity,  $B^i$ : simple PSD matrix,  $J^i$ : Jacobian of  $z^{L+1,i}(\boldsymbol{\theta})$ 

$$J^{i} = \begin{bmatrix} \frac{\partial z_{1}^{L+1,i}}{\partial \theta_{1}} & \cdots & \frac{\partial z_{1}^{L+1,i}}{\partial \theta_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_{n_{L+1}}^{L+1,i}}{\partial \theta_{1}} & \cdots & \frac{\partial z_{n_{L+1}}^{L+1,i}}{\partial \theta_{n}} \end{bmatrix} \in \mathbb{R}^{n_{L+1} \times n} \quad n: \ \# \text{ total}$$
variables

27/51

## Positive Definite Modification of Hessian

- Several strategies have been proposed.
- For example, Schraudolph (2002) considered the Gauss-Newton matrix (which is PD)

$$G = \frac{1}{C}\mathcal{I} + \frac{1}{\ell}\sum_{i=1}^{\ell} (J^i)^{\top} B^i J^i \approx \nabla^2 f(\theta).$$

• Then Newton linear system becomes

$$G\mathbf{d} = -\nabla f(\mathbf{\theta}).$$

(3)

# Memory Difficulty

• The Gauss-Newton matrix *G* may be too large to be stored

G: # variables  $\times \#$  variables

- Many approaches have been proposed (through approximation)
- For example, we may store and use only diagonal blocks of *G*

< ロ > < 同 > < 回 > < 回 > < 回 > <

# Memory Difficulty (Cont'd)

- Here we try to use the original Gauss-Newton matrix *G* without aggressive approximation
- Reason: we should show first that for median-sized data, standard Newton is more robust than SG
- Otherwise, there is no need to develop techniques for large-scale problems

< ロト < 同ト < ヨト < ヨト

## Hessian-free Newton Method

• If G has certain structures, it's possible to use iterative methods (e.g., conjugate gradient) to solve the Newton linear system by a sequence of matrix-vector products

$$G\mathbf{v}^1, G\mathbf{v}^2, \ldots$$

#### without storing G

• This is called Hessian-free in optimization

## Hessian-free Newton Method (Cont'd)

• The Gauss-Newton matrix is

$$G = \frac{1}{C}\mathcal{I} + \frac{1}{\ell}\sum_{i=1}^{\ell} (J^i)^{\top} B^i J^i$$

• Matrix-vector product without explicitly storing G

$$Goldsymbol{
u} = rac{1}{C}oldsymbol{
u} + rac{1}{\ell}\sum_{i=1}^\ell ((J^i)^ op (B^i(J^ioldsymbol{
u}))).$$

• Examples of using this setting for deep learning include Martens (2010), Le et al. (2011), and Wang et al. (2018).

# Hessian-free Newton Method (Cont'd)

• However, for the conjugate gradient process,

$$J^i \in \mathbb{R}^{n_{L+1} \times n}, i = 1, \ldots, \ell,$$

can be too large to be stored ( $\ell$  is # data)

• Total memory usage is

$$n_{L+1} \times n \times \ell$$
  
= # classes × # variables × # data

< 日 > < 同 > < 三 > < 三 >

# Hessian-free Newton Method (Cont'd)

• The product involves

$$\sum_{i=1}^{\ell} ((J^i)^\top (B^i (J^i \boldsymbol{v}))).$$

- We can trade time for space:  $J^i$  is calculated when needed (i.e., at every matrix-vector product)
- On the other hand, we may not need to use all data points to have  $J^i, \forall i$
- We will discuss the subsampled Hessian technique



## Subsampled Hessian Newton Method

• Similar to gradient, for Hessian we have

$$\mathsf{E}(\nabla^2_{\boldsymbol{\theta},\boldsymbol{\theta}}\xi(\boldsymbol{\theta};\boldsymbol{y},Z^1)) = \frac{1}{\ell}\nabla^2_{\boldsymbol{\theta},\boldsymbol{\theta}}\sum_{i=1}^{\ell}\xi(\boldsymbol{\theta};\boldsymbol{y}^i,Z^{1,i})$$

- Thus we can approximate the Gauss-Newton matrix by a subset of data
- This is the subsampled Hessian Newton method (Byrd et al., 2011; Martens, 2010; Wang et al., 2015)

< □ > < □ > < □ > < □ > < □ > < □ >

## Subsampled Hessian Newton Method

ullet We select a subset  $S \subset \{1,\ldots,\ell\}$  and have

$$G^{S} = rac{1}{C}\mathcal{I} + rac{1}{|S|}\sum_{i\in S} (J^{i})^{T}B^{i}J^{i} pprox G.$$

• The cost of storing  $J^i$  is reduced from

 $\propto \ell$  to  $\propto |S|$ 

## Subsampled Hessian Newton Method

• With enough data, direction obtained by

$$G^{S}\boldsymbol{d} = -\nabla f(\boldsymbol{\theta})$$

may be close to that by

$$G\boldsymbol{d} = -\nabla f(\boldsymbol{\theta})$$

- Computational cost per matrix-vector product is saved
- On CPU we may afford to store  $J^i, \forall i \in S$
- On GPU, which has less memory, we calculate  $J^i, \forall i \in S$  when needed



### Calculation of Jacobian Matrix

• Now we know the subsampled Gauss-Newton matrix-vector product is

$$G^{S}\boldsymbol{v} = \frac{1}{C}\boldsymbol{v} + \frac{1}{|S|}\sum_{i\in S} \left( (J^{i})^{T} \left( B^{i}(J^{i}\boldsymbol{v}) \right) \right)$$
(4)

• We briefly discuss how to calculate  $J^i$ 

The Jacobian can be partitioned with respect to layers.

$$J^{i} = \begin{bmatrix} \frac{\partial z_{1}^{L+1,i}}{\partial \theta_{1}} & \cdots & \frac{\partial z_{1}^{L+1,i}}{\partial \theta_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_{n_{L+1}}^{L+1,i}}{\partial \theta_{1}} & \cdots & \frac{\partial z_{n_{L+1}}^{L+1,i}}{\partial \theta_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial z^{L+1,i}}{\partial \operatorname{vec}(W^{1})^{\top}} & \cdots & \frac{\partial z^{L+1,i}}{\partial \operatorname{vec}(W^{L})^{\top}} \end{bmatrix}$$

We check details of one layer. It's difficult to calculate the derivative if using a matrix form

$$S^{m,i} = W^m \phi(Z^{m,i})$$

We can rewrite it to

$$\mathsf{vec}(S^{m,i}) = (\phi(Z^{m,i})^{ op}\otimes \mathcal{I}_{d^{m+1}})\mathsf{vec}(W^m),$$

where

 $\otimes$  : Kronecker product  $\mathcal{I}_{d^{m+1}}$  : Identity

$$oldsymbol{y} = oldsymbol{A}oldsymbol{x}, ext{ with }oldsymbol{y} \in \mathbb{R}^{p} ext{ and }oldsymbol{x} \in \mathbb{R}^{q}$$

then

$$\frac{\partial \mathbf{y}}{\partial (\mathbf{x})^{\top}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_q} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_p}{\partial x_1} & \cdots & \frac{\partial y_p}{\partial x_q} \end{bmatrix} = A$$

Therefore,

$$\frac{\partial \boldsymbol{z}^{L+1,i}}{\partial \operatorname{vec}(\boldsymbol{W}^m)^{\top}} = \frac{\partial \boldsymbol{z}^{L+1,i}}{\partial \operatorname{vec}(\boldsymbol{S}^{m,i})^{\top}} \frac{\partial \operatorname{vec}(\boldsymbol{S}^{m,i})}{\partial \operatorname{vec}(\boldsymbol{W}^m)^{\top}} \\ = \frac{\partial \boldsymbol{z}^{L+1,i}}{\partial \operatorname{vec}(\boldsymbol{S}^{m,i})^{\top}} (\phi(\boldsymbol{Z}^{m,i})^{\top} \otimes \mathcal{I}_{d^{m+1}}).$$

Further, (detailed derivation omitted)

 $\frac{\partial \boldsymbol{z}^{L+1,i}}{\partial \operatorname{vec}(\boldsymbol{S}^{m,i})^{\top}} = \frac{\partial \boldsymbol{z}^{L+1,i}}{\partial \operatorname{vec}(\boldsymbol{Z}^{m+1,i})^{\top}} \odot \left(\mathbbm{1}_{n_{L+1}} \operatorname{vec}(\sigma'(\boldsymbol{S}^{m,i}))^{\top}\right),$ 

where  $\odot$  is element-wise product, and



$$\frac{\partial \boldsymbol{z}^{L+1,i}}{\partial \text{vec}(\boldsymbol{Z}^{m,i})^{\top}} = \frac{\partial \boldsymbol{z}^{L+1,i}}{\partial \text{vec}(\boldsymbol{S}^{m,i})^{\top}} (\boldsymbol{\mathcal{I}}_{\boldsymbol{a}^{m+1}\boldsymbol{b}^{m+1}} \otimes \boldsymbol{W}^{m}) \boldsymbol{P}_{\phi}^{m}.$$

- Thus a backward process can calculate all the needed values
- We see that with suitable representation, the derivation is manageable
- Major operations can be performed by matrix-based settings (details not shown)
- This is why GPU is useful

### Outline

#### Introduction

- 2 Optimization problem for convolutional neural networks (CNN)
- 3 Newton method for CNN
- Experiments
- Discussion and conclusions

イロト イヨト イヨト

## Running Time and Test Accuracy

• Four sets are considered

MNIST, SVHN, CIFAR10, smallNORB

• For each method, best parameters from a validation process are used

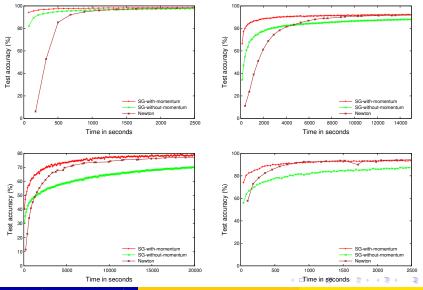
We will check parameter sensitivity later

- Two SG implementations are used
  - Simple SG shown earlier
  - SG with momentum (details not explained here)

• SG with momentum is a reasonably strong baseline

Experiments

## Running Time and Test Accuracy (Cont'd)



Chih-Jen Lin (National Taiwan Univ.)

## Running Time and Test Accuracy (Cont'd)

- Clearly, SG has faster initial convergence
- This is reasonable as a second-order method is slower in the beginning
- But if cost for parameter selection is considered, Newton may be useful

< ロト < 同ト < ヨト < ヨト

#### Experiments on Parameter Sensitivity

• Consider a fixed regularization parameter

 $C = 0.01\ell$ 

• For SG with momentum, we consider the following initial learning rates

0.1, 0.05, 0.01, 0.005, 0.001, 0.0003, 0.0001

• For Newton, there is no particular parameter to tune. We check the size of subsampled Hessian:

$$|S| = 10\%, 5\%, 1\%$$
 of data



## Results by Using Different Parameters

| Each line shows the result of one problem |       |       |                       |       |       |       |        |
|-------------------------------------------|-------|-------|-----------------------|-------|-------|-------|--------|
| Newton                                    |       |       |                       | SG    |       |       |        |
| Sampling rate                             |       |       | Initial learning rate |       |       |       |        |
| 10%                                       | 5%    | 1%    | 0.03                  | 0.01  | 0.003 | 0.001 | 0.0003 |
| 99.2%                                     | 99.2% | 99.1% | 9.9%                  | 10.3% | 99.1% | 99.2% | 99.0%  |
| 92.7%                                     | 92.7% | 92.2% | 19.5%                 | 92.4% | 93.0% | 92.7% | 92.3%  |
| 78.2%                                     | 78.3% | 75.4% | 10.0%                 | 63.1% | 79.5% | 79.2% | 76.9%  |
| 94.9%                                     | 95.0% | 94.6% | 64.7%                 | 95.0% | 95.0% | 95.0% | 94.8%  |
| \\ <i>\</i>                               |       |       | '                     |       |       |       |        |

We find that

- a too large learning rate causes SG to diverge, and
- a too small rate causes slow convergence



## Outline

#### Introduction

- 2 Optimization problem for convolutional neural networks (CNN)
- 3 Newton method for CNN

#### 4 Experiments

Discussion and conclusions



## Conclusions

- Stochastic gradient method has been popular for CNN
- It is simple and useful, but sometimes not robust
- Newton is more complicated and has slower initial convergence
- However, it may be overall more robust
- By careful designs, the implementation of Newton isn't too complicated

< ロト < 同ト < ヨト < ヨト

# Conclusions (Cont'd)

- Results presented here are based on the paper by Wang et al. (2019)
- An ongoing software development is at https://github.com/cjlin1/simpleNN
- Both MATLAB and Python are supported
- MATLAB: joint work with Chien-Chih Wang and Tan Kent Loong (NTU)
- Python: joint work with Pengrui Quan (UCLA)